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Abstract
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1 Introduction

Sampson (2023) develops and tests a theory of technology gaps and their implications

for inequality, laying the foundations for a new branch of literature. Alongside Buera

and Oberfield (2020) and Cai et al. (2022), Sampson contributes to an emerging body

of literature investigating the interrelations between international trade, innovation, and

technology diffusion. By constructing an endogenous growth model that considers factors

at both the industry and country levels, their study captures variations in innovation

efficiency among countries and differences in innovation levels and adoption choices across

industries. These factors collectively contribute to shaping the equilibrium conditions that

influence technology gaps, trade dynamics, and income and wage inequality.

The model by Sampson demonstrates that countries with higher innovation effi-

ciency—measured by changes in either R&D intensity or patent intensity relative to

the U.S.—tend to exhibit a greater comparative advantage in industries characterized

by a higher degree of innovation dependence. The calibration of innovation efficiency at

the country and industry levels is based on various extensive OECD datasets, includ-

ing bilateral trading data, R&D expenditures, and patent statistics, spanning the years

2010-2014. Additionally, they conduct a counterfactual analysis by assuming uniform

innovation efficiency across all sample countries. One of their key findings is that techno-

logical disparities account for approximately 25% to 33% of the observed nominal wage

variation between the considered economies.

Our primary contribution in this article is to assess the external validity of Sampson’s

main result. We demonstrate that technology gaps explain a larger share of between-

country differences when the country sample is more heterogeneous. We illustrate het-

erogeneity along two dimensions: the innovation measure and the level of economic de-

velopment. In more homogeneous samples, the technology gaps explain a lower share

in some instances, a negligible portion of wage and income differences. This finding

complements Sampson’s model by highlighting how representativeness and determinant

selection influence empirical results, offering further nuance to the role of technology gaps
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in economic outcomes.

Sampson investigates innovation efficiency using two distinct data sources: R&D ex-

penditure (OECD 2023b) and counts of ‘triadic patent families’ (TPFs) (OECD 2023a),

both by industry and country. While both sources are commonly employed in the liter-

ature, they have limitations in fully capturing innovation. We suggest that R&D expen-

diture data likely overestimates truly novel research effort, while counts of TPFs likely

underestimate such efforts. As discussed later, innovation as captured by the expenditure

data also encompasses activities closer in spirit to diffusion than novel innovation. TPFs,

on the other hand, are restricted to patent applications jointly filed in the U.S., Europe,

and Japan. This introduces two types of biases: one towards highly valuable innovations

and a second towards firms from countries that host a ‘triadic patent office’.

Building on a suggestion by De Rassenfosse et al. (2013), we adopt an alternative ap-

proach by counting patent applications filed at any patent office worldwide, aggregating

them into patent families to accommodate differences in national patent laws and pro-

cedures. We find a stronger correlation of this measure with both of Sampson’s metrics

(changes in R&D intensity or patent intensity relative to the U.S.) than the correla-

tion between these metrics themselves. Additionally, while the correlation with the TPF

measure is especially strong, the shape of the distribution more closely mirrors that of

R&D expenditure. When this broader patent application measure is used to calibrate the

model, we observe a more uniform distribution of innovation efficiency across countries

and innovation dependence across industries. Broader innovation measures yield attenu-

ated results for wage and income dispersion compared to the original metrics, offering a

conservative lower bound on the impact of technology gaps. This highlights the need to

consider measure-specific sensitivities while affirming the broader relevance of technology

gaps in explaining economic inequality.

Moreover, we explore variations in country composition, excluding six developing and

six developed nations identified as outliers in the original paper’s Figure 6. Unlike Samp-

son, we preclude these countries from the dataset before equilibrium calculation. With

24% of the dataset excluded, we scrutinize potential influences on the results. This anal-
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ysis contributes to evaluating the model’s sensitivity to variations in country composition

and their implications for the original study’s conclusions. We find a significant reduc-

tion in the effect of technology gaps on inequality when the six developing countries are

removed.

The geographical distribution of innovation has been extensively studied, revealing

patterns of both concentration and fragmentation across regions. Studies consistently

show that innovation activities tend to cluster in specific locations, driven by factors such

as agglomeration economies, access to skilled labor, and R&D spillovers. However, the

methods used to measure innovation can significantly affect the interpretation of these

patterns, particularly when alternative metrics highlight less concentrated innovation

distributions.

R&D surveys are a common method for quantifying innovation efforts but are not

without biases. As highlighted by Kleinknecht et al. (2002) and Faber and Hesen (2004),

such surveys may underestimate innovation activities, especially in small firms whose

inventive work is harder to capture. This issue is especially pronounced in developing

and emerging economies, where small firms dominate the economy (Bogliacino et al.

2012). Conversely, overestimation may occur when firms include broader innovation-

related expenditures that go beyond the OECD’s precise R&D definitions (Kleinknecht

et al. 2002). These biases complicate cross-country comparisons and may obscure a more

dispersed pattern of innovation, particularly in underrepresented regions.

The literature consistently identifies metropolitan regions as key innovation hubs,

benefiting from agglomeration effects, access to skilled labor, and localized knowledge

spillovers. For instance, Crescenzi et al. (2023) describe innovation as concentrated in

globally interconnected metropolitan hotspots, while Boschma (2005) highlights the role

of various forms of proximity—geographic, social, and organizational—in driving inno-

vation. Glaeser (2008) and Carlino and Kerr (2015) further emphasize the importance

of spatial clustering and face-to-face interactions in fostering innovation. Such concen-

trated patterns align with findings that R&D productivity is often enhanced in densely

populated innovation clusters (Carlino and Kerr 2015).
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Alternative measures of innovation paint a more fragmented picture. Broader metrics,

which capture dispersed activities, attenuate the apparent dominance of innovation hubs.

This is particularly relevant when accounting for regions where small firms or informal

innovation efforts play a significant role, as these are often underrepresented in traditional

metrics. Studies such as Dominguez Lacasa et al. (2019) and Lee et al. (2021) suggest

that patent data, while useful, may not fully capture the diversity of innovation activities

in emerging economies. Patent-based measures face particular challenges in cross-country

comparisons, including ‘home bias,’ wherein innovation activities are disproportionately

associated with a single patent office (Hinze and Schmoch 2005). To address this, re-

searchers have developed measures such as triadic patent families (Grupp et al. 1996),

which count patents filed in multiple jurisdictions to reduce bias and enhance compara-

bility among developed nations. However, this approach is less suitable for comparisons

involving developing economies due to cost barriers and differing motivations for patent

filings (Frietsch and Schmoch 2009). For example, Khan and Dernis (2006) demonstrate

that more inclusive patent measures, such as Patent Cooperation Treaty applications,

yield higher shares of patents from developing countries. Yet, even these approaches

struggle to fully capture innovation in less-developed regions, where firms may lack the

resources to file patents internationally. Recent work by Bruns and Kalthaus (2020) un-

derscores the importance of selecting appropriate patent measures, demonstrating that

restrictive counts (e.g., triadic patents) can decrease effect sizes in some studies while

increasing them in others. This variability highlights the nuanced impact of alternative

patent measures on observed geographical innovation patterns.

Our findings contribute to this ongoing discourse by illustrating how alternative mea-

sures of innovation—those that reflect broader, less concentrated patterns—yield attenu-

ated results compared to traditional metrics. These findings align with existing literature,

which demonstrates that while innovation tends to concentrate in metropolitan hotspots,

dispersed regions also meaningfully contribute to global innovation, albeit with weaker

outcomes. By connecting these insights with the methodological challenges of measuring

R&D and patent data, our analysis underscores the importance of inclusive approaches
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that better represent innovation across diverse geographic and economic contexts.

Additionally, we explore six modifications to the calibration decisions made by the

author in the original study. (i) We incorporate an analysis of additional patent metrics

from the OECD and a measure of patent citations based on our more extensive patent

measure. (ii) By broadening the scope, we expand the number of countries from 26 to

29. This expansion includes country-years with observations for at least 10 industries,

relaxing the original requirement of 14 industries. (iii) By broadening the temporal

scope, we incorporate an additional two years of data into the original four-year dataset.

Subsequently, we explore various partitions of time periods to assess their impact. (iv)

The original paper includes a robustness check in which the author varies the trade

elasticity within the range of 2.5 to 8.5. In our analysis, we extend this examination by

adjusting the trade elasticity to a lower value, 1, and a higher value, 10.5, to further

assess its robustness. (v) We exclude two outliers, specifically, the Paper and Paper

Products (17) industry and the Agriculture, Forestry, and Fishing (0103) industry. These

outliers, identified using information from Figure 4 in Sampson’s paper, are examined for

their impact on the results. (vi) We rerun the regression Equation (33) from Sampson

and examine how outliers affect the regression. The outcomes of this comprehensive set

of robustness checks affirm the reliability and consistency of the results observed in the

original paper. Some variation in the results is observed when different patent metrics are

used. Specifically, Sampson’s findings on wage or income inequality sometimes become

more pronounced and other times more confined. The key takeaway is that when the

metric captures patent concentration, the results tend to align with or exceed those in

the original paper. Conversely, when the patent measure is more evenly distributed across

countries, the observed inequality decreases.

The structure of the paper is the following. In Section 2, we explore the inherent chal-

lenges of Sampson’s research, while Section 3 evaluates the robustness of their methodol-

ogy. This analysis is organized into various subsections, each addressing different aspects

of Sampson’s work. Through this critical lens, we examine the employed methodology,

assess data reliability, and evaluate the validity of the conclusions drawn. Additionally,
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we highlight the strengths and limitations within Sampson’s research, offering a nuanced

perspective on its overall quality and contribution to the field. Section 4 concludes.

2 Unveiling challenges

2.1 Using a more representative measure of innovation

Sampson relies on two distinct data sources to obtain a proxy for innovation efficiency,

captured by variations in R&D intensity (the ratio of R&D expenditure to value added)

or patenting intensity (the ratio of patents count to value added) relative to the U.S.

The first is the OECD’s Analysis of Business and Economic Research and Development

(ANBERD) database, providing aggregated business R&D expenditure data by industry

and country (OECD 2023b). The second source involves counts of ‘triadic patent fami-

lies’ (TPF) by technology class, also sourced from the OECD (OECD 2023a). A triadic

patent family encompasses patent applications containing the same invention filed simul-

taneously at the U.S., European, and Japanese patent offices. These TPF counts are then

mapped to industries using a widely-accepted technology-industry correspondence table

(Lybbert and Zolas 2014). While both OECD data sources are commonly employed in

the literature, they have limitations in fully capturing innovative efforts.

In Section I.A of their article, Sampson defines R&D as an investment ‘to create new

ideas and technologies through innovation’ (p. 477). Alternatively, firms can pursue an

‘adoption’ strategy, oriented towards ‘learning about and implementing existing produc-

tion techniques’—often referred to as the imitation or diffusion of existing technology in

other contexts. If R&D expenditure data was reliably restricted to effort spent on ‘in-

novation’ as per the above definition, it would be the preferred data source to proxy for

innovation efficiency. However, the OECD’s ANBERD R&D expenditure data, collected

following the definitions in the Frascati Manual (OECD 2015), encompasses activities

that could be appropriately categorized as adoption efforts. This includes tasks such as

identifying discrepancies when replicating existing results and incorporating additional

material into the maintenance manual of a complex system (OECD 2015, p. 46). Given

the challenges of measuring R&D in general, and its comparability across countries in par-
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ticular, as highlighted in Sampson (2023, p. 495), this potential mismeasurement makes

it essential to validate the results using an alternative measure.

The most desirable alternative measure is counts of all patent filings submitted by

nationals of a country. In contrast, the triadic patent families used by Sampson are often

considered a proxy for particularly valuable technologies, due to the costs of seeking

protection in several patent offices (Criscuolo 2006, Nagaoka et al. 2010, van Zeebroeck

2011, De Rassenfosse et al. 2013).

Unlike commercial outcomes, Sampson’s study specifically focuses on technological

progress. This distinction is crucial because technological advancements do not always

align with commercial profitability; significant inventions may yield little financial gain

for the inventor, even if they are valuable to others (Shankar et al. 1998, Hoppe 2000).

This constrains the applicability of TPFs as an innovation proxy. Moreover, the ‘home

advantage’ of firms from countries hosting triadic patent offices, along with their in-

creased financial capacity to file foreign patents, can introduce biases in international

comparisons, potentially disadvantaging emerging economies and exacerbating dispari-

ties in measured innovation.1 Recognizing these considerations is vital for studies aiming

to compare countries at diverse developmental stages. Finally, the importance of patent

protection varies across industries, as does the propensity to seek patent protection in-

ternationally. As a result, differences in the composition of a country’s industrial base

can significantly impact triadic patent counts, even among nations with similar levels of

economic development Sternitzke (2009).

We employ a more representative metric by counting all patent application families,

regardless of the patent offices where they were submitted. To achieve this, we rely on the

European Patent Office (EPO)’s Patent Statistics (PATSTAT) database (version autumn

2021), which consolidates data from 90 global patent offices and is widely used in research

(Kang and Tarasconi 2016). Notably, the OECD also relies on this database for their

1For instance, De Rassenfosse et al. (2022) find that obtaining a patent in an export destination
significantly increases the patent owner’s exports to that market. This suggests that patenting abroad
is often motivated by the intention to export to those markets, a strategy that may not always be
economically feasible for firms from emerging economies. Consequently, triadic patents may not fully
capture the innovation capacity of those countries.
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TPF counts.2 This alternative approach alleviates ‘geographic bias’ and refrains from

imposing a ‘filter on patent value’ (De Rassenfosse et al. 2013).

While we advocate for a more inclusive patent count, we concur with the established

use of patent families—defined by OECD (2009) as sets of related patents filed in multiple

countries to protect the same invention—instead of raw counts of patent applications to

facilitate international comparisons across diverse national patent systems (Dernis et al.

2002, Nagaoka et al. 2010, De Rassenfosse et al. 2013). For instance, countries like

Japan traditionally require the filing of a greater number of separate patent applications

for the same invention compared to the U.S. and Europe. Adopting the concept of

patent families, each linked to a unique International Patent Documentation (INPADOC)

patent family ID (INPADOC_FAMILY_ID) in PATSTAT Table 201, effectively addresses and

mitigates this issue (Park and Hingley 2009).

For each INPADOC_FAMILY_ID, we determine the earliest filing date to assign a unique

invention year. Inventor countries are extracted from PATSTAT Tables 206 and 207.

However, owing to significant missing data in these tables (De Rassenfosse et al. 2013,

2019), we additionally utilize imputed location data provided by De Rassenfosse and

Seliger (2021). Patent families are linked to countries based on the relative share of each

country among all inventor countries within the family (Dernis and Khan 2004). For

example, if a family has ‘Italy’ assigned twice, ‘Germany’ once, and ‘United Kingdom’

once as the inventor countries, the family is accounted for as 0.50 patent families for Italy,

and 0.25 for both Germany and the UK, respectively.3 Only inventor countries that are

part of the original dataset and patent families with a first filing between 2010-2014 are

considered.

Table 1 provides summary statistics for the various innovation measures analyzed in

2For further details, refer to the OECD Triadic Patent Families database usage instructions, July
2020, available at https://www.oecd.org/sti/intellectual-property-statistics-and-analysis.
htm#ip-data.

3While the OECD, relying solely on U.S. patent office data, counts each inventor only once per patent
family, our data does not allow tracking the same inventor across different applications. Consequently,
we count an inventor country as many times as it occurs within the same patent family. The impact of
this difference in approach on national patent counts is minimal, as demonstrated in Table 1. Unreported
robustness checks, involving calculating country shares first at the application level before aggregating
them at the family level, yield nearly identical results.
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Table 1. Summary statistics of different innovation measures.

Innovation R&D exp. (bn.) count of patent application families

Data source: OECD OECD PS PS PS PS PS
Patent family definition: triadic triadic triadic triadic ID ID
Location data: US data only imputed imputed

(1) (2) (3) (4) (5) (6) (7)

Full sample (N = 2, 454)
mean 112 91 90 76 39 1304 1676
SD 1100 367 371 318 219 4908 7135
median 0.184 4.8 6 5 1 124 101
mean/SD 0.10 0.25 0.24 0.24 0.18 0.27 0.23
mean/median 608.70 18.96 14.70 15.20 39.00 10.52 16.59

Country level (S = 25)
mean 97.6 90 89 76 39 1300 1663
SD 383 209 207 177 117 2609 3999
median 0.398 13.3 14 11.8 3.3 205 188
mean/SD 0.25 0.43 0.43 0.43 0.33 0.50 0.42
mean/median 245.23 6.77 6.21 6.44 11.82 6.34 8.85

Industry level (J = 20)
mean 109 91 90 76 39 1308 1682
SD 247 120 121 104 63 1831 2354
median 26.5 56 59 50 26 853 1027
mean/SD 0.44 0.76 0.74 0.73 0.62 0.71 0.71
mean/median 4.11 1.63 1.52 1.52 1.50 1.53 1.64

Notes: PS=PATSTAT, the EPO’s worldwide statistical database; ID=INPADOC patent family definition. Each observation is
a country-industry-year tuple, where the industry (J) is one of the 20 two-digit ISIC manufacturing sectors for which Sampson
obtained R&D and patent data, and the country (S) is one of the 25 OECD countries used in their analysis.Using T = 5 years of
data for each country, the total number of observations therefore would be S × J × T = 2, 500. The actual sample size of 2,454
indicates 46 cases of missing innovation data Columns (1) and (2) report, respectively, statistics for the R&D intensity and patent
intensity used in the original paper. Columns (3) through (7) use patent data independently obtained from PATSTAT, with
variations in aggregation level and selection of patent applications. Specifically: Column (3) utilizes the OECD’s triadic patent
family definition and use inventor country locations only from patent applications filed at the US Patent & Trademark Office,
aiming to replicate Column (2). Columns (4) and (5) utilize the OECD’s triadic patent family definition but include inventor
country locations from all available patent applications . Columns (6) and (7) employ the INPADOC patent family definition that
comes with PATSTAT, including patent applications not filed simultaneously in all ‘top-3’ patent offices. Additionally, Columns
(3), (4) and (6) only use inventor location data from PATSTAT, (5) and (7) incorporate additional inventor location data from
De Rassenfosse and Seliger (2021).

our replication. While our objective is to compare the author’s results with those obtained

using our preferred innovation measure, we also report several intermediate measures to

systematically investigate the influence of different choices in data construction on the re-

sults. In addition to reporting the author’s R&D expenditure and patent count (Columns

1 and 2), we replicate the OECD’s triadic patent measure using multiple sources. Data

on patent applications and inventor locations are sourced from the EPO’s PATSTAT

database. Individual patent applications are grouped into families using two approaches:

one with data from the OECD’s Science, Technology, and Innovation (STI) department,

which is directly compatible with PATSTAT (Columns 3–5), and the other using the

alternative ‘INPADOC’ patent family (IPF) definition provided by the EPO as part of

PATSTAT (columns 6–7). We also explore the impact of different sources of inventor
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location data. Column (3) follows the OECD’s approach, using inventor location data

exclusively from U.S. Patent & Trademark Office filings. Columns (4) and (6) use in-

ventor locations data from all available patent offices in PATSTAT. Lastly, Columns (5)

and (7) incorporate additional inventor locations imputed by De Rassenfosse and Seliger

(2021) for applications with missing data in PATSTAT.

The PATSTAT-based replication yields overall comparable values. Using a broader

range of inventor location sources reduces the mean for the triadic patent family definition

but increases it for the worldwide definition.4 Panels a-c in Figure 1 reveal comparable

distribution shapes across R&D measures, with R&D expenditures exhibiting a notably

longer right tail. The utilization of imputed inventor locations and the worldwide patent

family definition slightly extends the right tail of the patent count distribution. Partic-

ularly when considering country-level data (Figure 1b), the distribution of IPF counts

aligns more closely with the R&D expenditure distribution than the TPF counts. It is

only at the industry level that the shape of the distributions of the patent counts more

closely mirror each other compared to the distribution of R&D-expenditure (Figure 1c).

To investigate the extent to which the different innovation measures capture the same

definition of innovation, we calculated correlation coefficients, reported in Table A1 in the

appendix.6 It is noteworthy that the IPF count is more strongly correlated with R&D

expenditure (0.53 without and 0.43 with imputation of inventor locations) than the TPF

count used by Sampson (0.20 without and 0.13 with imputation). At the same time, the

correlation between the two patent-based counts remains very high (0.80 without and

4This is likely due to the combination of family definition and data sources. For TPFs, PATSTAT
contains at least some inventor location. However, certain offices, like the Japanese Patent Office, do
not provide location data to PATSTAT (De Rassenfosse and Seliger 2021). Thus, using more complete
location coverage distributes the same number of TPFs across a larger number of countries, some of which
are outside of the sample, reducing the sample mean. Conversely, many IPFs entirely lack location data
in PATSTAT. (Remember that an IPF may comprise as little as a single patent application.) Expanding
location coverage hence allows more IPFs to be assigned a country and therefore used in analysis,
increasing the mean.

5Notes: ‘imp’ in the legend denotes the use of imputed inventor locations.
6To further validate the IPF count, we examined its correlation with R&D expenditure values ob-

tained from external survey data. Due to the small sample size from various country-year combinations,
these results are presented only in Appendix A of the appendix, and were unable to use the survey-based
innovation measures to calibrate Sampson’s model. However, the correlations suggest that in the survey
sample, the IPF count performs as a stronger proxy for business R&D expenditure than both the TPF
count and the OECD’s aggregate R&D expenditure.
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Figure 1. Density plots comparing different innovation measures.5

0.91 with imputation).

It is well known that the ability and propensity to patent inventions differs between

industries. We therefore also calculate industry-specific correlation coefficients. Table A2

presents the averages for these 20 industry-specific correlations. The average correlations

between the patent-based measures and R&D spending are all larger than the correlations

calculated using the full sample above, but still considerably greater for our suggested

measures (between 0.27 and 0.31 for the TPF counts and between 0.70 and 0.72 for the

IPF counts).

To illustrate the range of heterogeneity between industries, the maximum correlation

between the two measures used by the author is 0.73, found in industry 13 (textiles),

whereas the correlations between those two and our preferred measure are 0.96 for R&D

expenditure and 0.87 for the TPF count (using 97 jointly non-missing observations). At

the other end of the spectrum is industry 14 (wearing apparel) with a correlation between

the author’s measures of only 0.05. In the same industry, our IPF count is correlated

with R&D expenditure at 0.54 and with the TPF count at 0.80 (using 91 observations).

All this corroborates our interpretation of the IPF measure capturing a definition of

R&D that is somewhat ‘in the middle’ between the author’s two original measures. In
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fact, the observed mean correlation between IPF and R&D expenditure of 0.891 is only

0.001 smaller than the maximum possible correlation. In other words, given its mean

correlation with R&D expenditure, our suggested patent count is, on average across the

sample industries, as strongly correlated with the TPF count as is technically possible,

and vice versa.7

Figure 1d presents the calculation of countries’ innovation efficiency, which is R&D

intensity or patent intensity normalized to the U.S. We primarily have data on patent

intensity, precisely defined as the ratio of the average patent family count to the average

value added over time for each industry and country. Following Sampson, this ratio

is then logged, and the log value for Germany is subtracted. Next, the median across

industries is calculated for each country, and finally, the value for the U.S. is subtracted

to obtain the patent measure of innovation efficiency. The distributions obtained using

R&D expenditure and IPF counts exhibit similar shapes, contrasting with the flatter

distribution observed when using TPF counts. The distribution based on expenditures

features a longer left tail, while the IPF-based distribution contains an upper outlier.

Details on the underlying values for the density curves in Figure 1d are provided in Table

2.

The values in Table 2 show that when employing worldwide patent counts, notable

shifts in efficiency are observed for certain countries. Belgium and France experience a

decrease, while Japan and Korea witness an increase. Particularly, countries at the lower

end in the author’s original values (Chile, Czechia, Hungary, Mexico, Poland, and Turkey)

show enhanced innovation efficiency relative to the U.S. when using worldwide instead

of triadic patent counts. Ireland and Poland also display an improvement compared

to expenditure-based estimates. Across all columns, worldwide patent counts yield the

highest mean estimates, aligning with the objective of mitigating the ‘disadvantaging’ of

less-developed economies in the patent-based measure.

7We calculate the maximum possible correlation by replacing one of the correlations in the matrix by
ρ, calculating the determinant of the matrix, and then exploiting the fact that matrix must be positive
semi-definite. This is a well-known property of a covariance matrix that can be shown to apply also a
matrix of mean covariances. The resulting interval of solutions to the quadratic equation describes the
range of feasible values of ρ given the other covariances.
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Table 2. Innovation efficiency by country — including alternative measures of patent counts

Innovation efficiency measure:
R&D Patenting intensity

intensity

Data source: OECD OECD PS PS PS PS PS
Patent family definition: triadic triadic triadic triadic ID ID
Location data: US only imputed imputed

(1) (2) (3) (4) (5) (6) (7)

Australia (AUS) -0.25 -0.99 -0.74 -0.71 -2.01 -1.15 -0.49
Austria (AUT) 0.00 -0.15 0.07 -0.16 -0.95 -0.34 -0.60
Belgium (BEL) 0.27 -0.08 0.22 0.04 -0.44 -0.76 -1.14
Canada (CAN) -0.57 -1.10 -0.90 -0.74 -1.46 -0.49 -0.70
Chile (CHL) -2.50 -3.00 -2.42 -2.55 -3.07 -1.92 -2.21
Czechia (CZE) -1.30 -2.55 -2.28 -2.46 -2.79 -1.06 -1.02
Germany (DEU) -0.31 0.05 0.10 -0.03 -0.96 0.14 0.09
Denmark (DNK) -0.38 -0.02 0.13 0.06 -0.63 -0.19 -0.62
Spain (ESP) -0.84 -1.79 -1.40 -1.62 -2.43 -1.03 -1.06
Finland (FIN) -0.09 -0.30 0.09 0.02 -1.03 -0.17 -0.16
France (FRA) 0.30 0.11 0.30 0.16 -1.39 -0.12 -0.05
United Kingdom (GBR) -0.45 -0.05 -0.29 -0.18 -1.21 -0.38 -0.69
Hungary (HUN) -1.38 -2.29 -1.96 -2.01 -2.89 -0.86 -0.87
Ireland (IRL) -0.72 -0.85 -0.34 -0.48 -0.61 -0.11 -0.26
Italy (ITA) -0.66 -0.97 -0.77 -0.90 -2.15 -1.16 -1.23
Japan (JPN) 0.14 0.91 0.96 0.84 0.91 -0.08 1.19
Korea (KOR) -0.24 -0.50 -0.40 -0.38 -2.64 1.62 1.70
Mexico (MEX) -2.61 -4.30 -3.74 -3.62 -4.82 -1.95 -1.98
Netherlands (NLD) -0.52 0.51 0.59 0.48 -0.84 0.03 -0.38
Norway (NOR) -0.43 -0.87 -0.65 -0.69 -2.07 -0.72 -0.97
Poland (POL) -2.05 -2.60 -2.26 -2.16 -3.14 -0.55 -0.43
Portugal (PRT) -0.52 -2.52 -2.04 -2.13 -3.52 -1.85 -1.92
Slovenia (SVN) -0.31 -1.41 -1.51 -1.71 -1.98 -0.61 -0.54
Turkey (TUR) -1.78 -3.39 -2.97 -3.04 -4.91 -1.86 -1.95
USA 0.00 0.00 0.00 0.00 0.00 0.00 0.00

mean -0.69 -1.13 -0.88 -0.96 -1.88 -0.62 -0.65
SD 0.81 1.34 1.22 1.20 1.40 0.80 0.90

Notes: The innovation measure used in each column is identical to the one described in the Notes
below Table 1. Innovation efficiency is expressed relative to that of the United States, which is nor-
malized to one. For this reason, the table shows a value of zero in each column for the USA. To aid
interpretation, non-negative values are highlighted in bold. R&D intensity is calculated as the ratio of
R&D expenditure to industry value-added. What we term “patenting intensity” is that same ratio but
with the corresponding patent count in the numerator.
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Table 3 and Table 4 replicate Tables 1 and 3 from the original paper. The first set

of results is derived from Sampson’s Equation (33), whereby the dependent variable is

log
(

EXjss̃

EXjs̃s̃

)
− (σ − 1) log

(
ws̃

ws

)
, where j denotes the industry, s represents the exporting

country and s̃ the destination country. So that, EXss̃ signifies the value of trade from

country s to country s̃. Additionally, σ represents the Armington elasticity of demand,

and ws the wage in country s. Moreover, we describe the key independent variable of in-

terest, bs, the log of normalized innovation efficiency of country s, specifically in the form

of medians calculated across industries, as described earlier, and denoted as log
(

RDjs

RDjs̃

)
.

The term (1 − σ)bs on the right-hand side of Equation (33) is interacted with country

dummies. This adjustment provides coefficients for innovation dependence at the country

level, with the U.S. serving as the reference country. In Table 3, Columns (5) and (6)

depict a slightly reduced estimated average innovation dependence. Notably, the indus-

try ‘Computer, Electronic, and Optical Products (26)’ is no longer a pronounced outlier

among industries with the highest innovation dependence. Meanwhile, ‘Mining and Quar-

rying’ maintains its position as the industry with the lowest innovation dependence. The

null hypothesis of equal innovation dependence across industries is now rejected below

the 5% level, as opposed to the previous 1% level.

In Table 4, countries exhibit increased similarity when our alternative patent count

is employed. The model now accounts for only 17% of nominal wage dispersion, roughly

half of the explanatory power achieved with the author’s original innovation measures.

The model’s ability to explain real income dispersion is diminished by the same relative

amount. The anticipated average change in both outcomes from eliminating differences

in innovation efficiency between countries is now reduced to approximately one-third of

the original estimates.8

While we acknowledge, as stated in the introduction, that R&D expenditure likely

overcounts true innovation efforts and triadic patent families likely undercount them,

8While the dispersion of innovation intensity is reduced, as indicated by the SID values in Table 3,
the overall impact of narrowing innovation gaps on income and wage dispersion is not known in advance.
Wage or income dispersion is determined by the ratio of counterfactual to observed standard deviations.
Although the counterfactual standard deviation (the numerator of the equation on p. 505 of Sampson)
decreases as innovation intensity becomes more uniform, the observed standard deviation of wages or
income also declines, making unpredictable the effect on the ratio.
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Table 3. Innovation dependence by industry — alternative patent counts

Innovation efficiency measure:
R&D Patenting intensity

intensity

Data source: OECD OECD OECD PS PS PS
Patent family definition: triadic triadic triadic ID ID
Location data: US only imputed imputed

(1) (2) (3) (4) (5) (6)

Agriculture, forestry and fishing (0103) 0.17 0.01 0.01 0.01 0.02 0.06
(0.09) (0.06) (0.06) (0.05) (0.07) (0.05)

Mining and quarrying (0508) -0.11 -0.14 -0.16 -0.05 -0.21 -0.22
(0.13) (0.08) (0.09) (0.1) (0.07) (0.07)

Food products, beverages and tobacco (1012) 0.21 0.06 0.07 0.06 0.04 0.07
(0.08) (0.06) (0.06) (0.04) (0.06) (0.05)

Textiles (13) 0.29 0.12 0.12 0.03 0.11 0.12
(0.06) (0.05) (0.05) (0.03) (0.05) (0.03)

Wearing apparel (14) 0.33 0.13 0.12 0.01 0.09 0.11
(0.05) (0.04) (0.04) (0.02) (0.03) (0.02)

Leather and related products (15) 0.34 0.12 0.10 0.02 0.07 0.13
(0.08) (0.07) (0.07) (0.04) (0.05) (0.04)

Wood and products of wood and cork, except furniture (16) 0.20 0.03 0.03 0.01 0.02 0.06
(0.07) (0.05) (0.05) (0.03) (0.05) (0.04)

Paper and paper products (17) 0.34 0.13 0.14 0.09 0.10 0.13
(0.07) (0.05) (0.05) (0.04) (0.06) (0.05)

Printing and reproduction of recorded media (18) 0.27 0.11 0.12 0.10 0.09 0.10
(0.06) (0.04) (0.04) (0.03) (0.06) (0.05)

Coke and refined petroleum products (19) 0.14 0.05 0.05 0.06 0.02 0.05
(0.08) (0.04) (0.04) (0.04) (0.07) (0.06)

Chemicals and chemical products (20) 0.38 0.19 0.20 0.14 0.14 0.15
(0.09) (0.06) (0.06) (0.06) (0.08) (0.05)

Basic pharmaceutical products and pharmaceutical preparations (21) 0.22 0.17 0.18 0.13 0.13 0.14
(0.14) (0.10) (0.10) (0.08) (0.09) (0.07)

Rubber and plastics products (22) 0.38 0.18 0.19 0.11 0.15 0.17
(0.05) (0.04) (0.04) (0.03) (0.06) (0.04)

Other non-metallic mineral products (23) 0.30 0.12 0.13 0.07 0.12 0.14
(0.06) (0.04) (0.04) (0.03) (0.05) (0.04)

Basic metals (24) 0.27 0.18 0.20 0.14 0.09 0.12
(0.07) (0.03) (0.04) (0.04) (0.06) (0.05)

Fabricated metal products, except machinery and equipment (25) 0.33 0.14 0.14 0.10 0.12 0.14
(0.06) (0.04) (0.04) (0.03) (0.06) (0.05)

Computer, electronic and optical products (26) 0.60 0.30 0.30 0.13 0.12 0.17
(0.12) (0.05) (0.06) (0.03) (0.05) (0.06)

Electrical equipment (27) 0.37 0.19 0.19 0.12 0.10 0.15
(0.10) (0.04) (0.04) (0.04) (0.05) (0.05)

Machinery and equipment n.e.c. (28) 0.38 0.21 0.23 0.16 0.14 0.18
(0.11) (0.06) (0.06) (0.05) (0.07) (0.06)

Motor vehicles, trailers and semi-trailers (29) 0.27 0.19 0.21 0.17 0.11 0.15
(0.08) (0.03) (0.04) (0.03) (0.06) (0.06)

Other transport equipment (30) 0.26 0.00 0.00 0.01 -0.01 0.05
(0.13) (0.05) (0.06) (0.06) (0.06) (0.06)

Furniture, other manufacturing (3133) 0.25 0.10 0.12 0.07 0.11 0.12
(0.07) (0.05) (0.04) (0.04) (0.06) (0.04)

Observations 171K 171K 171K 171K 171K 171K
R-squared 0.70 0.69 0.69 0.69 0.68 0.69
TCC† Yes Yes Yes Yes Yes Yes
PLC† Yes Yes Yes Yes Yes Yes
CAC† Yes Yes Yes Yes Yes Yes
AID† 0.28 0.12 0.12 0.08 0.08 0.10
SID 0.13 0.09 0.10 0.06 0.08 0.08
F test 0.07 0.00 0.00 0.00 0.08 0.02

Notes: †TCC=Trade-cost controls; PLC=Productivity-level controls; CAC=Comparative advantage controls; AID=Average
innovation-dependence; SID=Standard deviation of innovation-dependence. The F-test assesses whether innovation-dependence
exhibits equal levels of significance across various industries. The standard errors are clustered by importer-industry, and they
are presented within parentheses. We incorporate exporter-industry fixed effects, industry dummy variable interactions with six
bilateral distance intervals, and with a dummy variable indicating whether the nations share a border, a common language, or a
free trade agreement—all examples of trade cost restrictions. Productivity is significantly influenced by rule of law, corruption
prevention, political stability, regulatory quality, voice and accountability, ease of doing business, and private credit as a percentage
of GDP. Comparative advantage controls include interactions of industry dummy variables with the importer’s rule of law, log
private credit as a proportion of GDP, log physical capital per employee, and human capital. The F-test equalizes innovation-
dependence across industries (p-value reported). The innovation measure used in each column is identical to that one described
in the Notes below Table 1, except that here we do not report results obtained with the count of triadic patent families with
inventor locations based on PATSTAT data only (column (4) in Tables 1 and 3). Columns (1) and (2) are identical to columns
(3) and (4), respectively, in Sampson’s Table 1. For Columns 3-6, the only distinction lies in the innovation measure used to
calculate innovation intensity; all computations follow the same methodology as those used by Sampson.
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both measures may introduce bias in the same direction when comparing country pairs.

Imagine a scenario where each country’s total R&D effort comprises (1) inventions with

high immediate commercial value, (2) inventions with low immediate commercial value,

and (3) imitation efforts (that are still novel enough to be considered R&D by the OECD’s

definition). Triadic patent counts would approximate (1), while R&D expenditure proxies

the sum of all three parts. Our proposed measure aims to proxy the sum of (1) and (2). If a

reference country exhibits both higher total R&D expenditure and a larger share of triadic

patent applications among all patented inventions, countries will appear more disparate

using the author’s R&D measures than with our measure. Section 6 of De Rassenfosse

et al. (2013) suggests the presence of such differences between patent indicators across

countries, but a more in-depth investigation would necessitate additional data, surpassing

the scope of this article.

2.2 Exploring variations in the number of countries

In this section, we refine the composition of countries by initially excluding six developing

nations identified as outliers in Figure 6 of the original paper, followed by the exclusion

of six developed countries that appear on the top north-east side of the same figure. It is

noteworthy that the exclusion of six developing countries, identified as outliers in Figure

6, has also been carried out in Sampson (2023). However, a key distinction lies in the

approach: while Sampson removed the countries after calculating the equilibrium, we

preclude these countries from the dataset before performing equilibrium calculation.

Our rationale for this choice arises from data limitations, as Sampson’s list of countries

Table 4. Counterfactual results — alternative patent counts

Innovation efficiency measure:
R&D Patenting intensity

intensity

Data source: OECD OECD PS PS PS PS
Patent family definition: triadic triadic triadic ID ID
Location data: US only imputed imputed

(1) (2) (3) (4) (5) (6)

1. Nominal wage Average change relative to US 0.18 0.14 0.11 0.15 0.05 0.06
Dispersion ratio 0.32 0.27 0.26 0.2 0.11 0.17

2. Real income Average change relative to US 0.06 0.04 0.04 0.05 0.02 0.02
per capita Dispersion ratio 0.17 0.13 0.13 0.12 0.05 0.08

Notes: Column definitions are equivalent to those in Table 3.
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notably represents an incomplete subset of the 38 OECD countries and, naturally, only

a fraction of the 195 countries worldwide. Our objective is to evaluate the impact of this

incomplete representation on the equilibrium and the overarching message conveyed in

the paper. By investigating whether the removal of 6 out of 25 countries, constituting

24% of the dataset, influences the results, we aim to shed light on potential implications

for the external validity of the findings. Caution may be warranted if such exclusions

significantly impact the outcomes.

Table 5. Innovation intensity summary statistics

bs obs Mean Std. dev Min Max

R&D intensity

Model 1 25 -0.69 0.81 -2.61 0.30
Model 2 19 -0.29 0.33 -0.84 0.30
Model 3 19 -0.90 0.81 -2.61 0.00

Patenting intensity

Model 1 25 -1.13 1.34 -4.30 0.91
Model 2 19 -0.53 0.83 -2.52 0.91
Model 3 19 -1.55 1.25 -4.30 0.05

Notes: Model 1 displays the original results derived from the original
paper’s innovation efficiency. Model 2 presents results after excluding the

six low-income countries before calculating the equilibrium—a departure

from the original methodology where these countries were excluded after
equilibrium calculations. Finally, in Model 3, we omit the six high-income

countries, as identified in Figure 6 of the original paper.

In this section, each table is structured to offer varied perspectives on the results.

Tables with columns (or rows) labeled with a prefix of ‘1’ (model 1) present the original

findings. Similarly, those labeled with a prefix of ‘2’ (model 2) display results after

excluding six developing countries. Finally, tables with a prefix of ‘3’ (model 3) document

outcomes following the removal of six developed countries.

In Table 5, we observe that the average value R&D intensity relative to the U.S. in

the case of removing developing countries, −0.29, is considerably lower in absolute value

than the original value of −0.69. Conversely, with the exclusion of developed countries,

the value of −0.90 is higher in absolute value than the original. The rationale behind

this discrepancy lies in the characteristics of model 2, where the data sample exclusively

comprises high-income countries. These high-income countries exhibit a relatively similar
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Table 6. Innovation dependence by industry
Innovation R&D R&D R&D Patenting

efficiency measure intensity intensity intensity intensity

Industries (1A) (2A) (3A) (1B) (2B) (3B) (1C) (2C) (3C) (1D) (2D) (3D)

0103 (Agriculture) 0.45 0.05 0.50 0.33 0.24 0.39 0.17 0.25 0.18 0.01 -0.04 0.09

(0.06) (0.14) (0.07) (0.05) (0.15) (0.05) (0.09) (0.14) (0.10) (0.06) (0.08) (0.07)

0508 (Mining) 0.37 -0.21 0.42 0.25 -0.01 0.31 -0.11 -0.04 -0.09 -0.14 -0.20 -0.15

(0.09) (0.25) (0.11) (0.07) (0.21) (0.08) (0.13) (0.18) (0.19) (0.08) (0.06) (0.13)

1012 (Food) 0.48 0.09 0.50 0.36 0.28 0.39 0.21 0.28 0.16 0.06 0.00 0.13

(0.05) (0.12) (0.07) (0.04) (0.14) (0.05) (0.08) (0.10) (0.10) (0.06) (0.07) (0.06)

13 (Textiles) 0.51 0.05 0.53 0.42 0.24 0.46 0.29 0.33 0.28 0.12 0.10 0.13

(0.05) (0.13) (0.06) (0.05) (0.13) (0.06) (0.06) (0.06) (0.10) (0.05) (0.05) (0.11)

14 (Apparel) 0.47 -0.09 0.49 0.37 0.21 0.42 0.33 0.18 0.38 0.13 0.04 0.24

(0.06) (0.11) (0.06) (0.06) (0.14) (0.06) (0.05) (0.15) (0.08) (0.04) (0.05) (0.07)

15 (Leather) 0.48 -0.19 0.50 0.39 0.01 0.43 0.34 -0.27 0.39 0.12 0.01 0.25

(0.06) (0.14) (0.07) (0.07) (0.14) (0.07) (0.08) (0.18) (0.08) (0.07) (0.07) (0.09)

16 (Wood) 0.52 0.08 0.57 0.40 0.27 0.45 0.20 0.20 0.21 0.03 -0.04 0.09

(0.06) (0.09) (0.08) (0.04) (0.10) (0.05) (0.07) (0.09) (0.09) (0.05) (0.05) (0.05)

17 (Paper) 0.58 0.13 0.61 0.45 0.31 0.49 0.34 0.37 0.32 0.13 0.05 0.20

(0.05) (0.09) (0.07) (0.04) (0.11) (0.05) (0.07) (0.09) (0.09) (0.05) (0.07) (0.05)

18 (Printing) 0.58 0.06 0.60 0.46 0.25 0.49 0.27 0.24 0.25 0.11 0.04 0.14

(0.06) (0.11) (0.08) (0.04) (0.13) (0.05) (0.06) (0.06) (0.09) (0.04) (0.04) (0.05)

19 (Petrol ) 0.48 0.17 0.46 0.36 0.32 0.35 0.14 0.15 0.09 0.05 0.08 -0.01

(0.05) (0.11) (0.07) (0.04) (0.10) (0.05) (0.08) (0.08) (0.10) (0.04) (0.04) (0.04)

20 (Chemicals) 0.59 0.15 0.62 0.47 0.33 0.51 0.38 0.28 0.36 0.19 0.08 0.21

(0.05) (0.10) (0.06) (0.05) (0.12) (0.05) (0.09) (0.10) (0.11) (0.06) (0.04) (0.06)

21 (Pharma) 0.62 -0.16 0.65 0.50 0.05 0.53 0.22 0.09 0.38 0.17 0.05 0.24

(0.07) (0.21) (0.09) (0.06) (0.22) (0.06) (0.14) (0.22) (0.13) (0.10) (0.09) (0.14)

22 (Plastics) 0.60 0.13 0.63 0.48 0.29 0.52 0.38 0.36 0.33 0.18 0.13 0.19

(0.05) (0.10) (0.06) (0.04) (0.13) (0.05) (0.05) (0.08) (0.08) (0.04) (0.05) (0.05)

23 (Minerals) 0.57 0.07 0.67 0.45 0.25 0.52 0.30 0.23 0.43 0.12 0.05 0.31

(0.05) (0.09) (0.07) (0.04) (0.11) (0.04) (0.06) (0.06) (0.10) (0.04) (0.05) (0.08)

24 (Basic metals) 0.58 0.14 0.77 0.43 0.29 0.66 0.27 0.30 0.43 0.18 0.19 0.31

(0.05) (0.13) (0.07) (0.05) (0.14) (0.04) (0.07) (0.09) (0.12) (0.03) (0.03) (0.10)

25 (Fabric. metals) 0.60 0.10 0.57 0.48 0.28 0.40 0.33 0.28 0.16 0.14 0.06 0.18

(0.05) (0.08) (0.08) (0.04) (0.11) (0.05) (0.06) (0.06) (0.14) (0.04) (0.04) (0.06)

26 (Computers) 0.65 0.31 0.67 0.49 0.49 0.58 0.60 0.73 0.59 0.30 0.27 0.44

(0.06) (0.14) (0.08) (0.04) (0.13) (0.05) (0.12) (0.16) (0.13) (0.05) (0.06) (0.05)

27 (Electrical) 0.61 0.08 0.67 0.53 0.25 0.58 0.37 0.29 0.38 0.19 0.13 0.22

(0.09) (0.11) (0.08) (0.07) (0.15) (0.06) (0.10) (0.11) (0.13) (0.04) (0.04) (0.07)

28 (Machinery) 0.71 0.10 0.77 0.60 0.29 0.66 0.38 0.26 0.43 0.21 0.13 0.31

(0.08) (0.12) (0.07) (0.05) (0.15) (0.05) (0.11) (0.13) (0.12) (0.06) (0.05) (0.10)

29 (Vehicles) 0.55 0.15 0.57 0.39 0.36 0.40 0.27 0.37 0.16 0.19 0.24 0.18

(0.05) (0.11) (0.06) (0.04) (0.12) (0.05) (0.08) (0.08) (0.14) (0.03) (0.06) (0.06)

30 (Other trans.) 0.56 0.00 0.67 0.38 0.24 0.48 0.26 0.21 0.49 0.00 -0.10 0.13

(0.10) (0.13) (0.09) (0.06) (0.17) (0.06) (0.13) (0.13) (0.18) (0.05) (0.06) (0.06)

3133 (Furniture) 0.55 -0.06 0.57 0.42 0.14 0.45 0.25 0.22 0.19 0.10 0.03 0.16

(0.07) (0.15) (0.08) (0.04) (0.17) (0.05) (0.07) (0.08) (0.09) (0.05) (0.06) (0.05)

Observations 171K 137K 136K 171K 137K 136K 171K 137K 136K 171K 137K 136K

R-squared 0.52 0.11 0.55 0.65 0.34 0.68 0.70 0.43 0.73 0.69 0.43 0.73

TCC† Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

PLC† No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes

CAC† No No No No No No Yes Yes Yes Yes Yes Yes

AID† 0.55 0.05 0.58 0.43 0.24 0.47 0.28 0.24 0.28 0.12 0.06 0.17

SID 0.08 0.13 0.08 0.07 0.11 0.08 0.13 0.18 0.15 0.09 0.11 0.11

F test 0.13 0.82 0.28 0.00 0.93 0.00 0.07 0.08 0.62 0.00 0.00 0.00

Notes: Row definitions are equivalent to those in Table 3. Columns 1A-1D present the original results from Table 1, page 498. Columns 2A-2D
showcase results after excluding the six low-income countries before calculating the equilibrium; in the original results, these countries were excluded
after equilibrium calculations. In columns 3A-3D, we exclude the six high-income countries, identified using Figure 6 in the original paper. The standard
errors are clustered by importer-industry, and they are presented within brackets. We incorporate exporter-industry fixed effects, industry dummy
variable interactions with six bilateral distance intervals, and with a dummy variable indicating whether the nations share a border, a common language,
or a free trade agreement—all examples of trade cost restrictions. Productivity is significantly influenced by rule of law, corruption prevention, political
stability, regulatory quality, voice and accountability, ease of doing business, and private credit as a percentage of GDP. Comparative advantage controls
include interactions of industry dummy variables with the importer’s rule of law, log private credit as a proportion of GDP, log physical capital per
employee, and human capital. The F-test equalizes innovation-dependence across industries (p-value reported).
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level of innovation, contributing to a more uniform innovation landscape relative to the

U.S. A similar pattern is observed with patent intensity. Excluding developing countries

results in a mean patent intensity of −0.53, which is smaller in absolute terms than the

original value of −1.13. Conversely, excluding developed countries increases the value to

−1.55, which is larger in absolute terms than the original.

In Table 6, an expanded version of Table 1 from the original paper, we present the

computed estimates of innovation dependence. Following the original paper’s insights,

the gradual integration of trade costs, productivity levels, and comparative advantage

shows a systematic reduction in the average estimated innovation dependence, as seen in

AID values in columns 1A-1D.

A noteworthy observation emerges when we exclude developing countries from the

analysis. In column 2A, where only trade cost controls are considered, the mean esti-

mated innovation dependence sharply diminishes to 0.05, a substantial reduction from

the original figure of 0.55. This suggests a minimal impact of innovation when solely

incorporating trade cost controls. However, with the subsequent introduction of controls

for productivity levels and comparative advantage (columns 2B-2D), the estimated in-

novation dependence aligns more closely with the original result, although still slightly

lower in most scenarios.

Columns 3A to 3D exhibit mean innovation dependence estimates similar to the orig-

inal results when the top six developed countries are excluded from the analysis. The

variation pattern remains consistent even after the inclusion of additional control vari-

ables. Although columns 3A-3D exhibit quite similar results, suggesting minimal changes

when developed countries are excluded, they imply that the presence or absence of de-

veloped countries in the dataset may not significantly alter the outcomes.

The observations above suggest the robustness of the results when a cluster comprising

both developed and developing countries is present in the data sample. The similarity

in results implies that the dynamics within this mixed cluster contribute to consistent

findings. Conversely, when the data sample exclusively includes developed countries, a

distinct and homogeneous development pattern emerges. This shared pattern among
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developed nations can potentially exert a notable influence on the results. In essence, the

observed similarity in outcomes may be attributed to the shared development trajectories

among developed countries within the dataset.

In Model 2, the focus on developed countries results in a convergence of innovation

efficiency, as measured by nominal wages and real income. This convergence among

developed nations reduces the gap in innovation efficiency and innovation dependence, as

shown in Table 5 and Table 6, respectively.

Table 7. Counterfactual Results
Innovation Outcome R & D Patenting R & D intensity
efficiency measure intensity intensity generalized model
(1) (2) (3) (4) (5)

1A Nominal wage Average change relative to US 0.18 0.14 0.18
2A Nominal wage Average change relative to US 0.09 0.05 0.03
3A Nominal wage Average change relative to US 0.23 0.26 0.22

1B Nominal wage Dispersion ratio 0.32 0.27 0.31
2B Nominal wage Dispersion ratio 0.24 0.22 0.07
3B Nominal wage Dispersion ratio 0.27 0.30 0.26

1C Real income Average change relative to US 0.06 0.04 0.06
2C Real income Average change relative to US 0.02 0.01 0.01
3C Real income Average change relative to US 0.07 0.08 0.07

1D Real income Dispersion ratio 0.17 0.13 0.16
2D Real income Dispersion ratio 0.09 0.07 0.03
3D Real income Dispersion ratio 0.14 0.15 0.13

Notes: For detailed descriptions of Models 1-3, refer to the notes in Table 5. The top
panels (1 and 2) display the average log wage change and its standard deviation relative
to the United States, comparing the counterfactual economy with the calibrated model.
In the bottom panels (3 and 4), similar statistics are shown for real GDP per capita,
which is measured as GDP per working-age individual. The model in Column 3 is
calibrated using R&D data, while Column 4 is calibrated with patent data. Column 5
presents the calibration of the generalized model from Section IVA, using R&D data.

This trend is mirrored in Table 7, where the values in rows 2A-2D also suggest a

relatively low magnitude of inequality compared to the original results. The coherence

arises from the homogeneity in innovation efficiency among developed nations in Model

2, highlighting the impact of exclusively including developed countries on innovation

dependence metrics. The results obtained through calibrations of the generalized model

are particularly striking, indicating a near-complete disappearance of inequality.

Sampson (2023) conducted a robustness check by excluding outlier countries as de-

picted in Figure 6 of their paper. However, they removed these outliers after computing
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the equilibrium and reported only the more favourable wage dispersion ratio of 0.25 and

the income dispersion ratio of 0.10. In our analysis, we present all results in rows 2A-2D

of Table 8 following their approach. The results in column 3 are consistent between the

two models. However, in column 4, a substantial difference emerges when the model is

generalized. For instance, the wage dispersion ratio is 0.07 in Model 1 compared to 0.25

in Model 2, and the income dispersion ratio is 0.03 in Model 1 compared to 0.10 in Model

2. The generalized model is more influenced by the outliers, specifically the six poorest

countries.

3 Demonstrating robustness

We subject the original results to various checks to test their robustness. We start the

section by comparing additional patent metrics obtained from OECD and PATSTAT

data. The transparency and quality of Sampson’s code and data-sharing practices greatly

facilitated our replication of the original work

Table 8. Counterfactual Results
Innovation Outcome R & D Patenting R & D intensity
efficiency measure intensity intensity generalized model
(1) (2) (3) (4) (5)

1A Nominal wage Average change relative to US 0.09 0.05 0.03
2A Nominal wage Average change relative to US 0.08 0.06 0.08

1B Nominal wage Dispersion ratio 0.24 0.22 0.07
2B Nominal wage Dispersion ratio 0.25 0.31 0.25

1C Real income Average change relative to US 0.02 0.01 0.01
2C Real income Average change relative to US 0.03 0.02 0.03

1D Real income Dispersion ratio 0.09 0.07 0.03
2D Real income Dispersion ratio 0.10 0.11 0.10

Notes: Model 1 presents results after excluding the six low-income countries before calcu-
lating the equilibrium—a departure from the original methodology where these countries
were excluded after equilibrium calculations. Model 2 shows the result after excluding the
six low-income countries and computing the equilibrium. We used the same method as
described on page 507 of the original paper. For detailed descriptions of row and column
definitions, refer to the notes in Table 7.
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3.1 Additional patent innovation measures

This section further examines the impact of using different patent metrics. One set of

metrics restricts attention to a single patent office or filing route, intentionally introduc-

ing additional geographical bias into the analysis. Where possible, we consider patent

grants instead of patent applications, as granted patents have passed examination by the

patent office and are more likely to capture novel technological contributions. This set in-

cludes European Patent Office Grants (EPO G); Patent Cooperation Treaty Applications

(PCT A), which cover international patent applications filed through the PCT system;

and United States Patent and Trademark Office Grants (USPTO G).9 A second set of

metrics involves patent families, which group together patents filed in multiple countries

to protect a single invention. Here, we expand the family definition to include filings at

all five of the world’s largest patent offices (IP5) instead of the three used by Sampson.10

Additionally, we complement the IPF measure introduced in subsection 2.1 by citations

received from other patent families. 11 Such citations-weighted patent counts are often

used to capture the ‘quality’ of an invention, which can reflect both technological im-

pact and commercial value (Ejermo 2009, Jaffe and de Rassenfosse 2017). Therefore, we

expect results similar to those obtained with triadic patent families.

As shown in Table B1, TRIADIC patents and USPTO G patents both capture high-

quality innovations, but they exhibit notable differences in their mean innovation effi-

ciency values. TRIADIC patents, which cover a selective international scope, show a

mean innovation efficiency gap of -1.13, indicating a larger average innovation gap com-

pared to most other metrics. USPTO G patents, with a mean value of -1.95, and CIT

patents at -1.92, suggest an even greater innovation efficiency gap, likely skewed by their

9We construct all but the CIT measure using the same patent data as Sampson, only modifying the
filtering criterion which in the original is keep if kindpatent==‘FAMILIES’.

10The five largest patent offices are the United States Patent and Trademark Office (USPTO), the
European Patent Office (EPO), the Japan Patent Office (JPO), the Korean Intellectual Property Office
(KIPO), and the China National Intellectual Property Administration (CNIPA).

11Citations data is sourced from PATSTAT table 209. Citations are counted at the level of the
INPADOC_FAMILY_ID, meaning that a citation by another patent family is counted as a single citation,
regardless of how many individual patent applications within that family make the citation. Intra-family
citations are excluded. For our primary measure, we consider citations received within 5 years of the
first application filing to prevent earlier filings from accumulating higher citations counts simply due to
longer exposure (OECD 2009), but results are unchanged without this time cutoff.
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focus on the U.S. market (USPTO G) and higher citation rates (CIT). However, when

broader geographical data is considered, as seen with the EPO G, IP5, and PCT A met-

rics, the mean innovation efficiency gap decreases to -0.32, -0.60, and -0.62, respectively,

reflecting more balanced innovation levels compared to the U.S.

Table B2 presents the innovation efficiency gap by country. The TRIADIC metric pro-

vides a balanced global view of innovation efficiency. Alternative metrics show regional

biases. EPO G assigns higher weights to European countries, reflecting the European fo-

cus of the EPO. Conversely, USPTO G assigns higher weights to the U.S. and high-tech

countries closely linked to the U.S. market, highlighting the concentration of high-tech in-

novation in these regions. IP5 and PCT A metrics provide a more balanced international

perspective but still show variations, with IP5 favoring broader international collabora-

tion and PCT A emphasizing early-stage global patenting. Interestingly, the citations

metric exhibits an almost equally strong U.S. bias as the USPTO-based metric. This

bias may be partly due to the stricter citations requirements at the USPTO compared

to other offices, such as the EPO (Harhoff et al. 1999). As a result, U.S. patents tend to

generate more citations on average than European patents (Michel and Bettels 2001), and

the citations recipients are predominantly domestic (Bacchiocchi and Montobbio 2010).

Table B3 compares innovation dependence by industry using these alternative patent

metrics. The first column, labeled TRIADIC, replicates Sampson’s original findings,

showing significant dependence in the chemical, pharmaceutical, and electronic indus-

tries, among others. IP5 is broadly comparable. PCT A reveals higher innovation de-

pendence in high-tech industries such as computers, electronics, and pharmaceuticals,

underscoring the strategic importance of early and extensive international patent pro-

tection in these sectors. It also has the highest average innovation dependence across

all metrics, with statistically significant differences in the wearing apparel and electrical

equipment sectors, while EPO G has the lowest average score. In general, the EPO G

and USPTO G metrics yield industry estimates that closely reflect the respective domes-

tic industrial base. EPO G scores higher than TRIADIC in coke & refined petroleum

products, while USPTO G produces higher values for textiles, chemicals, and transport
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equipment. However, all metrics consistently identify the computer industry as the most

innovation-dependent by a significant margin, clearly distinguishing them from the IPF

count introduced in subsection 2.1.

Our main focus is on the counterfactuals and the role of innovation in explaining

income and wage inequality. These counterfactual results shown in Table 9 demonstrate

that the choice of patent metric influences the estimated impact of innovation efficiency on

wage and income dispersion, complementing Table 4. TRIADIC metrics show a strong

link between innovation efficiency and wage dispersion, confirming Sampson’s findings

that innovation efficiency differences account for nearly one-quarter of nominal wage

dispersion within the OECD countries. USPTO G and CIT metrics reveal a higher

impact, emphasizing the role of U.S.-centric high-tech innovation and the role of highly

cited patents. In contrast, EPO G and IP5 metrics suggest a slightly more modest impact,

reflecting regional differences. The same principle applies to the real income per capita,

although innovation efficiency differences have a smaller impact on this variable compared

to nominal wages.

The choice of patent metric significantly influences the analysis of innovation de-

pendence and its economic implications. Broader geographical data tend to dilute the

intensity of innovation dependence, which explains less of the technology gap. Patent

citations, often used as a proxy for patent quality, play an important role. For this mea-

sure of patent intensity, the results align more closely with USPTO G. It is important

to note that patent citations should be interpreted with caution,12 as they may not fully

reflect patent quality. This is due to factors such as self-citations by applicants, variation

in examination procedures between patent offices (Jaffe and de Rassenfosse 2017), and

geographic biases that favor large, advanced economies —biases that differ from those

found in the TPF count. For instance, knowledge spillovers, and thus patent citations,

are influenced by national borders (Thompson and Fox-Kean 2005, Thompson 2006).

Merely being in a country with many other patentees can therefore inflate citation counts

beyond what innovation quality alone would merit (Harhoff et al. 1999). Lastly, the

12Bruns and Kalthaus (2020) argue for a similar level of caution when interpreting results obtained
with counts of patent grants instead of patent applications.
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role of the innovation measure here is to identify R&D effort, which is then related to

value added. This way, the eventual quality or impact of inventions is already captured

in the denominator of innovation efficiency and should therefore not be included in the

numerator.

Table 9. Counterfactual results
TRIADIC EPO G IP5 PCT A USPTO G CIT

Innovation efficiency measure Patenting Patenting Patenting Patenting Patenting Patenting

intensity intensity intensity intensity intensity intensity

1. Nominal wage Average change relative to US 0.14 0.02 0.07 0.11 0.32 0.28

Dispersion ratio 0.27 0.22 0.24 0.26 0.30 0.30

2. Real income Average change relative to US 0.04 0.01 0.02 0.04 0.11 0.09

per capita Dispersion ratio 0.13 0.10 0.11 0.12 0.16 0.15

Notes: EPO G (European Patent Office Grants): Patents granted by the EPO, reflecting successful innovations that have passed rigorous examination processes
in Europe. FAMILIES: Patent families, which indicate the same invention filed in multiple patent offices, showcasing the global reach and perceived importance
of the innovation. IP5 (IP5 Offices): Patents filed in the five major patent offices (EPO, JPO, KIPO, SIPO, USPTO), representing a broad international scope.
PCT A (Patent Cooperation Treaty Applications): Applications filed under the PCT, offering a pathway to seek patent protection in multiple countries with a
single application. USPTO G (United States Patent and Trademark Office Grants): Patents granted by the USPTO, highlighting innovations recognized and
protected in the United States. CIT (Citations to IPF patent families): Number of citations received by INPADOC patent families within five years after the
first filing date.

3.2 Refining country inclusion

Our initial step involves adjusting the filter set presented in the original paper, which ex-

cludes countries with over two-thirds of industries featuring missing values. By extending

our analysis to include country-years with observations available for at least 10 industries,

we increase the total number of OECD countries from 25 to 28. The supplementary three

countries incorporated into the study are Estonia, Slovakia, and Sweden. The outcomes

closely resemble the original findings and are reported, benchmarked against those in the

original paper, in Appendix C.13

3.3 Modifying the time frame

We initiate the comparison by adjusting the time period. First, we extend the original

time period from 2010-2014 to 2010-2016 and then partition the intervals into two sub-

13In addition to our primary analysis, we conducted further investigations: (i) We refined the original
sample by excluding any country with more than 1/2 industries with missing values, resulting in a sample
of 17 countries (comprising six developing and 11 developed countries). (ii) We applied a more stringent
criterion by excluding any country with more than 8/10 industries with missing values, resulting in
a sample of 28 countries (six developing and 22 developed countries). (iii) To maintain balance, we
kept an equal number of developed and developing countries. Specifically, we randomly selected six
developed countries to match the number of six observed developing countries, totaling 12 countries.
(iv) We conducted analyses with three countries exhibiting a high level of innovation removed (excluding
the U.S., which serves as the reference country). Importantly, the results remained consistent with the
original findings.
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groups 2010-2012 and 2014-2016. The results of those three groups closely align with

those in the original paper and can be found in Appendix D.

3.4 Changing the values of trade elasticity

The original paper incorporates a robustness check where the author varies the trade

elasticity within the range of 2.5 to 8.5. In our analysis, we extend this examination

by adjusting the trade elasticity to 1 and 10.5 to further assess its robustness. Overall,

the findings closely align with the original results, and the new results are provided in

Appendix E.

3.5 Dropping outlier industries

In the original paper (Figure 4), the author identified two outlier industries: Agriculture,

Forestry, and Fishing (0103), and Paper and Paper Products (17). The results excluding

these two industries, remain similar to the original ones and are detailed in Appendix F.

3.6 Excluding outliers in the regression analysis

Verardi and Croux (2009) highlight the vulnerability of OLS to outliers, which can distort

parameter estimation by assigning excessive weight to observations with large residuals.

To address this issue, they emphasize robust regression estimators that are less sensitive

to outliers. In our analysis, we utilize the Stata module developed by Jann (2022),

providing a package for robust fixed-effect regression and outlier detection. Subsequently,

we exclude these identified outliers and reapply the fixed-effect regression, following the

approach in Sampson (2023). The outcomes of excluding outliers and employing robust

regression from Jann (2022) align consistently with the original results, as presented in

Appendix G.

4 Conclusions

Sampson’s work has made a significant contribution to the development of a new strand of

economics literature. We successfully replicated the original paper’s results and subjected
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them to various robustness checks, all of which they withstood. Our contribution lies in

the choice of the innovation measure and questioning the selection of developing coun-

tries. Our findings affirm the robustness of the original paper’s framework across diverse

methodological extensions. The results provide nuanced insights into the sensitivity of in-

equality measures to alternative innovation metrics, demonstrating that technology gaps

remain a key factor in economic disparities while highlighting areas for future research.

While the group of countries under examination constitutes a relatively homogeneous

subset, representing only a fraction of the 195 countries globally, it remains noteworthy

that within this narrowed scope, a discernible ranking becomes evident (see Figure 6 in

the original article). The inherent challenge in comparing these countries lies in their

diverse industry structures and varying levels of economic development —a complexity

further compounded by limitations in available data.

Moreover, no single innovation indicator is flawless. Therefore, results should be cross-

verified using a range of innovation indicators that capture different facets of innovation

measurement (Hagedoorn and Cloodt 2003, Lanjouw and Schankerman 2004, Mart́ınez

2011). The triadic patent count favors countries with affiliated patent offices and eco-

nomically prosperous firms. Introducing a more technologically oriented indicator helps

mitigate some of this bias. We have incorporated additional patent metrics with differ-

ent geographical focus, and for the most part, these metrics reinforced Sampson’s main

findings.

Given the crucial policy implications of this paper, further research is warranted,

potentially employing a more comprehensive list of developing countries and utilizing

alternative sources of innovation data.
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Appendices

A Correlations between innovation measures

A.1 Correlations between innovation measures used to calibrate the model

Table A1. Correlations between innovation measures in the full sample

Innovation measure: R&D exp. Patent application family counts

Data source: OECD OECD OECD PS PS PS PS
Patent family definition: triadic triadic triadic triadic ID ID
Location data: US only imputed imputed

(1) (2) (3) (4) (5) (6) (7)

(1) 1
(2) 0.1997 1
(3) 0.1877 0.9907 1
(4) 0.1870 0.9848 0.9781 1
(5) 0.1289 0.9558 0.9328 0.9616 1
(6) 0.5263 0.8008 0.7938 0.7588 0.7705 1
(7) 0.4280 0.9085 0.8763 0.9178 0.9102 0.8636 1

Notes: Correlation coefficients are calculated for the set of jointly non-missing values, including 2,181 observations.

Table A2. Average within-industry correlation between innovation measures

Innovation measure: R&D exp. Patent application family counts

Data source: OECD OECD PS PS PS PS PS
Patent family definition: triadic triadic triadic triadic ID ID
Location data: US only imputed imputed

(1) (2) (3) (4) (5) (6) (7)

(1) 1
(2) 0.3072 1
(3) 0.2932 0.7599 1
(4) 0.3083 0.7586 0.7587 1
(5) 0.2741 0.9696 0.9702 0.9725 1
(6) 0.7213 0.6884 0.7073 0.6723 0.6083 1
(7) 0.7048 0.8907 0.8764 0.8876 0.8574 0.8212 1

Notes: Values are calculated by applying Fisher’s z transformation (Cox 2008) to each industry-specific correlation
coefficient, averaging over these transformed values, and then applying the inverse transformation to each average.
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A.2 Correlations with R&D expenditure from external survey data

Table A3. Correlations between innovation measures and survey R&D expenditure

Innovation measure: R&D exp. TPF IPF R&D expenditure

Data source: OECD PS World Bank Enterprise Surveys

(1) (2) (3) (4) (5) (6)

(1) 1
(2) 0.4187 1
(3) 0.6748 0.6487 1

all firms (4) 0.3861 0.0238 0.5204 1
recent innovators (5) 0.3747 0.0132 0.4912 0.9629 1

new-to-the-market (6) 0.3135 0.0121 0.4026 0.9338 0.9856 1

Notes: The table reports pairwise correlation coefficients. Column (1) contains aggregate R&D expen-
diture from the OECD’s ANBERD database as used by Sampson as the primary innovation measure.
Column (2) uses counts of triadic patent families as used by Sampson as the alternative innovation mea-
sure. Column (3) uses counts of INPADOC patent families as introduced in subsection 2.1. Column (4)
uses R&D expenditure from the World Bank’s Enterprise Surveys, weighted and summed at the industry
level. Columns (5) and (6) follow the same approach but in summing at the industry level only consider
R&D expenditure by firms that recently introduced an innovation (5) or that recently introduced an
innovation that was at least new to their market (6).

Table A4. Regressions between innovation measures and survey R&D expenditure
(1) (2) (3) (4) (5) (6) (7) (8)

OECD R&D expend. 8.506 4.115 0.044 0.423∗∗∗ 149.276 0.276 0.298∗∗∗ 0.298
(9.222) (3.621) (0.028) (0.049) (99.351) (0.184) (0.051) (0.214)

TPF count -81.996 -37.068 -0.449∗∗ -0.993∗ -63.113∗∗ -0.117∗∗ -1.551∗∗∗ -0.143∗∗

(65.157) (38.112) (0.195) (0.517) (26.881) (0.050) (0.535) (0.058)

IPF count 114.802∗∗ 54.215∗∗ 0.840∗∗∗ 1.306∗∗∗ 465.428∗∗∗ 0.860∗∗∗ 1.619∗∗∗ 0.990∗∗∗

(44.661) (21.855) (0.134) (0.297) (175.974) (0.325) (0.307) (0.379)

Constant -399.532∗∗ -138.967∗∗ 12.394∗∗∗ -0.351 174.913∗∗∗ 0.130∗ -1.542∗ 0.189∗∗

(183.343) (64.617) (0.548) (0.877) (40.198) (0.074) (0.906) (0.087)

Dependent variable:
values: lvl lvl log log lvl std log std
missing values = 0? yes yes yes yes yes yes
new-to-market only? yes yes

Independent variables: log log log log std std log std

Observations 197 371 197 371 371 371 371 371
R2 0.051 0.037 0.241 0.324 0.041 0.041 0.241 0.038

Standard errors in parentheses. The variables are expressed as follows: “lvl”= million USD; “log”= natural logarithm of the ‘lvl’ value; “std”
= standardized ‘lvl’ value (mean = 0, std. dev. = 1). In columns that combine “log” with missing values replaced by zero, the dependent
variable is calculated as the logarithm of (expenditure +1). ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

In this subsection, we compare the three innovation measures used in the main text to

a measure of R&D expenditure obtained from the World Bank’s Enterprise Surveys.14

The R&D expenditure values are weighted to account for the representativeness of each

responding firm and summed up at the country-year-industry level, the level of analysis

of Sampson’s paper. The goal is to validate the IPF count against a measure of R&D

effort by businesses from an external, independent data source. In addition, this measure

14Source: World Bank Enterprise Surveys, www.enterprisesurveys.org. We thank the Enterprise
Analysis Unit of the Development Economics Global Indicators Department of the World Bank for the
data.
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is based on micro-data, allowing for the construction of customized innovation metrics

similar to those derived from patent data, which—as discussed in the main text—is not

possible with aggregate R&D statistics.

Table A3 shows that the IPF count is the strongest predictor of firm-level R&D effort

obtained from the survey data, with a correlation coefficient just over 0.5, outperforming

the OECD’s ANBERD R&D expenditure data, which has a coefficient just below 0.4.

While the lower correlation for the OECD’s R&D measure may be due to chance in the

specific sample of country-industry-year combinations, it is clear that the IPF count is as

a robust proxy for business R&D across a diverse range of countries. In contrast, the TPF

count is nearly uncorrelated with business R&D in this sample. Correlations with R&D

spending only by innovators or new-to-the-market innovators are generally weaker, but

the relative pattern remains. Table A4 further supports this finding with a simple linear

regression of aggregated survey R&D values on the three other innovation measures. Only

the IPF count shows a statistically significant relationship with the dependent variable

in all columns, whereas the TPF count, when controlling for the other two measures, is

negatively associated.

Data construction. The World Bank provides both single-country and multi-country

datasets via its survey website. Multi-country datasets are restricted to a core set of

of questions that are comparable across countries, while single-country datasets con-

tain the full set of responses to questionnaires that are tailored to reflect each coun-

try’s specific characteristics and concerns. We start by using the most recent ‘stan-

dardized dataset’ (New_Comprehensive_July_5_2024.dta), listed as StandardizedNew-

2006-2023-core4.zip in the download list) to develop a micro-data-based measure of

business R&D spending. This dataset includes firm-level data identified by a unique ID

and associated with two-digit ISIC (rev. 4) industries. Key variables include dummies for

product (h1) and process (h5) innovation, for new-to-the-market product innovation (h2),

and the occurrence of R&D expenditure (h8) during the preceding fiscal year. By merg-

ing with individual country datasets using unique IDs, we also obtain R&D expenditure

values (h9). We restrict the dataset to manufacturing industries (ISIC codes 10-33) and

36



the list of countries analyzed by Sampson plus Argentina (due to data availability). We

convert firms’ expenditure data to 2015 US dollars, apply sampling weights (wt), and sum

it at the industry level for each country (or country-year in the case of Argentina). This

process yields expenditure data for the following 26 countries (with year and number of

industries covered): Argentina (2006, 2010, 2017; 22), Austria (2021; 18), Belgium (2020;

20); Bulgaria (2019; 17); Croatia (2019; 9); Czechia (2019; 16); Denmark (2020; 21);

Estonia (2019; 15); Finland (2020; 19); France (2021; 19); Germany (2021; 20); Greece

(2018; 15); Hungary (2019; 15); Ireland (2020; 17); Italy (2019; 14); Latvia (2019; 11);

Luxembourg (2020; 7); Netherlands (2020; 17); Poland (2019; 10); Portugal (2019; 14);

Romania (2019; 12); Slovak Republic (2019; 13); Slovenia (2019; 20); Spain (2021; 21);

Sweden (2020; 19); and Turkey (2019; 14).

The other three innovation measures are calculated as described in the main pa-

per. However, we use more recent versions of the relevant datasets: the 2024 version of

the OECD’s ANBERD dataset, the 2023 version of the OECD’s Patents by Technology

dataset, and the Spring 2024 version of PATSTAT.

B Supplementary tables of patent intensity measures

Table B1. Patent intensity summary statistics

Obs Mean Std. Dev. Min Max

TRIADIC 25 -1.13 1.34 -4.30 0.91
EPO G 25 -0.32 1.17 -3.59 1.01
IP5 25 -0.60 1.06 -2.95 0.63
PCT A 25 -0.62 0.85 -2.77 0.53
USPTO G 25 -1.95 1.19 -4.44 0
CIT 25 -1.92 1.27 -4.30 0.24

Notes: Row definitions are equivalent to the corresponding column definitions in Ta-

ble 9.
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Table B2. Patent intensity by country

Patenting intensity

Country TRIADIC EPO G IP5 PCT A USPTO G CIT

Australia (AUS) -0.99 -1.21 -0.82 -0.52 -1.89 -1.56

Austria (AUT) -0.15 0.93 0.22 -0.16 -1.25 -1.56

Belgium (BEL) -0.08 0.63 -0.08 -0.22 -1.37 -1.59

Canada (CAN) -1.10 -0.91 -0.24 -0.58 -0.97 -1.17

Chile (CHL) -3.00 -2.33 -2.28 -1.63 -3.69 -4.03

Czech Republic (CZE) -2.55 -0.96 -1.41 -1.65 -3.03 -2.64

Germany (DEU) 0.05 1.07 0.47 0.05 -1.17 -0.93

Denmark (DNK) -0.02 1.10 0.31 0.26 -0.84 -1.17

Spain (ESP) -1.79 -0.62 -1.17 -0.89 -2.76 -2.55

Finland (FIN) -0.30 0.68 0.25 0.03 -1.14 -0.86

France (FRA) 0.11 0.90 0.24 -0.03 -1.14 -1.11

United Kingdom (GBR) -0.15 0.23 -0.14 -0.06 -1.27 -1.32

Hungary (HUN) -2.29 -0.80 -1.04 -1.02 -2.53 -2.64

Ireland (IRL) -0.85 0.14 -0.22 0.14 -1.49 -1.54

Italy (ITA) -0.97 0.42 -0.40 -0.70 -1.97 -2.20

Japan (JPN) 0.91 0.27 0.63 0.23 -0.78 -0.22

South Korea (KOR) -0.50 -0.68 0.52 -0.10 -0.95 0.18

Mexico (MEX) -4.30 -3.59 -2.95 -2.77 -3.86 -4.18

Netherlands (NLD) 0.51 0.93 0.55 0.53 -0.82 -1.29

Norway (NOR) -0.87 0.00 -0.27 -0.27 -1.53 -1.88

Poland (POL) -2.60 -1.11 -1.81 -1.86 -3.60 -3.37

Portugal (PRT) -2.52 -1.29 -1.93 -1.54 -3.32 -3.53

Slovenia (SVN) -1.41 0.05 -0.67 -0.72 -2.84 -4.22

Turkey (TUR) -3.39 -1.86 -2.75 -1.92 -4.44 -4.22

United States (USA) 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Column definitions are equivalent to those in Table 9. Positive values are highlighted in bold.
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Table B3. Innovation dependence by industry
Patenting intensity

VARIABLES TRIADIC EPO G IP5 PCT A USPTO G CIT

Agriculture, forestry and fishing (0103) 0.01 -0.01 0.02 0.04 0.10 0.10

(0.06) (0.07) (0.08) (0.12) (0.07) (0.05)

Mining and quarrying (0508) -0.14 -0.11 -0.22 -0.23 0.00 -0.11

(0.08) (0.09) (0.11) (0.15) (0.09) (0.08)

Food products, beverages and tobacco (1012) 0.06 0.05 0.07 0.10 0.13 0.12

(0.06) (0.06) (0.08) (0.12) (0.06) (0.05)

Textiles (13) 0.12 0.06 0.13 0.21 0.20 0.18

(0.05) (0.07) (0.07) (0.09) (0.05) (0.04)

Wearing apparel (14) 0.13 0.08 0.13 0.28 0.15 0.17

(0.04) (0.06) (0.04) (0.08) (0.08) (0.04)

Leather and related products (15) 0.12 0.01 0.13 0.33 0.15 0.17

(0.07) (0.09) (0.10) (0.14) (0.06) (0.05)

Wood and products of wood and cork, except furniture (16) 0.03 0.04 0.03 0.00 0.07 0.08

(0.05) (0.06) (0.06) (0.09) (0.05) (0.04)

Paper and paper products (17) 0.13 0.12 0.15 0.13 0.19 0.19

(0.05) (0.06) (0.07) (0.10) (0.06) (0.05)

Printing and reproduction of recorded media (18) 0.11 0.11 0.11 0.14 0.15 0.14

(0.04) (0.05) (0.06) (0.08) (0.05) (0.04)

Coke and refined petroleum products (19) 0.05 0.13 0.06 0.04 0.08 0.05

(0.04) (0.05) (0.06) (0.07) (0.05) (0.05)

Chemicals and chemical products (20) 0.19 0.14 0.21 0.33 0.26 0.21

(0.06) (0.07) (0.08) (0.10) (0.06) (0.06)

Basic pharmaceutical products and pharmaceutical preparations (21) 0.17 0.10 0.20 0.34 0.28 0.19

(0.10) (0.08) (0.12) (0.14) (0.10) (0.10)

Rubber and plastics products (22) 0.18 0.15 0.20 0.22 0.20 0.21

(0.04) (0.05) (0.05) (0.07) (0.04) (0.03)

Other non-metallic mineral products (23) 0.12 0.12 0.15 0.16 0.14 0.15

(0.04) (0.05) (0.05) (0.07) (0.05) (0.04)

Basic metals (24) 0.18 0.15 0.19 0.29 0.21 0.18

(0.03) (0.05) (0.06) (0.07) (0.04) (0.05)

Fabricated metal products, except machinery and equipment (25) 0.14 0.15 0.16 0.18 0.16 0.17

(0.04) (0.05) (0.06) (0.08) (0.05) (0.04)

Computer, electronic and optical products (26) 0.30 0.30 0.26 0.45 0.32 0.28

(0.05) (0.06) (0.08) (0.10) (0.08) (0.05)

Electrical equipment (27) 0.19 0.17 0.22 0.35 0.18 0.18

(0.04) (0.05) (0.06) (0.07) (0.06) (0.04)

Machinery and equipment n.e.c. (28) 0.21 0.17 0.26 0.37 0.25 0.23

(0.06) (0.05) (0.08) (0.11) (0.08) (0.07)

Motor vehicles, trailers and semi-trailers (29) 0.19 0.16 0.19 0.26 0.23 0.22

(0.03) (0.04) (0.06) (0.07) (0.05) (0.05)

Other transport equipment (30) 0.00 -0.08 0.01 -0.02 0.09 0.11

(0.05) (0.07) (0.07) (0.10) (0.08) (0.07)

Furniture, other manufacturing (3133) 0.10 0.12 0.13 0.14 0.14 0.14

(0.05) (0.06) (0.06) (0.09) (0.05) (0.04)

Observations 171,152 171,152 171,152 171,152 171,152 171,152

R-squared 0.69 0.69 0.69 0.69 0.69 0.70

TCC† Yes Yes Yes Yes Yes Yes

PLC† Yes Yes Yes Yes Yes Yes

CAC† Yes Yes Yes Yes Yes Yes

AID† 0.12 0.10 0.13 0.19 0.17 0.15

SID 0.09 0.09 0.11 0.16 0.07 0.08

F test 0.00 0.02 0.04 0.00 0.24 0.05

Notes: Row definitions are equivalent to those in Table 3. Column definitions are equivalent to those in Table 9. Values are shown in bold when the new metric is
significantly higher than the TRIADIC at the 10% level. The F-test equalizes innovation-dependence across industries (p-value reported).
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C Refining country inclusion

Table C1. Innovation intensity summary statistics

bs obs Mean Std. dev Min Max

R&D intensity

Model 1 25 -0.69 0.81 -2.61 0.30
Model 2 28 -0.75 0.82 -2.61 0.30

Patenting intensity

Model 1 25 -1.13 1.34 -4.30 0.91
Model 2 28 -1.17 1.33 -4.30 0.91

Notes: Model 1 encompasses the original findings as established in the paper.

Expanding our analysis to encompass country-years with data available for a

minimum of 10 industries in model 2 has resulted in an augmentation of the

overall country count to 28.
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Table C2. Innovation dependence by industry

Innovation efficiency measure R&D intensity R&D intensity R&D intensity Patenting intensity

Industries (1A) (2A) (1B) (2B) (1C) (2C) (1D) (2D)

0103 (Agriculture) 0.45 0.46 0.33 0.33 0.17 0.16 0.01 0.01
(0.06) (0.05) (0.05) (0.04) (0.09) (0.09) (0.06) (0.06)

0508 (Mining) 0.37 0.39 0.25 0.25 -0.11 -0.11 -0.14 -0.14
(0.09) (0.08) (0.07) (0.06) (0.13) (0.13) (0.08) (0.08)

1012 (Food) 0.48 0.51 0.36 0.37 0.21 0.23 0.06 0.07
(0.05) (0.04) (0.04) (0.05) (0.08) (0.08) (0.06) (0.05)

13 (Textiles) 0.51 0.50 0.42 0.38 0.29 0.22 0.12 0.08
(0.05) (0.05) (0.05) (0.05) (0.06) (0.07) (0.05) (0.05)

14 (Apparel) 0.47 0.47 0.37 0.35 0.33 0.29 0.13 0.11
(0.06) (0.06) (0.06) (0.06) (0.05) (0.06) (0.04) (0.04)

15 (Leather) 0.48 0.48 0.39 0.37 0.34 0.30 0.12 0.11
(0.06) (0.06) (0.07) (0.07) (0.08) (0.08) (0.07) (0.07)

16 (Wood) 0.52 0.51 0.40 0.37 0.20 0.16 0.03 0.02
(0.06) (0.06) (0.04) (0.04) (0.07) (0.07) (0.05) (0.05)

17 (Paper) 0.58 0.58 0.45 0.43 0.34 0.30 0.13 0.12
(0.05) (0.05) (0.04) (0.03) (0.07) (0.06) (0.05) (0.05)

18 (Printing) 0.58 0.58 0.46 0.44 0.27 0.24 0.11 0.10
(0.06) (0.05) (0.04) (0.04) (0.06) (0.06) (0.04) (0.04)

19 (Petrol ) 0.48 0.46 0.36 0.32 0.14 0.09 0.05 0.03
(0.05) (0.05) (0.04) (0.04) (0.08) (0.08) (0.04) (0.04)

20 (Chemicals) 0.59 0.58 0.47 0.44 0.38 0.33 0.19 0.16
(0.05) (0.05) (0.05) (0.05) (0.09) (0.09) (0.06) (0.06)

21 (Pharma) 0.62 0.65 0.50 0.50 0.22 0.23 0.17 0.18
(0.07) (0.07) (0.06) (0.06) (0.14) (0.13) (0.1) (0.09)

22 (Plastics) 0.60 0.59 0.48 0.44 0.38 0.31 0.18 0.16
(0.05) (0.05) (0.04) (0.04) (0.05) (0.06) (0.04) (0.04)

23 (Minerals) 0.57 0.57 0.45 0.44 0.30 0.27 0.12 0.11
(0.05) (0.04) (0.04) (0.04) (0.06) (0.06) (0.04) (0.04)

24 (Basic metals) 0.58 0.59 0.43 0.41 0.27 0.24 0.18 0.17
(0.05) (0.05) (0.05) (0.05) (0.07) (0.07) (0.03) (0.04)

25 (Fabric. metals) 0.60 0.59 0.48 0.45 0.33 0.30 0.14 0.13
(0.05) (0.05) (0.04) (0.04) (0.06) (0.06) (0.04) (0.04)

26 (Computers) 0.65 0.65 0.49 0.45 0.60 0.51 0.30 0.23
(0.06) (0.06) (0.04) (0.06) (0.12) (0.13) (0.05) (0.06)

27 (Electrical) 0.61 0.59 0.53 0.48 0.37 0.31 0.19 0.14
(0.09) (0.09) (0.07) (0.08) (0.1) (0.09) (0.04) (0.05)

28 (Machinery) 0.71 0.71 0.60 0.57 0.38 0.33 0.21 0.19
(0.08) (0.07) (0.05) (0.05) (0.11) (0.1) (0.06) (0.06)

29 (Vehicles) 0.55 0.54 0.39 0.35 0.27 0.21 0.19 0.16
(0.05) (0.05) (0.04) (0.04) (0.08) (0.09) (0.03) (0.03)

30 (Other trans.) 0.56 0.58 0.38 0.38 0.26 0.24 0.00 0.00
(0.1) (0.08) (0.06) (0.05) (0.13) (0.12) (0.05) (0.06)

3133 (Furniture) 0.55 0.55 0.42 0.41 0.25 0.21 0.10 0.09
(0.07) (0.06) (0.04) (0.04) (0.07) (0.07) (0.05) (0.05)

Observations 171K 185K 171K 185K 171K 185K 171K 185K
R-squared 0.52 0.54 0.65 0.65 0.70 0.70 0.69 0.69
TCC† Yes Yes Yes Yes Yes Yes Yes Yes
PLC† No No Yes Yes Yes Yes Yes Yes
CAC† No No No No Yes Yes Yes Yes
AID† 0.55 0.55 0.43 0.41 0.28 0.24 0.12 0.10
SID 0.08 0.07 0.07 0.07 0.13 0.11 0.09 0.08
F test 0.13 0.09 0.00 0.01 0.07 0.24 0.00 0.01

Notes: Row and column definitions are equivalent to those in Table 3. Columns 1A-1D encompass the original
findings as established in the paper. Expanding our analysis to encompass country-years with data available for
a minimum of 10 industries in columns 2A-2D has resulted in an augmentation of the overall country count to
28. The standard errors are clustered by importer-industry, and they are presented within brackets.
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Table C3. Counterfactual Results
Innovation Outcome R & D Patenting R & D intensity
efficiency measure intensity intensity generalized model
(1) (2) (3) (4) (5)

1A Nominal wage Average change relative to US 0.18 0.14 0.18
2A Nominal wage Average change relative to US 0.18 0.13 0.17

1B Nominal wage Dispersion ratio 0.32 0.27 0.31
2B Nominal wage Dispersion ratio 0.33 0.25 0.29

1C Real income Average change relative to US 0.06 0.04 0.06
2C Real income Average change relative to US 0.06 0.04 0.05

1D Real income Dispersion ratio 0.17 0.13 0.16
2D Real income Dispersion ratio 0.16 0.11 0.14

Notes: For detailed descriptions of Models 1-3, refer to the notes in Table C1. For detailed
descriptions of row and column definitions, refer to the notes in Table 7.
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Table D1. Innovation intensity summary statistics

bs obs Mean Std. dev Min Max

R&D intensity

Model 1 25 -0.69 0.81 -2.61 0.30
Model 2 25 -0.74 0.86 -3.03 0.17
Model 3 24 -0.60 0.73 -2.47 0.33
Model 4 23 -0.72 0.89 -3.20 0.13

Patenting intensity

Model 1 25 -1.13 1.34 -4.30 0.91
Model 2 25 -1.12 1.35 -4.27 0.85
Model 3 24 -0.94 1.22 -4.04 0.88
Model 4 23 -0.84 1.27 -3.69 1.15

Notes: Model 1 incorporates the initial discoveries outlined in the pa-

per. Model 2 extends the original timeframe from 2010-2014 to 2010-2016.
Model 3 divides the timeframe into 2010-2012, while Model 4 focuses on

the interval from 2014-2016.
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D Modifying time frame

Table D2. Innovation dependence by industry
Innovation R&D R&D R&D Patenting

efficiency measure intensity intensity intensity intensity

2010-2014 2010-2016 2010-2012 2014-2016 2010-2014 2010-2016 2010-2012 2014-2016 2010-2014 2010-2016 2010-2012 2014-2016 2010-2014 2010-2016 2010-2012 2014-2016

Industries (1A) (2A) (3A) (4A) (1B) (2B) (3B) (4B) (1C) (2C) (3C) (4C) (1D) (2D) (3D) (4D)

0103 (Agriculture) 0.45 0.43 0.47 0.39 0.33 0.31 0.31 0.2 0.17 0.09 0.16 0.15 0.01 -0.02 0 -0.02

(0.06) (0.06) (0.06) (0.07) (0.05) (0.05) (0.05) (0.06) (0.09) (0.06) (0.09) (0.06) (0.06) (0.06) (0.06) (0.06)

0508 (Mining) 0.37 0.33 0.38 0.33 0.25 0.23 0.2 0.14 -0.11 -0.25 -0.27 -0.18 -0.14 -0.17 -0.19 -0.18

(0.09) (0.09) (0.1) (0.1) (0.07) (0.07) (0.07) (0.09) (0.13) (0.13) (0.14) (0.15) (0.08) (0.08) (0.08) (0.08)

1012 (Food) 0.48 0.45 0.5 0.43 0.36 0.33 0.33 0.24 0.21 0.12 0.19 0.17 0.06 0.03 0.05 0.01

(0.05) (0.06) (0.05) (0.07) (0.04) (0.05) (0.05) (0.07) (0.08) (0.06) (0.08) (0.06) (0.06) (0.06) (0.06) (0.06)

13 (Textiles) 0.51 0.47 0.51 0.45 0.42 0.39 0.34 0.3 0.29 0.18 0.23 0.22 0.12 0.06 0.09 0.07

(0.05) (0.05) (0.06) (0.06) (0.05) (0.05) (0.06) (0.07) (0.06) (0.04) (0.07) (0.05) (0.05) (0.04) (0.05) (0.04)

14 (Apparel) 0.47 0.4 0.49 0.37 0.37 0.33 0.25 0.23 0.33 0.27 0.31 0.37 0.13 0.07 0.13 0.11

(0.06) (0.04) (0.09) (0.03) (0.06) (0.06) (0.07) (0.06) (0.05) (0.08) (0.09) (0.06) (0.04) (0.03) (0.05) (0.03)

15 (Leather) 0.48 0.43 0.49 0.41 0.39 0.36 0.3 0.3 0.34 0.26 0.31 0.17 0.12 0.06 0.12 0.01

(0.06) (0.04) (0.05) (0.06) (0.07) (0.06) (0.07) (0.09) (0.08) (0.08) (0.1) (0.07) (0.07) (0.08) (0.07) (0.03)

16 (Wood) 0.52 0.5 0.53 0.47 0.4 0.39 0.37 0.28 0.2 0.19 0.17 0.25 0.03 -0.01 0.01 -0.03

(0.06) (0.06) (0.07) (0.07) (0.04) (0.04) (0.04) (0.05) (0.07) (0.05) (0.07) (0.06) (0.05) (0.04) (0.05) (0.05)

17 (Paper) 0.58 0.55 0.6 0.55 0.45 0.44 0.41 0.34 0.34 0.3 0.32 0.34 0.13 0.09 0.1 0.09

(0.05) (0.05) (0.06) (0.07) (0.04) (0.04) (0.04) (0.06) (0.07) (0.05) (0.08) (0.05) (0.05) (0.05) (0.06) (0.05)

18 (Printing) 0.58 0.55 0.59 0.53 0.46 0.43 0.43 0.33 0.27 0.23 0.23 0.26 0.11 0.08 0.09 0.04

(0.06) (0.06) (0.07) (0.06) (0.04) (0.04) (0.04) (0.05) (0.06) (0.06) (0.06) (0.06) (0.04) (0.04) (0.04) (0.05)

19 (Petrol ) 0.48 0.49 0.49 0.45 0.36 0.38 0.33 0.26 0.14 0.15 0.04 0.17 0.05 0.04 0.04 0.05

(0.05) (0.05) (0.06) (0.07) (0.04) (0.04) (0.05) (0.06) (0.08) (0.06) (0.08) (0.07) (0.04) (0.03) (0.03) (0.04)

20 (Chemicals) 0.59 0.56 0.6 0.55 0.47 0.46 0.42 0.38 0.38 0.25 0.3 0.28 0.19 0.13 0.14 0.16

(0.05) (0.05) (0.05) (0.07) (0.05) (0.06) (0.05) (0.08) (0.09) (0.1) (0.1) (0.09) (0.06) (0.07) (0.06) (0.08)

21 (Pharma) 0.62 0.53 0.63 0.46 0.5 0.44 0.42 0.31 0.22 0.12 0.06 0.21 0.17 0.12 0.11 0.09

(0.07) (0.06) (0.08) (0.08) (0.06) (0.06) (0.07) (0.08) (0.14) (0.12) (0.14) (0.15) (0.1) (0.06) (0.1) (0.04)

22 (Plastics) 0.6 0.56 0.61 0.55 0.48 0.45 0.42 0.36 0.38 0.28 0.36 0.33 0.18 0.14 0.15 0.15

(0.05) (0.04) (0.07) (0.05) (0.04) (0.03) (0.04) (0.04) (0.05) (0.06) (0.07) (0.04) (0.04) (0.03) (0.04) (0.03)

23 (Minerals) 0.57 0.54 0.57 0.53 0.45 0.43 0.4 0.33 0.3 0.24 0.26 0.28 0.12 0.08 0.1 0.05

(0.05) (0.05) (0.07) (0.06) (0.04) (0.04) (0.04) (0.05) (0.06) (0.05) (0.06) (0.04) (0.04) (0.04) (0.04) (0.05)

24 (Basic metals) 0.58 0.54 0.6 0.5 0.43 0.39 0.42 0.28 0.27 0.19 0.31 0.18 0.18 0.13 0.16 0.15

(0.05) (0.06) (0.04) (0.07) (0.05) (0.05) (0.05) (0.07) (0.07) (0.06) (0.08) (0.05) (0.03) (0.02) (0.04) (0.03)

25 (Fabric. metals) 0.6 0.58 0.6 0.57 0.48 0.47 0.43 0.36 0.33 0.31 0.31 0.33 0.14 0.12 0.12 0.1

(0.05) (0.05) (0.07) (0.06) (0.04) (0.05) (0.04) (0.06) (0.06) (0.06) (0.05) (0.06) (0.04) (0.04) (0.04) (0.05)

26 (Computers) 0.65 0.54 0.68 0.47 0.49 0.44 0.45 0.29 0.6 0.41 0.66 0.37 0.3 0.29 0.31 0.26

(0.06) (0.06) (0.06) (0.07) (0.04) (0.05) (0.05) (0.06) (0.12) (0.11) (0.16) (0.09) (0.05) (0.05) (0.06) (0.11)

27 (Electrical) 0.61 0.57 0.63 0.6 0.53 0.53 0.49 0.52 0.37 0.35 0.34 0.32 0.19 0.16 0.17 0.2

(0.09) (0.05) (0.09) (0.12) (0.07) (0.03) (0.06) (0.09) (0.1) (0.06) (0.1) (0.09) (0.04) (0.03) (0.05) (0.03)

28 (Machinery) 0.71 0.66 0.68 0.7 0.6 0.57 0.51 0.55 0.38 0.31 0.29 0.37 0.21 0.15 0.16 0.15

(0.08) (0.06) (0.1) (0.12) (0.05) (0.04) (0.06) (0.07) (0.11) (0.05) (0.12) (0.07) (0.06) (0.04) (0.07) (0.04)

29 (Vehicles) 0.55 0.53 0.55 0.51 0.39 0.41 0.36 0.29 0.27 0.27 0.27 0.2 0.19 0.17 0.19 0.1

(0.05) (0.04) (0.06) (0.05) (0.04) (0.05) (0.04) (0.05) (0.08) (0.09) (0.1) (0.04) (0.03) (0.03) (0.04) (0.03)

30 (Other trans.) 0.56 0.57 0.59 0.54 0.38 0.47 0.35 0.37 0.26 0.24 0.25 0.3 0 0.05 -0.02 0.01

(0.1) (0.07) (0.12) (0.08) (0.06) (0.08) (0.09) (0.08) (0.13) (0.09) (0.19) (0.07) (0.05) (0.05) (0.06) (0.05)

3133 (Furniture) 0.55 0.5 0.56 0.51 0.42 0.4 0.37 0.32 0.25 0.18 0.2 0.26 0.1 0.06 0.08 0.03

(0.07) (0.07) (0.08) (0.07) (0.04) (0.04) (0.05) (0.06) (0.07) (0.07) (0.07) (0.06) (0.05) (0.06) (0.05) (0.06)

Observations 171K 235K 99K 31K 171K 235K 99K 31K 171K 235K 99K 31K 171K 235K 99K 31K

R-squared 0.52 0.54 0.50 0.53 0.65 0.66 0.65 0.67 0.70 0.71 0.70 0.75 0.69 0.71 0.70 0.74

TCC† Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

PLC† No No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

CAC† No No No No No No No No Yes Yes Yes Yes Yes Yes Yes Yes

AID† 0.55 0.51 0.56 0.49 0.43 0.41 0.38 0.32 0.28 0.21 0.24 0.24 0.12 0.08 0.10 0.07

SID 0.08 0.07 0.07 0.08 0.07 0.07 0.07 0.09 0.13 0.13 0.17 0.12 0.09 0.09 0.10 0.09

F test 0.13 0.04 0.36 0.03 0.00 0.00 0.01 0.02 0.07 0.00 0.01 0.01 0.00 0.00 0.00 0.00

Notes: Row and column definitions are equivalent to those in Table 3. Columns 1A-1D present the original results from Table 1, page 498. In columns 2A-2D, we extend
the period by two years, spanning from 2010-2014 to 2010-2016 (following Sampson’s Readme file). In columns 3A-3D, we divide the timeframe into 2010-2012. In column
4A-4D, we focus on the interval from 2014-2016. The standard errors are clustered by importer-industry, and they are presented within brackets.
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Table D3. Counterfactual Results
Innovation Outcome R & D Patenting R & D intensity
efficiency measure intensity intensity generalized model
(1) (2) (3) (4) (5)

1A Nominal wage Average change relative to US 0.18 0.14 0.18
2A Nominal wage Average change relative to US 0.16 0.15 0.18
3A Nominal wage Average change relative to US 0.14 0.10 0.09
4A Nominal wage Average change relative to US 0.10 0.05 0.14

1B Nominal wage Dispersion ratio 0.32 0.27 0.31
2B Nominal wage Dispersion ratio 0.31 0.27 0.32
3B Nominal wage Dispersion ratio 0.28 0.24 0.21
4B Nominal wage Dispersion ratio 0.33 0.26 0.35

1C Real income Average change relative to US 0.06 0.04 0.06
2C Real income Average change relative to US 0.05 0.04 0.06
3C Real income Average change relative to US 0.05 0.03 0.03
4C Real income Average change relative to US 0.03 0.02 0.04

1D Real income Dispersion ratio 0.17 0.13 0.16
2D Real income Dispersion ratio 0.15 0.12 0.16
3D Real income Dispersion ratio 0.14 0.10 0.09
4D Real income Dispersion ratio 0.15 0.10 0.16

Notes: For detailed descriptions of Models 1-3, refer to the notes in Table D1. For detailed descriptions
of row and column definitions, refer to the notes in Table 7.

E Changing values of trade elasticity

Table E1. Innovation intensity summary statistics

bs obs Mean Std. dev Min Max

R&D intensity

Model 1 25 -0.69 0.81 -2.61 0.30
Model 2 25 -0.69 0.81 -2.61 0.30
Model 3 25 -0.69 0.81 -2.61 0.30

Patenting intensity

Model 1 25 -1.13 1.34 -4.30 0.91
Model 2 25 -1.13 1.34 -4.30 0.91
Model 3 25 -1.13 1.34 -4.30 0.91

Notes: Model 1 encompasses the original findings as established in the
paper. In Model 2, we have adjusted the preferred trade elasticity to 1,

deviating from the original value of 6.53. In Model 3, we have adjusted

the preferred trade elasticity to 10.5, deviating from the original value of
6.53.
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Table E2. Innovation dependence by industry
Innovation efficiency measure R&D intensity R&D intensity R&D intensity Patenting intensity

6.53 1 10.5 6.53 1 10.5 6.53 1 10.5 6.53 1 10.5

Industries (1A) (2A) (3A) (1B) (2B) (3B) (1C) (2C) (3C) (1D) (2D) (3D)

0103 (Agriculture) 0.45 -0.17 0.50 0.33 -0.32 0.38 0.17 -0.50 0.22 0.01 -0.55 0.05

(0.06) (0.20) (0.05) (0.05) (0.21) (0.04) (0.09) (0.41) (0.07) (0.06) (0.25) (0.05)

0508 (Mining) 0.37 -0.66 0.44 0.25 -0.83 0.32 -0.11 -2.36 0.05 -0.14 -1.47 -0.05

(0.09) (0.30) (0.07) (0.07) (0.32) (0.05) (0.13) (0.68) (0.10) (0.08) (0.36) (0.06)

1012 (Food) 0.48 0.00 0.51 0.36 -0.15 0.39 0.21 -0.23 0.24 0.06 -0.19 0.08

(0.05) (0.12) (0.05) (0.04) (0.14) (0.04) (0.08) (0.28) (0.07) (0.06) (0.21) (0.05)

13 (Textiles) 0.51 0.42 0.51 0.42 0.27 0.43 0.29 0.50 0.27 0.12 0.27 0.11

(0.05) (0.14) (0.05) (0.05) (0.15) (0.05) (0.06) (0.24) (0.06) (0.05) (0.18) (0.04)

14 (Apparel) 0.47 0.13 0.50 0.37 -0.07 0.40 0.33 0.86 0.30 0.13 0.56 0.10

(0.06) (0.22) (0.06) (0.06) (0.23) (0.06) (0.05) (0.36) (0.06) (0.04) (0.21) (0.04)

15 (Leather) 0.48 0.33 0.49 0.39 0.12 0.40 0.34 1.03 0.29 0.12 0.25 0.11

(0.06) (0.31) (0.06) (0.07) (0.30) (0.06) (0.08) (0.59) (0.07) (0.07) (0.48) (0.05)

16 (Wood) 0.52 0.25 0.54 0.40 0.11 0.42 0.20 -0.31 0.24 0.03 -0.40 0.06

(0.06) (0.19) (0.06) (0.04) (0.21) (0.03) (0.07) (0.26) (0.06) (0.05) (0.13) (0.04)

17 (Paper) 0.58 0.59 0.58 0.45 0.44 0.45 0.34 0.57 0.33 0.13 0.24 0.12

(0.05) (0.15) (0.05) (0.04) (0.15) (0.04) (0.07) (0.26) (0.06) (0.05) (0.18) (0.05)

18 (Printing) 0.58 0.64 0.58 0.46 0.51 0.46 0.27 0.18 0.28 0.11 0.15 0.11

(0.06) (0.14) (0.06) (0.04) (0.15) (0.04) (0.06) (0.18) (0.06) (0.04) (0.09) (0.04)

19 (Petrol ) 0.48 -0.01 0.51 0.36 -0.15 0.39 0.14 -0.98 0.22 0.05 -0.43 0.09

(0.05) (0.19) (0.04) (0.04) (0.21) (0.04) (0.08) (0.31) (0.07) (0.04) (0.20) (0.03)

20 (Chemicals) 0.59 0.72 0.58 0.47 0.57 0.47 0.38 0.67 0.36 0.19 0.52 0.17

(0.05) (0.21) (0.05) (0.05) (0.19) (0.05) (0.09) (0.40) (0.08) (0.06) (0.26) (0.05)

21 (Pharma) 0.62 0.87 0.60 0.50 0.65 0.48 0.22 -0.11 0.25 0.17 0.47 0.15

(0.07) (0.23) (0.07) (0.06) (0.22) (0.05) (0.14) (0.70) (0.11) (0.10) (0.50) (0.07)

22 (Plastics) 0.60 0.77 0.59 0.48 0.60 0.47 0.38 0.79 0.35 0.18 0.48 0.16

(0.05) (0.17) (0.05) (0.04) (0.18) (0.03) (0.05) (0.22) (0.05) (0.04) (0.17) (0.03)

23 (Minerals) 0.57 0.55 0.57 0.45 0.41 0.45 0.29 0.28 0.30 0.12 0.17 0.11

(0.05) (0.15) (0.05) (0.04) (0.15) (0.04) (0.06) (0.19) (0.05) (0.04) (0.10) (0.04)

24 (Basic metals) 0.58 0.56 0.58 0.43 0.41 0.43 0.26 0.51 0.25 0.18 0.61 0.15

(0.05) (0.19) (0.05) (0.05) (0.21) (0.04) (0.07) (0.38) (0.06) (0.03) (0.19) (0.03)

25 (Fabric. metals) 0.60 0.74 0.59 0.47 0.61 0.47 0.33 0.56 0.32 0.14 0.30 0.13

(0.05) (0.16) (0.05) (0.04) (0.17) (0.03) (0.06) (0.16) (0.05) (0.04) (0.10) (0.04)

26 (Computers) 0.65 1.23 0.61 0.49 1.05 0.45 0.60 3.67 0.39 0.29 1.95 0.18

(0.06) (0.25) (0.07) (0.04) (0.24) (0.04) (0.12) (0.75) (0.09) (0.05) (0.34) (0.04)

27 (Electrical) 0.61 1.16 0.57 0.53 1.04 0.49 0.37 1.22 0.31 0.19 0.88 0.14

(0.09) (0.34) (0.08) (0.07) (0.32) (0.06) (0.10) (0.57) (0.07) (0.04) (0.30) (0.03)

28 (Machinery) 0.71 1.54 0.66 0.60 1.40 0.54 0.38 0.88 0.35 0.21 0.84 0.17

(0.08) (0.31) (0.07) (0.05) (0.29) (0.04) (0.11) (0.58) (0.08) (0.06) (0.39) (0.04)

29 (Vehicles) 0.55 0.39 0.56 0.39 0.23 0.40 0.27 0.53 0.26 0.19 0.66 0.16

(0.05) (0.19) (0.05) (0.04) (0.19) (0.03) (0.08) (0.52) (0.06) (0.03) (0.31) (0.02)

30 (Other trans.) 0.56 0.39 0.57 0.38 0.23 0.39 0.26 0.02 0.27 -0.00 -0.28 0.02

(0.10) (0.38) (0.09) (0.06) (0.35) (0.05) (0.13) (0.74) (0.09) (0.05) (0.23) (0.05)

3133 (Furniture) 0.55 0.42 0.56 0.42 0.25 0.44 0.25 -0.03 0.27 0.10 0.09 0.10

(0.07) (0.18) (0.06) (0.04) (0.21) (0.04) (0.07) (0.22) (0.06) (0.05) (0.15) (0.05)

Observations 171K 171K 171K 171K 171K 171K 171K 171K 171K 171K 171K 171K

R-squared 0.52 0.27 0.59 0.65 0.28 0.77 0.70 0.32 0.81 0.69 0.33 0.80

TCC† Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

PLC† No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes

CAC† No No No No No No Yes Yes Yes Yes Yes Yes

AID† 0.55 0.49 0.55 0.43 0.34 0.43 0.28 0.35 0.28 0.12 0.23 0.11

SID 0.08 0.49 0.05 0.07 0.49 0.05 0.13 1.08 0.07 0.09 0.66 0.06

F test 0.13 0 0.89 0 0 0.13 0.07 0 0.8 0 0 0.11

Notes: Row and column definitions are equivalent to those in Table 3. Model 1 encompasses the original findings as established
in the paper. Columns 1A-1D encompass the original findings as established in the paper. In Columns 2A-2D, we have adjusted
the preferred trade elasticity to 1, deviating from the original value of 6.53. In Columns 3A-3D, we have adjusted the preferred
trade elasticity to 10.5, deviating from the original value of 6.53. The standard errors are clustered by importer-industry, and
they are presented within brackets.
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Table E3. Counterfactual Results
Innovation Outcome R & D Patenting R & D intensity
efficiency measure intensity intensity generalized model
(1) (2) (3) (4) (5)

1A Nominal wage Average change relative to US 0.18 0.14 0.18
2A Nominal wage Average change relative to US 0.33 0.35 0.36
3A Nominal wage Average change relative to US 0.17 0.12 0.17

1B Nominal wage Dispersion ratio 0.32 0.27 0.31
2B Nominal wage Dispersion ratio 0.50 0.65 0.52
3B Nominal wage Dispersion ratio 0.32 0.23 0.30

1C Real income Average change relative to US 0.06 0.04 0.06
2C Real income Average change relative to US 0.09 0.10 0.09
3C Real income Average change relative to US 0.06 0.04 0.06

1D Real income Dispersion ratio 0.17 0.13 0.16
2D Real income Dispersion ratio 0.23 0.31 0.23
3D Real income Dispersion ratio 0.18 0.12 0.17

Notes: For detailed descriptions of Models 1-3, refer to the notes in Table E1. For detailed descriptions
of row and column definitions, refer to the notes in Table 7.

F Dropping outlier industries

Table F1. Innovation intensity summary statistics

bs obs Mean Std. dev Min Max

R&D intensity

Model 1 25 -0.69 0.81 -2.61 0.30
Model 2 25 -0.69 0.85 -2.93 0.33

Patenting intensity

Model 1 25 -1.13 1.34 -4.30 0.91
Model 2 25 -1.18 1.36 -4.54 0.85

Notes: Model 1 encompasses the original findings as established in the
paper. In Model 2, we have excluded two outliers, namely the Paper and
Paper Products (17) industry and the Agriculture, Forestry, and Fishing
(0103) industry. These outliers were identified based on information from
Figure 4 in Sampson (2023).

47



Table F2. Innovation dependence by industry
Innovation efficiency measure R&D intensity R&D intensity R&D intensity Patenting intensity

Industries (1A) (2A) (1B) (2B) (1C) (2C) (1D) (2D)

0103 (Agriculture) 0.45 0.33 0.17 0.01
(0.06) (0.05) (0.09) (0.06)

0508 (Mining) 0.37 0.34 0.25 0.23 -0.11 -0.15 -0.14 -0.15
(0.09) (0.08) (0.07) (0.06) (0.13) (0.14) (0.08) (0.08)

1012 (Food) 0.48 0.44 0.36 0.33 0.21 0.18 0.06 0.05
(0.05) (0.04) (0.04) (0.04) (0.08) (0.08) (0.06) (0.06)

13 (Textiles) 0.51 0.48 0.42 0.39 0.29 0.27 0.12 0.11
(0.05) (0.04) (0.05) (0.05) (0.06) (0.06) (0.05) (0.05)

14 (Apparel) 0.47 0.44 0.37 0.35 0.33 0.32 0.13 0.13
(0.06) (0.05) (0.06) (0.05) (0.05) (0.06) (0.04) (0.04)

15 (Leather) 0.48 0.45 0.39 0.36 0.34 0.32 0.12 0.12
(0.06) (0.06) (0.07) (0.07) (0.08) (0.08) (0.07) (0.07)

16 (Wood) 0.52 0.49 0.40 0.37 0.20 0.18 0.03 0.03
(0.06) (0.05) (0.04) (0.04) (0.07) (0.07) (0.05) (0.04)

17 (Paper) 0.58 0.45 0.34 0.13
(0.05) (0.04) (0.07) (0.05)

18 (Printing) 0.58 0.54 0.46 0.43 0.27 0.26 0.11 0.10
(0.06) (0.05) (0.04) (0.04) (0.06) (0.06) (0.04) (0.04)

19 (Petrol ) 0.48 0.45 0.36 0.34 0.14 0.12 0.05 0.05
(0.05) (0.04) (0.04) (0.04) (0.08) (0.08) (0.04) (0.04)

20 (Chemicals) 0.59 0.54 0.47 0.44 0.38 0.34 0.19 0.18
(0.05) (0.05) (0.05) (0.05) (0.09) (0.09) (0.06) (0.06)

21 (Pharma) 0.62 0.57 0.50 0.45 0.22 0.15 0.17 0.15
(0.07) (0.07) (0.06) (0.06) (0.14) (0.13) (0.1) (0.1)

22 (Plastics) 0.60 0.57 0.48 0.45 0.38 0.37 0.18 0.18
(0.05) (0.04) (0.04) (0.03) (0.05) (0.05) (0.04) (0.04)

23 (Minerals) 0.57 0.53 0.45 0.42 0.30 0.28 0.12 0.11
(0.05) (0.04) (0.04) (0.04) (0.06) (0.06) (0.04) (0.04)

24 (Basic metals) 0.58 0.53 0.43 0.39 0.27 0.23 0.18 0.17
(0.05) (0.05) (0.05) (0.05) (0.07) (0.07) (0.03) (0.03)

25 (Fabric. metals) 0.60 0.56 0.48 0.44 0.33 0.31 0.14 0.14
(0.05) (0.04) (0.04) (0.03) (0.06) (0.06) (0.04) (0.04)

26 (Computers) 0.65 0.59 0.49 0.45 0.60 0.54 0.30 0.30
(0.06) (0.04) (0.04) (0.03) (0.12) (0.1) (0.05) (0.05)

27 (Electrical) 0.61 0.58 0.53 0.51 0.37 0.36 0.19 0.19
(0.09) (0.08) (0.07) (0.07) (0.1) (0.09) (0.04) (0.04)

28 (Machinery) 0.71 0.66 0.60 0.56 0.38 0.34 0.21 0.21
(0.08) (0.07) (0.05) (0.05) (0.11) (0.09) (0.06) (0.06)

29 (Vehicles) 0.55 0.51 0.39 0.36 0.27 0.27 0.19 0.19
(0.05) (0.04) (0.04) (0.03) (0.08) (0.08) (0.03) (0.03)

30 (Other trans.) 0.56 0.50 0.38 0.34 0.26 0.19 0.00 0.00
(0.1) (0.08) (0.06) (0.06) (0.13) (0.11) (0.05) (0.05)

3133 (Furniture) 0.55 0.51 0.42 0.40 0.25 0.24 0.10 0.10
(0.07) (0.06) (0.04) (0.04) (0.07) (0.06) (0.05) (0.05)

Observations 171K 151K 171K 151K 171K 151K 171K 151K
R-squared 0.52 0.52 0.65 0.65 0.70 0.70 0.69 0.70
TCC† Yes Yes Yes Yes Yes Yes Yes Yes
PLC† No No Yes Yes Yes Yes Yes Yes
CAC† No No No No Yes Yes Yes Yes
AID† 0.55 0.51 0.43 0.40 0.28 0.26 0.12 0.12
SID 0.08 0.07 0.07 0.07 0.13 0.13 0.09 0.09
F test 0.13 0.08 0.00 0.00 0.07 0.03 0.00 0.00

Notes: Row and column definitions are equivalent to those in Table 3. Columns 1A-1D encompass the original
findings as established in the paper. In columns 2A-2D, we have excluded two outliers, namely the Paper and
Paper Products (17) industry and the Agriculture, Forestry, and Fishing (0103) industry. These outliers were
identified based on information from Figure 4 in Sampson (2023). The standard errors are clustered by importer-
industry, and they are presented within brackets.
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Table F3. Counterfactual Results
Innovation Outcome R & D Patenting R & D intensity
efficiency measure intensity intensity generalized model
(1) (2) (3) (4) (5)

1A Nominal wage Average change relative to US 0.18 0.14 0.18
2A Nominal wage Average change relative to US 0.16 0.15 0.18

1B Nominal wage Dispersion ratio 0.32 0.27 0.31
2B Nominal wage Dispersion ratio 0.31 0.27 0.32

1C Real income Average change relative to US 0.06 0.04 0.06
2C Real income Average change relative to US 0.05 0.04 0.06

1D Real income Dispersion ratio 0.17 0.13 0.16
2D Real income Dispersion ratio 0.15 0.12 0.16

Notes: For detailed descriptions of Models 1-3, refer to the notes in Table F1. For detailed descriptions
of row and column definitions, refer to the notes in Table 7.
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G Dropping outlier in the regression

Table G1. Innovation dependence by industry
Innovation R&D R&D R&D Patenting

efficiency measure intensity intensity intensity intensity

Industries (1A) (2A) (3A) (1B) (2B) (3B) (1C) (2C) (3C) (1D) (2D) (3D)

0103 (Agriculture) 0.45 0.45 0.46 0.33 0.36 0.33 0.17 0.29 0.17 0.01 0.13 0.01

(0.06) (0.05) (0.05) (0.05) (0.04) (0.05) (0.09) (0.07) (0.09) (0.06) (0.06) (0.06)

0508 (Mining) 0.37 0.39 0.38 0.25 0.31 0.26 -0.11 -0.05 -0.10 -0.14 -0.06 -0.13

(0.09) (0.08) (0.08) (0.07) (0.06) (0.06) (0.13) (0.14) (0.13) (0.08) (0.08) (0.08)

1012 (Food) 0.48 0.48 0.48 0.36 0.38 0.36 0.21 0.21 0.21 0.06 0.12 0.06

(0.05) (0.04) (0.04) (0.04) (0.04) (0.04) (0.08) (0.09) (0.08) (0.06) (0.06) (0.06)

13 (Textiles) 0.51 0.50 0.51 0.42 0.45 0.42 0.29 0.31 0.29 0.12 0.18 0.12

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.06) (0.07) (0.06) (0.05) (0.06) (0.05)

14 (Apparel) 0.47 0.45 0.47 0.37 0.40 0.37 0.33 0.32 0.33 0.13 0.18 0.14

(0.06) (0.05) (0.06) (0.06) (0.06) (0.06) (0.05) (0.08) (0.05) (0.04) (0.05) (0.04)

15 (Leather) 0.48 0.44 0.48 0.39 0.41 0.39 0.34 0.34 0.34 0.12 0.22 0.13

(0.06) (0.05) (0.06) (0.07) (0.07) (0.07) (0.08) (0.07) (0.08) (0.07) (0.06) (0.07)

16 (Wood) 0.52 0.54 0.52 0.40 0.44 0.40 0.20 0.21 0.20 0.03 0.12 0.03

(0.06) (0.07) (0.06) (0.04) (0.05) (0.04) (0.07) (0.08) (0.07) (0.05) (0.04) (0.04)

17 (Paper) 0.58 0.56 0.58 0.45 0.46 0.45 0.34 0.32 0.34 0.13 0.19 0.13

(0.05) (0.06) (0.05) (0.04) (0.04) (0.04) (0.07) (0.09) (0.07) (0.05) (0.06) (0.05)

18 (Printing) 0.58 0.64 0.58 0.46 0.54 0.46 0.27 0.34 0.28 0.11 0.23 0.11

(0.06) (0.06) (0.06) (0.04) (0.04) (0.04) (0.06) (0.08) (0.06) (0.04) (0.05) (0.04)

19 (Petrol ) 0.48 0.52 0.48 0.36 0.43 0.36 0.14 0.31 0.15 0.05 0.17 0.06

(0.05) (0.05) (0.04) (0.04) (0.04) (0.04) (0.08) (0.07) (0.08) (0.04) (0.04) (0.03)

20 (Chemicals) 0.59 0.56 0.59 0.47 0.49 0.48 0.38 0.45 0.38 0.19 0.27 0.19

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.09) (0.10) (0.09) (0.06) (0.07) (0.06)

21 (Pharma) 0.62 0.59 0.62 0.50 0.53 0.50 0.22 0.11 0.22 0.17 0.20 0.17

(0.07) (0.08) (0.07) (0.06) (0.06) (0.06) (0.14) (0.18) (0.14) (0.10) (0.12) (0.09)

22 (Plastics) 0.60 0.54 0.60 0.48 0.46 0.48 0.38 0.36 0.38 0.18 0.22 0.19

(0.05) (0.06) (0.05) (0.04) (0.05) (0.03) (0.05) (0.08) (0.05) (0.04) (0.05) (0.04)

23 (Minerals) 0.57 0.59 0.57 0.45 0.49 0.45 0.29 0.29 0.29 0.12 0.19 0.12

(0.05) (0.06) (0.05) (0.04) (0.04) (0.04) (0.06) (0.07) (0.06) (0.04) (0.04) (0.04)

24 (Basic metals) 0.58 0.54 0.58 0.43 0.44 0.43 0.26 0.37 0.27 0.18 0.28 0.19

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.07) (0.10) (0.07) (0.03) (0.04) (0.03)

25 (Fabric. metals) 0.60 0.58 0.60 0.47 0.48 0.48 0.33 0.31 0.33 0.14 0.20 0.14

(0.05) (0.06) (0.05) (0.04) (0.05) (0.04) (0.06) (0.08) (0.06) (0.04) (0.05) (0.04)

26 (Computers) 0.65 0.54 0.65 0.49 0.46 0.49 0.60 0.61 0.60 0.29 0.34 0.30

(0.06) (0.09) (0.06) (0.04) (0.07) (0.04) (0.12) (0.15) (0.12) (0.05) (0.06) (0.05)

27 (Electrical) 0.61 0.52 0.61 0.53 0.50 0.53 0.37 0.33 0.37 0.19 0.20 0.19

(0.09) (0.08) (0.09) (0.07) (0.06) (0.07) (0.10) (0.08) (0.10) (0.04) (0.04) (0.04)

28 (Machinery) 0.71 0.68 0.71 0.60 0.61 0.60 0.38 0.30 0.38 0.21 0.25 0.22

(0.08) (0.07) (0.08) (0.05) (0.05) (0.05) (0.11) (0.09) (0.11) (0.06) (0.06) (0.06)

29 (Vehicles) 0.55 0.49 0.56 0.39 0.39 0.39 0.27 0.33 0.28 0.19 0.26 0.19

(0.05) (0.05) (0.05) (0.04) (0.05) (0.04) (0.08) (0.11) (0.08) (0.03) (0.04) (0.03)

30 (Other trans.) 0.56 0.58 0.56 0.38 0.47 0.38 0.26 0.16 0.25 -0.00 0.04 0.00

(0.10) (0.12) (0.09) (0.06) (0.08) (0.06) (0.13) (0.08) (0.12) (0.05) (0.04) (0.05)

3133 (Furniture) 0.55 0.56 0.55 0.42 0.48 0.43 0.25 0.26 0.25 0.10 0.20 0.11

(0.07) (0.07) (0.06) (0.04) (0.04) (0.04) (0.07) (0.08) (0.06) (0.05) (0.05) (0.05)

Observations 171K 171K 168K 171K 171K 168K 171K 171K 168K 171K 171K 168K

R-squared 0.52 0.31 0.54 0.65 0.34 0.66 0.70 0.35 0.71 0.69 0.35 0.70

TCC† Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

PLC† No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes

CAC† No No No No No No Yes Yes Yes Yes Yes Yes

AID† 0.55 0.53 0.55 0.43 0.45 0.43 0.28 0.29 0.28 0.17 0.19 0.12

SID 0.08 0.07 0.07 0.07 0.06 0.07 0.13 0.13 0.13 0.09 0.08 0.09

F test 0.13 0.25 0.12 0.00 0.01 0.00 0.07 0.36 0.06 0.00 0.00 0.00

Notes: Row and column definitions are equivalent to those in Table 3. We replicated the original results in Columns 1A-1D as reported in the paper.
We then applied the robustness check method from Jann (2022), which uses a robust fixed effect regression to identify outliers. We found that the
proportions of outliers in Columns 2A-2D were 36.57%, 36.55%, 36.59%, and 36.63%, respectively. In Columns 3A-3D, we excluded these outliers and
reran the original regression as in Columns 1A-1D.
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