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 Abstract:  27 

 28 

Black carbon (BC) is produced by incomplete combustion of biomass by wildfires and 29 

burning of fossil fuels. BC is environmentally persistent over centuries to millennia, 30 

sequestering carbon in marine and terrestrial environments. However, its production, 31 

storage, and dynamics are underrepresented in Earth system models. In this Review, we 32 

discuss BC cycling in the land-to-ocean continuum. Wildfires are the main source of BC, 33 

producing 128±84 Tg year-1. Negative climate–BC feedbacks could arise as wildfire 34 

increases with anthropogenic warming, producing more BC, which in turn sequesters 35 

carbon, but the magnitude of these effects are unknown. Most BC is stored in terrestrial 36 

systems with some transported to the ocean via rivers and the atmosphere. However, the 37 

oceanic BC budget is not balanced, with known BC removal fluxes exceeding BC inputs. 38 

These observed inconsistencies are demonstrated with a simple ocean box model, which 39 

highlights key areas for future research. Measurements of BC mineralisation and export 40 

rates along the land-to-ocean continuum and quantification of previously unexplored 41 

sources of oceanic BC are needed to close the global BC budget.  42 

 43 

 44 

 45 
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[H1] Introduction  47 

 48 

Wildfires and fossil fuel combustion produce substantial amounts pyrogenic organic 49 

materials, including black carbon [G] (BC)1. Globally, fires produce about 128±84 Tg BC 50 

year-1 (Ref2)where most is left behind on the landscape as part of charcoal, ash, and other 51 

charred plant residues. A smaller fraction (2-11 Tg of BC year-1) is emitted to the 52 

atmosphere as soot3,4. Fossil fuel burning emits an additional 5-13 Tg aerosol BC year-1 53 

(Ref4). As these processes convert relatively labile [G] biomass carbon to more 54 

environmentally persistent [G], more slowly cycling BC, they modify rates of turnover in 55 

the global carbon cycle. Omitting BC production from assessments of fire impacts on the 56 

carbon cycle leads to overestimation of the strength of positive feedbacks5 between 57 

climate change and wildfire emissions2,6.  58 

 59 

The precise definition of BC varies, but generally refers to the carbonaceous, 60 

polycondensed aromatic product (>60% organic carbon) derived from the incomplete 61 

combustion of biomass and fossil fuels7. BC is part of an incomplete combustion 62 

continuum consisting mainly of polycyclic aromatic structures of high molecular diversity, 63 

whose size, configuration, and functionality is driven by formation temperature, heating 64 

duration, oxygen availability, and fuel materials (Figure 1)8. It is operationally divided into 65 

dissolved BC [G] (DBC), which passes through a filter (usually 0.1 to 0.7 m), and 66 

particulate BC [G] (PBC), which is retained on a filter. These operational definitions are 67 

inherited from the oceanography community, in which dissolved organic carbon [G] 68 

(DOC) and particulate organic carbon [G] (POC) are traditionally divided based on 69 

filtration. In reality, however, the range from DOC to POC is a size continuum that includes 70 

monomers, polymers, colloids and gel particles9 (Figure 1), and DBC and PBC occur 71 

along a continuum of size and phase.  72 

In the environment, BC persists on timescales of centuries to millennia. This stability and 73 

longevity is related to its condensed aromatic chemical structure, which is resistant to 74 

microbial decomposition10,7. The reactivity of BC is further constrained by ecosystem 75 

properties including microbial populations, enzyme kinetics, environmental conditions, 76 

and matrix protection10,11. As a result, BC is the oldest and most abundant molecularly 77 

characterized component of the modern carbon cycle12,13.  78 

In this Review, we describe the occurrence, cycling, and persistence of BC in the 79 

environment. We focus on BC, rather than all fire-derived pyrogenic residues, because 80 

the BC fraction is the longest-lived10, giving it relevance for carbon sequestration in a 81 

changing climate. The broader implications of BC production are discussed as a possible 82 

long-term feedback mechanism, which is underrepresented in Earth system models 83 

(ESMs) modern global BC budget for all major components of the Earth System is then 84 

presented. We next describe inconsistencies between apparent ages of oceanic BC 85 

determined via geochemical methods and BC turnover rates inferred by mass balance 86 

equations and highlight areas of the global BC budget that exhibit the highest degrees of 87 

uncertainty. Explanations of the observed inconsistencies in the oceanic BC budget are 88 

explored using simple ocean box model. Finally, we define major research activities that 89 

must be prioritized in the coming years to close the knowledge gaps and minimize 90 

uncertainties in the global BC cycle.  91 
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 92 

 93 

[H1] BC Climate Feedbacks 94 

 95 

Open biomass fires, including wildfires, deforestation fires, and other land use fires, are 96 

the dominant source of BC. Changing wildfire occurrence relates strongly to climate and 97 

has the potential to invoke feedbacks to climate change via emission of CO2 and 98 

production of BC. Climate change has increased global wildfire risks globally by 99 

increasing the frequency of fire-prone weather conditions14,15. In some regions, 100 

particularly in temperate and boreal forests, increased weather-related fire risks have 101 

translated into rising wildfire activity16 Globally, fires have widespread impacts on the 102 

carbon cycle, directly emitting ~2.2 (2-3) Pg C year-1 mainly in the form of CO2 (Ref17). In 103 

turn, post-fire vegetation regrowth re-captures ~1.8 Pg C year-1 (Ref17,18). Much of the 104 

remaining ~0.4 Pg C year-1 is emitted by deforestation and peatland fires and is lost 105 

indefinitely to the atmosphere17; however, changing wildfire frequencies in some regions 106 

are also leading to an imbalance between the fire emissions and post-fire recovery fluxes 107 

and net loss of C to the atmosphere6,19,20. While large declines in burned area have been 108 

observed in savannahs during the past two decades, forest burned area has 109 

synchronously increased and so global CO2 emissions from fire have remained 110 

approximately stable or increased slightly16,21. 111 

 112 

 113 

The biogeochemical feedbacks between anthropogenic climate change and fire 114 

emissions are positive (Figure 2), with a warmer climate leading to increased fire activity, 115 

ecosystem disturbance and CO2 emission. For example, increased fire frequency has 116 

already been observed to reduce boreal forest carbon stocks and release carbon to the 117 

atmosphere19. Taken together, the magnitude of the positive feedback from fire emissions 118 

and climate change has been modelled to be on the order of 6 ppm of CO2 in in the 119 

atmosphere per degree of warming5.  120 

 121 

Whereas the positive feedback between climate change and increased fire CO2 122 

emissions has been studied widely, increased fire activity also leads to an understudied 123 

enhancement of BC production and storage with potential to invoke a negative 124 

feedback6,22,23(Figure 2). As the turnover of BC is considerably slower than that of 125 

unburned biomass carbon24, the distinction between these two pools is critical to modeling 126 

the carbon balance in the decades to centuries following a fire. Unlike positive feedbacks 127 

between climate change and fire CO2 emissions, fire-enabled ESMs do not consider the 128 

production of BC. Consequently, ESMs are biased towards positive fire-driven feedbacks 129 

under a warming climate. The plausible magnitude of this bias is on the order of 10-20% 130 

of the positive feedback based on rates of BC production22,23. Overall, omitting the BC 131 

cycle from ESMs limits the accurate quantification of the role of fire in the global carbon 132 

cycle under climate change.  133 

 134 

[H1] BC stocks, ages, and losses  135 

 136 
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Following its production during wildfires and fossil fuel combustion, the first interactions 137 

between BC and the soil surface and water influence its fate. PBC can be incorporated 138 

into the soil matrix where it slowly degrades, or transferred via water or wind erosion to 139 

aquatic systems26. PBC can also physically disaggregate and be transformed through 140 

microbial or abiotic activity into submicron particles or DBC, which are transported via 141 

surface water or groundwater flows. This section describes BC cycling and export to the 142 

ocean.   143 

 144 

[H2] BC in the atmosphere 145 

 146 

BC aerosol emission inventories suggest that biomass burning and fossil fuel combustion 147 

emit 2–11 Tg BC year−1 and 4.5–12.6 Tg BC year−1, respectively4. BC aerosol is initially 148 

emitted as soot in the PM2.5 [G] class, but over time it ages, photo-degrades and 149 

coagulates with hydrophilic aerosol species leading to its solubility in rain droplets183. 150 

Submicron BC can remain airborne for up to 14 days27, indicating BC aerosols can be 151 

deposited far from the fire source. BC leaves the atmosphere by either dry deposition 152 

(falls from suspension in the atmosphere) or wet deposition (deposition with falling rain 153 

droplets) to the land or surface ocean27.  154 

 155 

Aerosol BC deposited to river catchments represents a secondary source of BC to rivers. 156 

Indeed, regional BC aerosols can contribute 5-22% of riverine DBC fluxes28,29. For 157 

example, in some tributaries of the Amazon River, local sources of fossil fuel emissions 158 

from cities along rivers reveal a low- DBC 14C signature but are effectively removed further 159 

downstream30.  160 

 161 

Aerosol BC deposition on the surface ocean can be a substantial BC source to the global 162 

ocean, with a global flux estimates ranging from 1.8 ± 0.83 Tg year−1 (Ref31), wet 163 

deposition only) to around 12 Tg year-1 (Ref27, wet and dry deposition). In the western 164 

North Pacific and South China seas, for example, atmospheric deposition of aerosols 165 

from fossil fuel combustion is likely the major source of DBC in the surface ocean32-34. In 166 

fire-affected coastal areas of the western United States, direct inputs of DBC from 167 

atmospherically deposited ash and smoke appeared to be negligible35. However, under 168 

experimental conditions, leaching of wildfire ash in seawater released a substantial 169 

amount of DBC35. Taken together, these observations suggest that the deposition of BC 170 

aerosols from wildfires could be an important, transient source of fire-derived material to 171 

marine surface waters.  172 

 173 

[H2] BC in soils and terrestrial intermediate reservoirs 174 

 175 

Although BC aerosol fluxes are important, most BC produced during wildfires is retained 176 

on-site (128±84 Tg BC year-1)2, mostly from tropical savannas, forests, and peatlands36. 177 

BC accumulation in soils is determined by BC production rates minus losses via 178 

mobilization, degradation, or re-combustion. BC in soils comprises 160-200 Pg C globally, 179 

or 13% of the total soil organic carbon on average13,37. Higher soil clay content, greater 180 

soil depth, higher wildfire temperatures, lower pH, and lower soil cation exchange 181 

apparently enhances the retention of BC in soils13,38,39.  182 
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 183 

Soil BC is degraded and lost via multiple biotic and abiotic pathways. BC in soil can be 184 

microbially oxidized40-42, which reduces the hydrophobicity of the condensed aromatic 185 

structures, thereby increasing solubility and mobilization by leaching and enhancing 186 

accessibility for further microbial degradation43. Photooxidation and sorption of DBC to 187 

minerals or other particulates is an important DBC loss mechanism44,45, but in situ rates 188 

for photodegradation and sorption processes have not yet been robustly quantified. There 189 

is also little understanding of how mobility varies across DBC and PBC, as mobility can 190 

depend on many factors, including parent materials, fire temperature and behavior, soil 191 

type, climate, and topography37,46.  192 

 193 

In-situ mineralization, erosion and solubilization via water, and wind-driven transport are 194 

key loss mechanisms for soil PBC47-49. Most research has focused on microbial 195 

decomposition39,50-52, with physical degradation and mobilization studied less53. Starkly 196 

different residence times have been estimated for soil BC. Field-based approaches and 197 

long-term laboratory incubation experiments have estimated the soil residence time of BC 198 

to be 88 - 870 years (Ref54). Conversely, mass balance assessments (annual global BC 199 

production minus riverine BC export) suggest that soil BC turnover occurs within 200 

2,400±2,100 years, which is consistent with some incubation experiments that indicate 201 

BC is stable in soils for millennia55.  202 

 203 

Once mobilized from production sites, BC can be physically retained in intermediate 204 

reservoirs on land prior to riverine export. For example, BC contributes up to 20% of the 205 

soil organic carbon in mollic horizons of European floodplains56 and to around 10-30% in 206 

surface sediments in restored Chinese wetlands57. Deposition in lakes and other fresh 207 

water sediments could be a key but understudied BC retention mechanism, as lake 208 

sediments store twice the amount of macroscopic BC than surface soils in boreal forest 209 

watersheds58. Groundwater could also contain BC, although the magnitude of this pool 210 

as well as the flux to the ocean is unknown59,60. Therefore, despite the potential relevance 211 

of intermediate reservoirs like waterlogged soils, sediments, and groundwaters, the 212 

depositional and decomposition rates and storage of BC in these areas are not sufficiently 213 

constrained, which prevents a comprehensive understanding of their role in the global BC 214 

cycle. 215 

 216 

[H2] BC transport in rivers  217 

 218 

Rivers transport 43±15 Tg BC year-1 (Ref2), which equates to ~34±26% of the BC 219 

produced annually by wildfires. Globally, riverine DBC and PBC are exported in similar 220 

proportions (18±4 Tg DBC year-1 and 17-37 Tg PBC year-1, respectively). These 221 

estimates are based on datasets with global-scale coverage, and the fluxes are well 222 

constrained in comparison to other elements of the aquatic BC cycle2,61 (Figure 3). 223 

Compared to other soil particles, PBC is preferentially transported by water erosion and 224 

is therefore prone to rapid lateral transfer from hillslopes to the hydrological system during 225 

water erosion events, particularly within the first few years post-fire47,62. In contrast, the 226 

release of DBC from soils to streams is driven by the solubilisation of soil BC by biotic or 227 

abiotic mechanisms followed by export with soil pore water to river channels63,64. Relative 228 
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to PBC export, DBC export occurs over longer time periods, after the slow aging and 229 

oxidation of soil BC to functionalized condensed aromatic molecules for enhanced 230 

solubility in water43. The continual export of DBC from historically fire-affected 231 

watersheds65 further supports the hypothesis that aging of condensed aromatic structures 232 

is a prerequisite to their solubilization in soils.  233 

 234 

The different transport and transformation mechanisms of DBC and PBC are reflected in 235 

their apparent radiocarbon ages. In rivers, DBC age is highly variable, but generally 236 

modern (contemporary), whereas PBC can be up to several thousand years old29,61 237 

(Figure 3). This age discrepancy between DBC and PBC is also observed in both bulk 238 

organic carbon and other compound-specific fractions66,67. The apparent lag in PBC 239 

mobilization and in-stream export might be explained by the PBC physicochemical 240 

properties that enhance its long-term stability and aging in intermediate reservoirs. 241 

Freshly produced charcoal and ash can leach considerable amounts of DBC35,49,63, which 242 

suggests terrestrial wildfires produce a stock of readily soluble BC with a younger 243 

radiocarbon age than PBC (Box 1). Based upon their established transport mechanisms, 244 

we might expect the apparent radiocarbon age of DBC (slow leaching over time) to be 245 

older than that of PBC (rapid erosion soon after fire). This observation runs counter to 246 

what has been measured for BC in rivers (Figure 3). This discrepancy may be driven, in 247 

part, by the general lack of spatiotemporal radiocarbon data for BC in rivers globally. 248 

Submicron-scale BC soot aerosols deposited within river basins also contribute a minor 249 

fraction of riverine DBC2,28, on the order of 5-20% with wide variation across regions 250 

29,68,69. 251 

 252 

Riverine DBC fluxes are usually highest at peak discharge and lowest during baseflow 253 

64,65,69-71. This coupling between DBC concentration and discharge results from DBC 254 

mobilization from upper organic soil horizons during heavy rainfalls44. The concentration 255 

and radiocarbon age of DBC and dissolved organic carbon (DOC) is often coupled, 256 

presumably because both forms of carbon share a soil source72,73. However, the DBC 257 

content in bulk riverine DOC can vary between 2 and 15% depending upon biome, 258 

latitude, climate, soil type, and land cover46,74 (Figure 3). Moreover, DBC and DOC export 259 

are largely decoupled in some locations, such as the Amazon River and other channels 260 

in Brazil30,46,68, where variable soil properties, rainfall and aerosol deposition affect DBC 261 

mobilization. Decoupling of DOC and DBC concentrations might also result from variation 262 

in the timing of rainfall events with respect to stages of soil pore water replenishment with 263 

DOC and DBC (pore water DOC stocks are likely replenished more quickly than pore 264 

water DBC following prior rainfall events due to the greater recalcitrance of soil BC)46,75. 265 

Freshly burned watersheds can have higher in-stream concentrations of DBC that can 266 

persist for years after the fire event76,77. However, some studies have shown that 267 

watershed fire history has little to no effect on in-stream DBC concentrations, which 268 

suggests that other environmental factors, such as topography, soil type, climate, fire and 269 

vegetation characteristics are also important64,78,79. With changes in watershed 270 

properties, mainly due to agricultural activities, shifts in molecular composition and 271 

reactivity of DBC can be expected80,81 with yet unknown consequences for the fate of 272 

riverine export of DBC. 273 

 274 
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Like DBC, PBC inputs to rivers are elevated during precipitation events and periods of 275 

overland flow61, as the lateral transfer of charcoal from hillslope to stream channels is 276 

primarily controlled by physical erosion. However, riverine PBC is not exclusively sourced 277 

from contemporary wildfires. In temperate river systems, around 90% of PBC has been 278 

retained in catchment soils for millennia prior to export and deposition in aquatic 279 

sediments82. In addition, PBC deposited within the stream corridor can be resuspended 280 

during periods of high discharge64,73. This successive hydrological redistribution of river-281 

transported material within stream channels and alluvial plains47,83 causes an observed 282 

lag between fire occurrence and sedimentary charcoal deposition in coastal basins84. 283 

Therefore, the weighted average age of riverine PBC is 3,700±400 14C years, which 284 

reflects enhanced residence times and some degree of storage within intermediate 285 

reservoirs61, including locations where environmental conditions favor both preservation 286 

or mineralization. In several high-latitude rivers61, the apparent age of PBC was as high 287 

as 17,000 14C years (Figure 3). The ratio of PBC to particulate organic carbon (POC) 288 

varies in smaller watersheds and at high temporal resolution, reflecting local 289 

geomorphological and hydrological effects of fire and associated charcoal inputs64 290 

(Figure 3). However, the PBC to POC ratio in global rivers is roughly constant 291 

(15.8±0.9%) (Figure 4a), regardless of environmental conditions or watershed 292 

characteristics61, which permits scaling of PBC fluxes. 293 

 294 

[H2] BC processing in rivers  295 

 296 

Rivers are not passive pipes that conservatively transfer organic materials from land to 297 

the ocean. A substantial amount of riverine organic carbon is lost as CO2 during transit 298 

due to biogeochemical processes, such as photodegradation and biodegradation85,86, 299 

specifically in two loops carrying carbon from land to inland waters, then from tidal 300 

wetlands to the ocean ocean87. In situ rates for BC degradation and remineralization are 301 

not well constrained but can be inferred from known removal mechanisms for bulk organic 302 

carbon. Like organic carbon, BC losses could be focused in areas where water masses 303 

with different physicochemical properties mix, such as at river confluences, along 304 

estuaries, within river plumes, and in the coastal ocean88. However, coastal zones are 305 

not only potential hotspots of BC turnover, but can be sources of DBC to the ocean 306 

themselves, especially in areas with high tidal water exchange89. The addition of bio-labile 307 

substrates (for example, algal biomass and exudates) might enhance the decomposition 308 

of environmentally persistent organic matter such as BC90. This priming effect, which has 309 

been well-studied in soils 55, is an emerging research topic in aquatic environments91,92, 310 

but has yet to be meaningfully explored within the context of BC degradation. 311 

Photochemical degradation is a major loss and alteration pathway for DBC in aquatic 312 

environments93,94. For example, DBC leached from grass and oak chars is highly 313 

photolabile (>75% removal in 5 days) under experimental conditions45. The photo-lability 314 

of DBC is mainly controlled by the abundance of polycyclic aromatic structures, with larger 315 

condensed structures being more susceptible to photooxidation than less condensed 316 

structural features45. In laboratory experiments, the photochemical half-life of polycyclic 317 

aromatic structures is one to two days and as such much shorter than the typical riverine 318 

transit time to the ocean95. However, the DBC content is relatively high in most rivers 319 
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mouths (12±5% of DOC)2, despite a portion of the DBC undergoing river transit. 320 

Therefore, factors such as turbidity, shading, and protection by mineral associations96 321 

with suspended matter might protect dissolved organic matter from photodegradation97 322 

and explain why DBC is largely conserved in river waters despite high photodegradation 323 

rates in laboratory experiments. It is also hypothesized that constant inputs from the 324 

surrounding landscape and smaller tributaries maintain relatively constant levels and 325 

compositions of dissolved organic matter along the mainstem of large rivers until they 326 

reach the sea, despite high rates of remineralization98.  327 

Microbial remineralization at river–ocean interfaces is another BC loss process. In 328 

contrast to photodegradation, lower molecular weight DBC is mineralized by microbes 329 

first52, whereas high molecular weight DBC is comparably resistant45. Microbial 330 

remineralization and photodegradation are likely coupled, in which photo-exposure 331 

breaks down the condensed aromatic structures, thereby potentially increasing the 332 

bioavailability of DBC45,52,99. The overall balance between the two processes in the 333 

environment is unknown, though. In the Amazon River, for example, DOC photo-334 

mineralization rates are seven times greater than microbial remineralization. However, 335 

when intergraded over the entire water column, microbial remineralization is likely the 336 

dominant organic matter removal process because it is not restricted to surface waters 337 

such as photo-mineralization97. There is currently no global estimate for losses of DBC 338 

via microbial degradation at aquatic interfaces.  339 

 340 

[H1] Sources and Fates of Oceanic BC  341 

After transport from rivers and other sources, PBC is thought to be primarily buried in 342 

coastal shelf and marine sediments and sequestered on long-term and potentially 343 

geologic timescales100,101. Semi-enclosed basins act as a trap for riverine PBC burial102, 344 

where PBC storage could be related to oxygen conditions103. However, burial and 345 

retention of PBC in marine sediments remains largely unconstrained on a global scale104-
346 

106.  347 

 348 

The fraction of DBC that escapes mineralization at the river-ocean interface becomes part 349 

of the 662 Pg C marine DOC pool44,107 (Figure 4a). DBC accounts for about 2-6% of 350 

oceanic DOC, which corresponds to a 12-14 Pg C standing stock of DBC in the global 351 

oceans 12,108(Table 1). River DBC mainly enters the deep ocean at the deep-water 352 

formation sites in the North Atlantic. It takes decades to centuries for DBC to travel at the 353 

sea surface from the discharge sites at the river mouths to the North Atlantic where 354 

surface water masses sink down to thousands of meters of water depths12. Therefore, 355 

loss processes such as photodegradation and microbial degradation along this long 356 

pathway could be important for altering and removing DBC45,52,109. 357 

 358 

At the basin scale, DBC behaves largely conservatively on time-scale of decades to 359 

centuries in the absence of photodegradation44,109,110. Sorption onto sinking particles is 360 

potentially the dominant removal mechanism for DBC in the dark ocean and explains the 361 

decrease in DBC concentration along deep-ocean meridional circulation69. The global 362 

removal flux of DBC to abyssal sediments via sorption to sinking particles has been 363 

estimated as 40-85 Tg C year-169,100, which is larger than the estimated global inputs of 364 
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DBC via rivers and atmospheric deposition. This mismatch in the mass balance reflects 365 

major uncertainties of estimated rates and pools, but it could also indicate other 366 

substantial, yet unidentified sources of DBC in the ocean and or unknown losses of DBC.  367 

For example, hadal zones are an apparently important, but long unrecognized sink of BC, 368 

removing 1.0± 0.5 Tg BC year-1 due to higher accumulation rates in these zones111. 369 

 370 

 371 

There are a number of major uncertainties in the BC cycle, including the fate of DBC. 372 

Riverine DBC fluxes (18±4 Tg C year-1) are sufficient to sustain the turnover of the entire 373 

oceanic DBC pool in just 500 years (based on simply dividing the marine stock by the 374 

riverine discharge)12. This value suggests the apparent 14C ages of oceanic DBC should 375 

be young. However, apparent 14C ages of oceanic DBC are on average 4800±62014C 376 

years in the surface ocean (though with large range likely due to variable inputs of modern 377 

DBC through rivers and aerosols)12,35,112. In the deep ocean, apparent ages are >20,000 378 

14C years (Figure 4b; Table 1) 12. Calculating the residence times of abyssal oceanic 379 

DBC on the basis of estimated removal fluxes and pool sizes results in much younger 380 

(2,100–4,100 years) DBC ages than the measured apparent 14C age of DBC in the deep 381 

ocean69. Thus, despite its expected recalcitrance, most BC delivered by rivers is not 382 

accumulating in the ocean.  383 

 384 

This conundrum highlights the gaps in our understanding of DBC losses in the ocean, 385 

which include UV oxidation in the surface ocean, sorption of DBC onto sinking POC, burial 386 

of DBC in hadal zones, and (potentially) loss of DBC by bursting bubble plumes (Figure 387 

5). For example, the high degree of uncertainty associated with first order estimates of 388 

DBC removal via photodegradation93 could be preventing the closure of ocean BC 389 

budgets. The turnover of DBC in the ocean is apparently related to the rate at which DBC 390 

is cycled through the photic zone93. The entire oceanic DBC pool could, in principle, be 391 

photodegraded in approximately 30-800 years93, yet DBC persists in the ocean for up to 392 

23,000 14C years in the deep112. Therefore, a realistic and scalable rate for the photo-393 

oxidation of DBC is still needed. For instance, the current understanding of marine DBC 394 

photodegradation rates does not consider light fields or quantum yields, which makes it 395 

difficult to accurately scale these loss rates globally.  396 

 397 

Additional processes must be considered when using the current, published 398 

photodegradation rates. A notable process is the co-occurrence of DBC removal from the 399 

photic zone via sorption to sinking particles, which has been identified as a major loss 400 

process in the western South China Sea and the western Arctic Ocean34,113. Primary 401 

marine aerosols produced by bursting bubble plumes in the surface ocean and its 402 

subsequent photo-oxidation is a major removal pathway for old DOC from ocean. Around 403 

2-20 Tg of aged DOC is removed annually by this mechanism, of which 19 to 40% of 404 

freshly produced primary marine aerosols contained aged DOC114. Because DBC is an 405 

aged component of DOC, and assuming DBC is 6% of DOC12, this un-measured loss 406 

could represent 0.02-0.48 Tg BC year-1. However, the actual amount of BC lost by primary 407 

marine aerosol formation is unknown114.  408 

 409 
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While there remain many unknowns in how DBC is lost from the ocean, there are also 410 

questions about the sources of DBC. Rivers are the largest known source of DBC to the 411 

ocean, but the stable carbon isotopic composition (13C) of DBC in the ocean is 412 

inconsistent with a terrestrial source from C3 plants, pointing to a large contribution of C4 413 

plant combustion to fire-derived BC in the oceans or to an autochthonous, marine source 414 

of oceanic DBC115(Supplementary Figure 1). This observation is surprising for two 415 

reasons. First, it implies the almost complete removal of riverine and aerosol-derived DBC 416 

at the sea surface, prior to deep water formation at high latitudes. Second, it implies there 417 

is another major source of DBC in the ocean, but the main source of riverine DBC (fire) 418 

would not be expected underwater. However, condensed aromatic molecules can be 419 

produced from other thermogenic processes.  420 

 421 

In the deep sea—mainly at mid-ocean ridges—hydrothermal processing of marine debris 422 

might produce molecular structures resembling those produced during charring of 423 

terrestrial biomass. Therefore, hydrothermal marine sediments could be a source of DBC 424 

to the ocean110,115. Indeed, BC structures have been identified in petroleum116-118 and 425 

abiotic synthesis of graphite occurs in marine hydrothermal vents119. However, deep-sea 426 

dissolved organic matter, including the condensed aromatic fraction, is almost entirely 427 

destroyed in hydrothermal systems120,121. Whether organic matter rich hydrothermal 428 

sediments or petrogenic processes release DBC to the water column remains unknown. 429 

Autochthonous biotic sources of condensed aromatic material that is characterized as 430 

DBC and PBC are also possible, as anaerobic methanotrophs are capable of synthesizing 431 

elemental carbon122.  432 

 433 

A newly identified, allochthonous source of DBC to oceanic surface waters123 is the large 434 

input of polyaromatic hydrocarbons and other semi-volatile aromatic-like compounds by 435 

diffusive air–water exchange. This source could contribute to the δ13C signatures 436 

observed for oceanic DBC, but the isotopic composition of these semi-volatile aromatic-437 

like compounds is unknown. Overall, the sources of the DBC’s δ13C signature and their 438 

relative contributions are highly uncertain. 439 

 440 

[H1] Insights into the age of oceanic DBC 441 

 442 

The conundrum associated with measured radiocarbon ages12,115, stable carbon isotopic 443 

signatures of oceanic DBC, and the inconsistent mass balance of DBC demonstrate that 444 

input fluxes and losses of DBC are not well constrained69. It also might suggest the input 445 

fluxes of radiocarbon-depleted and stable-carbon enriched DBC, potentially from an 446 

autochthonous source within the ocean, are equally important to riverine DBC in 447 

maintaining the oceanic DBC pool69. Here, we incorporate current known losses, stocks, 448 

ages, and fluxes (Table 1, Supplementary Table 1) with an oceanic box model with seven 449 

boxes and a simplified overturning circulation124,125 (Supplementary Material). Although 450 

the box model is a strong simplification of the ocean, it serves to set known sources and 451 

sinks into a common context and allows for a first approximation on gaps in the marine 452 

DBC budget (Supplementary Figure 1).  453 

 454 
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Consistent with previous work, the radiocarbon age of the marine DBC pool cannot be 455 

matched with existing DBC 14C observations in our model. This mismatch implies that it 456 

is not possible to represent DBC as a homogenous pool with a single ∆14C value using a 457 

box model (Supplementary Figure 2a-2b). Instead, there are at least two components of 458 

DBC: a modern component from rivers (+58 ± 207‰) added to an aged background DBC 459 

pool (-945±5‰)12. Moreover, DBC might have two distinct molecular constituents – one 460 

that is old, abundant, and recalcitrant; and another young, sparse and labile. Having these 461 

constituents would suggest that DBC follows the same mixing processes as bulk oceanic 462 

DOC126 with modern and aged components.  463 

 464 

One proposed explanation for the puzzling carbon isotope data is that marine DBC 465 

contains aged fossil fuel-derived BC. However, fossil fuel derived BC input fluxes from 466 

land to the oceanic DBC pool are considered minor for several reasons. First, the annual 467 

production of biomass-derived (contemporary) BC (128 ± 84 Tg year-1)22 substantially 468 

outweighs the input of fossil-fuel derived BC because fossil fuel combustion is a recent 469 

phenomenon (since ~1750). Secondly, as soil formation rates span centuries to millennia, 470 

the vast majority of DBC eroded from soils pre-dates the beginning of the industrial 471 

revolution, and thus must be predominantly biomass-derived., riverine DOC globally is 472 

more modern (Δ14C = +22 to +46‰)127 than riverine POC. Based on these assumptions, 473 

fossil-fuel derived inputs of BC to the oceanic DBC pool are not high enough to influence 474 

oceanic DBC 14C values.  475 

 476 

A second explanation for the old age of DBC in the ocean is the presence of condensed 477 

aromatic carbon of lithogenic origin deriving from hydrothermal systems or petroleum, 478 

rather than pyrogenic sources. Hydrothermal vents are considered sinks for DBC, as 479 

they are for recalcitrant DOC121. However, the hydrothermal processing of sedimentary 480 

organic matter in some systems could produce condensed aromatic structures as part 481 

of DOC128, representing a deep ocean source of DBC. Indeed, natural asphalt seep 482 

samples released water-soluble DBC in a laboratory incubation experiment, suggesting 483 

that natural petroleum seeps could represent a deep ocean source of DBC. Based on a 484 

conservative, first-order estimate upscaled from an asphalt volcano in the Gulf of 485 

Mexico, about 3.3- 5.0 × 106 g (0.000005 Tg) DBC can be released from petroleum 486 

seepages per year190.   487 

 488 

To assess the role of hydrothermal carbon input, an estimated input from the seafloor of 489 

0.12 to 1.2 Tg year-1 of DBC (with a 14C fossil age of 50,000 years) was used. These 490 

values are based on DOC inputs by hydrothermal vents of pre-aged hydrothermal DOC 491 

(1.2–5 Tg year-1 )129 and methane seeps (0.2–20 Tg year-1)130. Assuming hydrothermal 492 

DBC content in DOC is present at the upper limit of DBC% of marine DOC (based on 493 

DBC% in marine DOC ranging from 2-6%)12,110, then hydrothermal DBC fluxes would 494 

cover a range of 0.012-1.2 Tg DBC year-1 by pre-aged hydrothermal sources. Using the 495 

smaller input of 0.012 Tg DBC year-1, pre-aged sediment input better reconciles the 496 

budgets, but the overall modelled age range between surface (~7,000 years) and 497 

subsurface (~11,000 years) remains too narrow. A 10x higher sediment source (1.2 Tg 498 

year-1) would increase the subsurface age to >20,000years, but overestimates bulk 499 

DBC concentrations (Supplementary Figure 2e-f). This gap indicates that there could be 500 
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other missing sources of old material and/or unknown bulk DBC sinks, and reinforces 501 

the need for a direct study of the amount of DBC originating from lithogenic materials 502 

present in the ocean. This modeling exercise suggests that hydrothermal DBC is a 503 

possible source that might explain the age of DBC. However, a sink of DBC is also 504 

missing, in addition to the known losses in hadal zones100,111,131 that are needed to 505 

reconcile the low concentrations in the ocean. 506 

 507 

 508 

A third proposed explanation is that the oceanic stocks of DBC experience pre-aging on 509 

land before transport to the ocean82,132. Although DBC in rivers is generally modern, aged 510 

PBC from rivers might solubilize to the DBC fraction at river-ocean interfaces9. Riverine 511 

PBC experiences long periods of aging in intermediate terrestrial reservoirs (estimating 512 

1,500-3,000 14C years), such as in alluvial fans83. If solubilized to DBC, the PBC could 513 

potentially act as an aged DBC source61,82. However, taking these values into account 514 

does not conclusively reconcile the BC budget (Supplementary Figure 2g-2h). The input 515 

of pre-aged material increases the overall age in the box model simulation, especially in 516 

the deep ocean (~24,000 years, closer to the measured values), but the resulting surface 517 

ocean BC age is too old (~17,000 years). Increasing the amount of sediment DBC input 518 

would require the adjustment of sink terms to balance simulated concentrations, violating 519 

the turnover times given12 to match observed DBC concentrations. This synthesis 520 

underlines that the currently known sources and sinks of marine DBC are incomplete, 521 

and work is urgently needed to identify the enigmatic source of the large marine DBC 522 

pool.  523 

 524 

[H1] Summary and Future Perspectives  525 

 526 

In summary, BC is environmentally persistent7 and represents a mechanism for long-term 527 

carbon sequestration over centuries to millennia133,134. It is clear that rivers transport 528 

substantial amounts of BC from wildfires to the ocean. Ultimately, most of the BC on Earth 529 

is stored in ocean sediments. However, there are outstanding gaps in our understanding 530 

of BC cycling. For example, residence times of BC in soils are poorly constrained and 531 

vary considerably across studies 54,55. Likewise, the modelled ocean BC concentrations 532 

versus observation-based age profiles do not agree, based on the current expected 533 

sources and sinks of marine DBC. Reconciliation of BC budgets is essential for a 534 

comprehensive understanding of the global BC budget, and also to support Earth System 535 

modelling of the BC cycle and enable the quantitative assessment of the negative 536 

feedback to climate change.  537 

 538 

Future research should target a refined framework for understanding the chemical identity 539 

of BC, improved measurement of BC decomposition across all pools of the Earth system 540 

(but particularly in soils, floodplains and inland water bodies), and improved identification 541 

and quantification of BC sources to the ocean. Rates of BC degradation and transfer 542 

between pools, and coupled processes that influence its fate, in particular are needed to 543 

incorporate BC feedbacks into ESMs.  544 

 545 
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Here, we discuss the major open questions and challenges that the BC research 546 

community should address in the years to come in support of model development (Figure 547 

5, Table 2). We also highlight judicious observations that are likely to provide critical 548 

constraints on understanding the role of BC in the Earth System as a potential negative 549 

carbon feedback. 550 

 551 

 552 

[H2] Chemical identity of BC 553 

 554 

Isolating BC from other organic components in an environmental matrix (soil, sediment, 555 

water, air) is still a challenge (Box 1), and contributes to inconsistency amongst research 556 

on BC in different environments. Future improvements in both techniques and reporting 557 

are needed, and there must be consistency when reporting BC amounts and isotopic 558 

signatures across a large suite of environmental standards and across analytical 559 

approaches135. A cross-laboratory comparison that incorporates multiple methods 560 

measuring a larger range of BC reference materials with isotopic measurements136,137 561 

would facilitate direct linkages between BC reactivity, source, and apparent residence 562 

time. For example, Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry can 563 

identify the ionizable fraction of DBC based its molecular formulas80,138,139. Atomic Force 564 

Microscopy can also quantify and characterize DBC structures based on visualization of 565 

polycondensed aromatics140. Combining approaches like these could address method 566 

biases associated with different analytical measurements30,80,138 and improve our 567 

understanding of BC itself.  568 

 569 

Other known sources of non-pyrogenic condensed aromatic carbon should be included 570 

in the next phase of method inter-comparisons, such as petrogenic and lithogenic lignite, 571 

coal, and petroleum136,141. Recoveries of BC for coal, oil and lignite samples have been 572 

already reported141, and these are present in negligible amounts in the rocks eroded in 573 

the global river catchments61, but potentially important condensed aromatic carbon 574 

contributions are not yet explored. For example, Green River Shale as a reference 575 

standard is a good analogue of riverine petrogenic carbon, yet only had very low BC 576 

recoveries (see Text Box)136. Other more common shales and lithogenic carbon which 577 

might also interfere should be tested. For instance, kerogen, the main organic component 578 

of sedimentary rocks, incorporates highly aromatic structures142. Other potential sources 579 

of condensed organic matter derived from composting143 and degraded lignin products144 580 

should also be considered. At the moment, there are no quantitative constraints on non-581 

pyrogenic sources of BC in the ocean, but their contributions are likely.  582 

 583 

DBC and PBC fractions should be analyzed synchronously, as BC cycling occurs along 584 

a size continuum145,146(Figure 1). As POC (3 Pg) is only a small fraction of oceanic OC 585 

(DOC is 700 Pg)107, it is assumed that that most observed oceanic DBC are due to the 586 

dissolved fraction but not particles. However, high PBC concentrations might enhance 587 

the transfer of carbon from dissolved to particulate phases by DOC absorption and 588 

aggregation69,100,147. In rivers, BC is unequally distributed across operationally defined 589 

dissolved, colloidal, and particulate size fractions81 and within the DOC pool148. Therefore, 590 
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BC might also be unequally distributed within the oceanic DBC and PBC pools, requiring 591 

the routine quantification of both pools.   592 

 593 

[H2] Rates across the Earth system 594 

 595 

Increased observations of decomposition rates and transport flows are required to 596 

constrain rates of transformation and turnover, and therefore the global BC budget in 597 

ESMs. Soil decomposition rates are the largest source of uncertainty in the global BC 598 

cycle in absolute terms. Widespread field campaigns are needed to assess 599 

decomposition rates across diverse environments, climates, soil types and landscape 600 

positions (for example, uplands, slopes, depositional environments). In particular, 601 

decomposition rates in lakes, reservoirs and other inland water bodies are virtually 602 

unknown, and pioneering measurements are required to construct an initial 603 

understanding of BC dynamics in these environments. Sampling at high resolution across 604 

hydrological gradients will help to constrain when and under what conditions BC is 605 

mobilized or decomposed in terrestrial environments, and provide valuable insights for 606 

process-based representation of BC decomposition and transport for use in global 607 

modelling applications.  608 

 609 

Immediate research is required to quantify the role of intermediate reservoirs and coastal 610 

areas in transforming BC, and might be key to understanding the mismatch between 611 

observed and modeled DBC ages in the ocean. Encouragingly, some work has started to 612 

address processes occurring at the interface of different ecosystems along the land-613 

ocean continuum30,44,138. At present, although well-represented in the China 614 

Sea101,105,106,149,150 and the North western Pacific69,151 corresponding global observations of 615 

DBC and PBC are extremely sparse in the coastal domain.  616 

 617 

Dedicated studies of the processes leading to BC decomposition in oceans are also 618 

required to constrain the oceanic BC balance. For example, rates of loss by 619 

photodegradation are very poorly constrained. Expanding a mechanistic understanding 620 

of processes that drive BC transformation and stability across aquatic interfaces87  621 

requires new research targeting coupled processes occurring in aqueous and solid 622 

phases. For example, priming effects90,152 and BC-mineral interactions153,154 could affect 623 

BC reactivity.  624 

 625 

[H2] DBC sources in the ocean 626 

 627 

The lack of explanation for the old DBC in the ocean highlights the uncertainty around its 628 

source, fate, and cycling in marine environments. Rivers are the main source of marine 629 

BC, but there is an incomplete understanding of the composition, concentration, and 630 

timing of material export out of watersheds immediately in the short term (hours to a few 631 

years) following a burn event. The first-year post-burn is a critical time for the mobilization 632 

and redistribution of carbon, as wildfires substantially alter landscapes by changing the 633 

hydrology and geomorphology of the burned area155. Sampling and monitoring should 634 

take place at the beginning of the window of wildfire disturbance through initial system 635 

recovery (at least a year), and ideally longer. Given the complex nature of BC production 636 
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and timing of subsequent transport to the deposition sites, charcoal calibration studies 637 

are essential for relating sedimentary charcoal records to regional fire activity156-158. Thus, 638 

modern data coupled with calibrated sedimentary records will enable the community to 639 

better model and predict future fire-hydrology interactions. 640 

 641 

Increasing the spatial coverage of concentration and radiocarbon age measurements in 642 

the ocean is required to constrain large-scale processes such as the turnover times on 643 

decadal and longer time scales. It will also inform models to better address how future 644 

changes to BC production rates may influence the carbon cycle23. Box models such as 645 

the one trialed here are useful for rough assessments, but a higher resolution spatial 646 

model with localized river and atmospheric sources is required to further constrain 647 

processes and fate of marine DBC125. Future modelling approaches would benefit from 648 

increased spatial coverage of PBC and DBC concentration and radiocarbon age 649 

measurements across different water masses in the ocean. Measurements along water 650 

masses of different ages will further constrain net production or consumption rates of 651 

DBC131. Targeting potential sources of DBC in the ocean will help identify if there are 652 

other BC sources to oceanic DBC, explaining the stable isotope differences between 653 

oceanic and riverine DBC115.  654 

 655 

Currently, the time, effort and expense of sample collection and processing is hindering 656 

progress in measuring ocean BC, as is often the case for oceanic measurements more 657 

broadly. Establishing optical or other easy to measure proxies is a promising way forward 658 

for collecting proxy data, such as by utilizing remote sensing data159 to track post-fire 659 

riverine DBC export through estuaries using links between DBC molecular markers and 660 

chromophoric properties of DOC and at a higher spatiotemporal resolution160. Using 661 

absorbance data, it is possible to track DBC photodegradation from soil sources to the 662 

marine environment using an index of condensed aromatic carbon as an indicator of 663 

aromatic BC cluster size45. As part of ocean observing systems, gliders equipped with 664 

fluorescence sensors targeting polycyclic aromatic hydrocarbons can potentially increase 665 

the coverage of deep open ocean environments that are not accessible by satellites161,162. 666 

Also, biosensors can be engineered to detect the presence of BC in soils and waters, as 667 

initial research on this topic seems very promising163,164. Lastly, establishing regional or 668 

global correlations between BC concentrations and high resolution or remote sensing 669 

measurements (such as discharge, absorbance data from satellites) can scale land-670 

based assessments through time and space.  671 

 672 

 673 

 674 

 675 

  676 
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The fluxes of PBC, radiocarbon ages of PBC and mapped river basins derive from Ref. 1301 

61. The fluxes of DBC within latitudinal ranges derive from Ref.2. The magnitude of the 1302 

global stocks, fluxes, and radiocarbon ages of BC shown in figure 4 derive from the 1303 

studies cited in table 1.  1304 
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 1306 

Key Points: 1307 

 1308 

1. Black carbon (BC) is produced from incomplete combustion of biomass and fossil 1309 

fuels and persists on the order of centuries to millennia in the environment.  1310 

2. BC production is expected to increase with increasing fire activity under 1311 

anthropogenic warming, and could act as a negative feedback on to climate 1312 

change. 1313 

3. BC is often divided into particulate and dissolved black carbon, which can have 1314 

different environmental transport mechanisms, residence times, and fates. 1315 

4. The largest BC pool is in the soil (160-200 Pg C globally). Rivers transport 43±15 1316 

Tg BC year-1; BC is cycled in other inland aquatic systems, but the global relevance 1317 

of these processes is unknown. 1318 

5. Oceans store 12-14 Pg C of dissolved BC. The observed age of this BC 1319 

(4800±62014C years in the surface ocean, >20,000 14C years in the deep) does not 1320 

match expected ages based on mass balance estimates.  1321 

6. Future research must further explore the possibility that some of the dissolved 1322 

black carbon in marine waters is not derived from terrestrial fires. 1323 

 1324 

 1325 

 1326 

Display items 1327 

 1328 

Table 1| BC and OC stocks and fluxes. Values were used to construct Figure 4 and the 1329 

marine box model. Standard deviations included where applicable. BC: black carbon; 1330 

DBC: dissolved black carbon; DOC: dissolved organic carbon; OC: organic carbon; PBC: 1331 

particulate black carbon; POC: particulate organic carbon. 1332 

 1333 

Pools and processes Radiocarbon  
BC content (%) of 
Organic carbon 

Value of BC fluxes (Tg 
year-1) or stocks (Pg) Reference 

Fluxes (Tg year-1) 

Production of BC in 
post-fire residues 
(charcoal, charred plant 
material) 
 

- 
Assumed 50 (± 
30) % 

128 ± 84 2, 22 

Production of BC as 
aerosol through biomass 
burning 
 

- - 2-11 4 

Production of BC as 
aerosol through fossil 
fuel combustion 
 

- - 4.5-12.6 4 

Atmospheric deposition  

Fossil fuel: -885‰ 
Biomass: +131±52‰ 
(mean biomass age of 
20 years) 

2.8 

Globally variable: 2–10 
Tg year-1 
To ocean DOC pool: 
1.8±.83 Tg year-1 

27, 31, 179, 
184, 185 
 

River PBC 

Variable between 
rivers 
Average age: 
3,700±400 years 

15.8±9 17-37 Tg year-1 61 
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River DBC  

Modern 
Yangtze River: 
−60 ± 30‰ 
Yellow River: 
−140 ± 20‰  
Pearl River: −91 ± 3‰,  

12±5 18±4 Tg year-1 2, 29, 68 

Leaching DBC from soils 
to rivers 

- - 203 Tg year-1 37 

Biodegradation at river-
ocean interfaces 

- - Unknown - 

Marine Sinking PBC - 
- 
 

40-85 Tg year-1 100, 131 

Transport to hadal 
zones  

- - 1.0-0.5 Tg year-1 111 

Loss by primary aerosol 
formation  

- - Unknown 114 

UV loss - - 2-4 Tg year-1 93 

Coastal sedimentation - - Unknown - 

Pre-aged hydrothermal 
fluxes from DOC 

- - 

Unknown 
Pre-aged hydrothermal 
DOC in range of 1.2–5 
Tg year-1  
Methane seep DOC 
inputs to the deep 
ocean of 0.2–20 Tg 
year-1  
Pre-aged natural 
petroleum DBC 
seepage 0.000003-
0.000005 Tg year-1 

(3.3 × 106 to 5.0 × 
106 g) 
 

 
 
 

129, 130, 190 
 
 
 
 
 

Pools (Pg) 

Terrestrial Soils 
Variable surface age; 
modern to millennia 

13% on average 
in the top 2 m of 
soil 

160 - 200 Pg 13, 54, 55 

Oceanic DBC  

 
Variable surface DBC 
age; average 
4,500±1,200 years 
Deep: 23,100±300 
years 

2-6%  

12 – 14 Pg  
 
Surface: 3 Pg 
Deep: 14±2 Pg 

12, 108  

Oceanic PBC 1,700±200 years 

Upper 100 m: 
0.5–2.5%  
Below 100 m 
depth: 6%  

40-85 Pg 
100, 131, 179, 
186, 187 

Oceanic  
Sediments 

Surface: 6,000±800 
years 
Deep: 24,000±520 
years 

4-22% of ocean 
sediment organic 
carbon pool 

Global coastal zones: 
480–1140 Pg 
Global open ocean: 
80–240 Pg 
 

100, 132, 188 

 1334 

  1335 
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Table 2| Assessment of the level of BC process understanding required for 1336 

incorporation into models. The number of stars (*) indicates the level of understanding 1337 

of these terms related to the proportion of the research effort and number of studies, as 1338 

used in Ref. 189. *limited understanding; **emerging understanding; ***ready 1339 

understanding; ****applied knowledge. BC: black carbon; DBC: dissolved black carbon; 1340 

ES: Earth system; PBC: particulate black carbon. 1341 

ES component Process Knowledge or research effort needed  

Atmosphere  *Water soluble aromatic carbon 
deposition onto the ocean surface 

Quantify BC present as water soluble aromatic carbon 
 

*Loss of BC through injecting primary 
aerosol formation  

Quantify removal pathway at surface ocean for DBC, 
amounts and isotopic values  

Soil BC ****Storage in soils Collect data from underrepresented soils 

*Microbial loss in soils Quantify long-term (decades to centuries) mineralisation 
rates  

****Biotic transformation in soils Field-based studies, incubations, mesocosm experiments 
and upscaling 

***Abiotic transformation in soils Description, quantification and modeling, mesocosm 
experiments 

***Movement within and from soils Quantify and model at landscape and larger scales 

Rivers 

Underground 
waters 

*Storage and transport of PBC and 
DBC 

Description, quantification and modeling 

Riverine fluxes 
of DBC 

***Solubilization in soils and river fluxes Characterize chemical composition of BC post-fire; in-situ 
mechanistic studies; regional studies 

Riverine fluxes 
of PBC 

***Slope erosion and riverine export of 
PBC 

Characterize chemical composition of BC post-fire; in-situ 
mechanistic studies; regional studies 

Aquatic 
continuum 

*In channel decomposition of DBC and 
PBC 

Quantify DBC budgets and mass balances; incubation 
studies; in-situ labeled studies 
 

*Biodegradation at river–ocean 
interfaces  

Establish bio-degradation rates under key conditions; 
measure flocculation and dissolution along salinity transect 

**Sedimentation at coastal shelves Establish rates under key conditions; quantify large-scale 
rates; evaluate the seasonal variability, residence 
timescale in seawater, and settling flux 

**Photodegradation losses  Establish photo-degradation rates under key conditions; 
measure flocculation and dissolution along salinity transect 

*Transfer between DBC and PBC pools Regional studies of pristine vs anthropogenically impacted 
locations 

**Fractionation of DBC 13C Measure DBC 13C across aquatic continuum 

Models *Modeling land-to-ocean transfers Collect globally relevant flux and stock data (continue 
measuring and publishing data along terrestrial-aquatic 
continuum) 

Freshwater 
sediments 

*Storage in intermediate reservoirs  Evaluate using field studies in all major reservoirs and 
upscale 

*Decomposition in intermediate 
reservoirs 

In-situ lab incubations and field studies 

Oceans 

Oceanic DBC ***Turnover rates and ages in marine 
DOC inferred by mass balance 

 Identify and quantify new sources and fluxes of marine 
DBC 

**Patterns in concentration and 
isotopes across biogeochemical and 
physical regimes 

Compare river outlets; compare up- and down-welling 
regions (to address photo-and bio-activity, respectively) 
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**Photodegradation of DBC  Establish photo-degradation rates in situ or in the 
laboratory under key environmental conditions  

****Storage in DOC Measure global marine DBC concentration; large spatial-
scale and multi-season and multi-layer seawater sampling 
campaign; sample localized sources 

****Decomposition estimates inferred 
by mass balance 

In-situ measurements 

****Turnover and ages inferred by 14C Global marine DBC 14C measurements 

Oceanic PBC **Storage in marine POC Spatiotemporal measurements, global estimates of fluxes, 
and 14C measurements 

*Transfer between POC and DOC 
pools 

Laboratory DOM-particle studies, oceanic observations 
(particle traps) 

Oceanic 
sediments 

***Deposition to sediments 
 

Evaluate global sinking POC time series, global evaluation 
of sediment cores in coastal and abyssal locations 

*Hadal zone sinks of BC Update current conservative estimate by including episodic 
events such as earthquakes 

***Storage in ocean sediments Global evaluations 

*Decomposition in ocean sediments Measure rates over long and short timescales 

 *Hydrothermal vent fluxes Measure pore water to determine if a DBC source  

Models *Global ocean modeling Build BC into a more complex and spatially-resolved ocean 
biogeochemistry model with water mass circulation  verify 
that data produced from different methods is comparable; 
correlate BC concentrations and remote sensing 
measurements 

 1342 

  1343 
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Figure 1. BC characteristics. Pyrogenic material is chemically heterogenous and 1344 

includes a continuum from char to soot. The amount of recognizable plant structures and 1345 

solubility of charred material depends on the formation temperature, fuel type and 1346 

duration of incomplete combustion. Black carbon (BC) is formed at high charring 1347 

temperatures and is characterized as having a condensed aromatic structure. BC is 1348 

present in both dissolved organic carbon (DOC) and particulate organic carbon (POC), 1349 

which are operationally defined based on pore size during filtration of water. Thus, DBC, 1350 

which is a part of bulk DOC, can include colloidal, truly dissolved, macromolecular, and 1351 

nanoparticulate forms of BC. Note, the position of labels along combustion continuum 1352 

does not directly correspond to the size continuum.  1353 

 1354 

Figure 2. Climate-carbon cycle feedbacks involving fire. The role of wildfire in the terrestrial 1355 

carbon cycle as it is typically conceptualized and represented in Earth System Models (ESMs) is 1356 

in yellow. Wildfire leads to large near-term emissions of CO2 that can be re-captured through 1357 

subsequent vegetation recovery in the longer term. As wildfire frequency increases under 1358 

climate change, rates of CO2 emission also increase and an imbalance can emerge versus 1359 

post-fire recovery, leading to net reduction in the carbon stored in vegetation and a 1360 

corresponding increase in CO2 in the atmosphere. A positive feedback to climate change results 1361 

because increases in atmospheric CO2 concentration contribute to further global warming, 1362 

which in turn elevates the risk of wildfire occurrence. However, about 5-30% of burned biomass 1363 

is transformed into BC (shown in blue), which can persist in the environment for thousands of 1364 

years. BC cycles slowly in the terrestrial soils and sediments, and when rivers transfer BC to the 1365 

global oceans (far right blue arrow), BC degradation is further slowed. Increases in fire activity 1366 

lead to more BC production and storage, invoking a negative feedback to climate change by 1367 

sequestering carbon. ESMs omit the BC cycle and associated negative feedback. 1368 

Consequently, these models over-estimate the magnitude of positive feedbacks to climate 1369 

change.   1370 

 1371 

 1372 

Figure 3 Black carbon in terrestrial systems. Riverine particulate black carbon (PBC) 1373 

14C values, shown by basin on the map. Fluxes of particulate black carbon (PBC) are shown in 1374 

the bar graph61. Horizontal arrows indicate the global flux of dissolved black carbon (DBC) from 1375 

each 30° latitude range (Tg C year−1), based on values in Ref2. DBC 14C signatures are 1376 

generally modern, whereas PBC is older. Figure adapted from Ref 61, Springer Nature Limited. 1377 

 1378 

 1379 

Figure 4. Global dynamics of the BC cycle. a| The relative size of the stocks (circles) and 1380 

fluxes (triangles) of organic carbon and black carbon (BC) in soils, sediments, dissolved organic 1381 

carbon (DOC) and suspended particulate organic carbon (POC)2. Where relevant, stocks and 1382 

transfers of BC (in black) are shown as a proportion of total organic carbon (lighter shades), with 1383 

the BC to organic carbon ratios shown as percentages. b| Estimates of BC Δ 14C values (darker 1384 

reds indicate older 14C ages). Values of stocks, fluxes, and BC ages in Table 1. DOC dissolved 1385 

organic carbon, DBC dissolved black carbon, POC particulate organic carbon, PBC, particulate 1386 

black carbon. The largest stocks and fluxes of BC are observed on land as wildfire is the main 1387 

BC source. Most BC remains on the burned site following a fire and is incorporated into soils. 1388 

Rivers transport BC from soil stocks to the oceans in dissolved and particular forms, while 1389 

atmospheric circulation can also redistribute some emitted aerosols to the ocean surface. BC is 1390 

a relatively large component of oceanic DOC and POC stocks due to its conservative behavior 1391 
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during transport to the oceans. Eventually, some BC is deposited to the deep ocean bed where it 1392 

enters the geological stores. Figure adapted from Ref 61 and Ref 2, Springer Nature Limited. 1393 

 1394 

Figure 5. BC processes across the Earth System.  1395 

Key processes along the land-river-ocean continuum are highlighted, and processes with 1396 

major unknowns are noted with question marks. Atmospheric black carbon (BC) is best 1397 

understood, followed by marine BC. There is an emerging understanding of riverine and 1398 

soil BC, but large gaps in understanding and quantifying storage, transformation, and 1399 

transportation remain be addressed. Intermediate reservoirs are poorly understood, and 1400 

both field and laboratory-based investigations are needed to understand their role in BC 1401 

cycling. Figure adapted with permission from ref 1, Wiley. 1402 

 1403 

  1404 

Box 1| Measuring BC  1405 

 The use of consistent scientific language and methods to describe BC (and fire-derived 1406 

carbon generally) promotes efficient communication within and among disciplines. It is 1407 

also important to clearly articulate the specific methodological techniques and associated 1408 

analytical windows used to assess BC, as these each have biases and artifacts that 1409 

should be considered in results comparison and interpretation135. The main approaches 1410 

used by various disciplines are described here. 1411 

 1412 

[bH1] Atmospheric sciences 1413 

Aerosol BC (soot) is quantified using optical approaches that detect particles with highly 1414 

absorptive properties that are characteristic of BC167,168. Optical methods fundamentally 1415 

differ from other BC observation approaches, and methodological intercomparisons have 1416 

been small in scale168,169, but optical methods are generally thought to identify only the 1417 

most persistent forms of fire-derived carbon 136,167,169,170.  1418 

 1419 

[bH1] Soil science 1420 

BC is commonly measured using benzene polycarboxylic acid molecular markers. Bulk 1421 

organic material is thermally digested in acid, after which benzenepolycarboxylic acid 1422 

molecular markers (presumed to originate solely from condensed aromatic compounds) 1423 

are separated and quantified chromatographically 171-173. 13C nuclear magnetic resonance 1424 

spectroscopy (NMR) is also used to identify polycyclic aromatic structures in soils. 13C 1425 

NMR yields different but complementary information about the aromaticity and 1426 

condensation of BC. Hydrogen pyrolysis eliminates labile organic carbon from total 1427 

organic carbon using thermochemical decomposition into gases in the absence of oxygen 1428 

174, isolating samples for stable and radiocarbon analysis175. The weak nitric acid method 1429 

isolates and quantifies the BC fraction in mineral soil samples176. 1430 

 1431 

[bH1] Oceanography 1432 

In the oceanography community, two methodologies have emerged for the determination 1433 

of BC. The first approach involves chemothermal oxidation of bulk organic material to 1434 

reductively eliminate chemically reactive organic compounds, leaving behind a BC 1435 

residue that is then quantified via elemental analysis177-179. This method is suitable for 1436 

coastal sediments and other matrices with a relatively high content of BC, but it is less 1437 

suited for environmental samples with low BC content. For open-ocean applications, the 1438 
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benzenepolycarboxylic acid molecular marker approach is most often applied for 1439 

molecular level determination of DBC180. A correction factor accounts for the conversion 1440 

efficiency of DBC into benzenepolycarboxylic acids during the analytic digestion method 1441 

180. For consistency, BC data should be published before and after these 1442 

corrections113,135.  1443 

 1444 

Since the 2010s, radiocarbon (Δ14C) and stable carbon (δ13C) isotopic analysis of 1445 

chemothermal BC residues68 and BC-derived benzenepolycarboxylic acids166,181,182 have 1446 

enabled unprecedented insight into potential sources and environmental residence times 1447 

of BC in the earth system.  1448 

 1449 

 1450 

 1451 

 1452 

 1453 

Glossary Terms: [G] 1454 

Black Carbon: a carbonaceous, polycondensed aromatic product (>60% organic carbon) 1455 

derived from the incomplete combustion of biomass and fossil fuels, with greater 1456 

environmental persistence than its unburned biomass source  1457 

 1458 

Dissolved Organic Carbon: Organic carbon dissolved in water that passes through a 1459 

filter, usually with a 0.1 to 0.7 µm pore size  1460 

 1461 

Dissolved Black Carbon: The black carbon fraction measured within dissolved organic 1462 

carbon.  1463 

 1464 

Particulate Organic Carbon: Organic carbon suspended in water that is retained on a 1465 

filter, usually with a 0.1 to 0.7 µm pore size  1466 

 1467 

Particulate Black Carbon: The black carbon fraction in solid environmental matrices, 1468 

like particulate organic carbon, soils, and sediments 1469 

 1470 

Environmentally persistent: compounds that resist rapid microbial degradation, 1471 

accumulating on land and in the ocean for centuries to millennia  1472 

 1473 

Labile: compounds that experience rapid turnover within hours to days of release and 1474 

do not accumulate  1475 

 1476 

PM2.5: as fine particle matter 2.5 m or smaller in size  1477 

 1478 

 1479 

 1480 

 1481 

 1482 

Table of Contents Summary: 1483 



41 
 

Black carbon is produced by wildfire and fossil fuel burning, and persists in the 1484 

environment over centuries to millennia. This Review describes black carbon sources and 1485 

budgets, discusses its transport along the land-to-ocean continuum, and highlights its 1486 

enigmatic cycling in the ocean. 1487 

 1488 


