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Echograms are used to visualize fisheries acoustic data, but choice of colour map has a significant effect on appearance. Quantitative echo-
grams should use colour maps, which are colourful (have a perceived variety and intensity of colours), sequential (have monotonic lightness),
and perceptually uniform (have consistency of perceived colour contrast over their range). We measure whether colour maps are colourful
(M̂
ð3Þ
> 0), sequential (rs ¼ 61), and perceptually uniform (q¼ 1) using an approximately perceptually uniform colour space (CIELAB).

Whilst all the fisheries acoustic colour maps tested are colourful, none is sequential or perceptually uniform. The widely used EK500 colour
map is extremely colourful (M̂

ð3Þ ¼ 186), not sequential (rs ¼ 0:06), and has highly uneven perceptual contrast over its range (q ¼ 0:26). Of
the fisheries acoustic colour maps tested, the Large Scale Survey System default colour map is least colourful (M̂

ð3Þ ¼ 79), but comes closest
to being sequential (rs ¼ �0:94), and perceptually uniform (q ¼ 0:95). Modern colour maps have been specifically designed for colour con-
trast consistency, accessibility for viewers with red-green colour-blindness, and legibility when printed in monochrome, and may be better
suited to the presentation and interpretation of quantitative fisheries acoustic echograms.
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Introduction
Echosounders are routinely used in marine science to survey the

underwater environment. Sound pulses (“pings”) are transmitted

into the water and reflections from targets (e.g. seabed, plankton,

zooplankton, fish) are measured, integrated, and recorded.

Signals are typically recorded as power, in Watts, and converted

to target strength (TS), or volume backscattering strength (Sv), in

decibels, to study the distribution, abundance, and behaviour of

animals (Simmonds and MacLennan, 2005).

Acoustic data are recorded as a matrix of signals X(i, j) , where

i is the range index and j is the along-track distance index. X(i, j)

can be mapped to pixels cði; jÞ, where cði; jÞ is usually a three-

dimensional colour vector, to form a digital image (an echogram)

using colours drawn from a colour map. A colour map,

C ¼ fc1; c2; . . . ; ckg, is an ordered set of k colours used to assign

numbers to colours such that cði; jÞ 2 C. The range of X to be vi-

sualized (determined by the scale bar) is divided into k equal

bins, and pixels are mapped accordingly. The available radiomet-

ric resolution of an echogram reduces as k reduces, and an echo-

gram often has lower dynamic resolution than the original

acoustic data. Changing the colours in an echogram affects the

visual appearance of its content in the same way that changing

the colours in a photograph would change the appearance of its

subject.

The first fisheries acoustic echograms were published in the

1930s, e.g. Sund (1935). Early systems used “wet” paper processes

to record measurements and these produced monochromatic

images (Mitson, 1983). By the 1980s, computers could store

echograms in memory and display them on monochrome cath-

ode ray tubes (CRT) or print them using dry photographic

processes. By the 1990s, echograms could be rendered in colour

using colour CRT monitors, and the Bergen Echo Integrator

(BEI) included purposely designed colour maps (Foote et al.,

1991). The Simrad EK500 was one of the first scientific
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echosounders to have an attached colour display, but the hard-

ware only had four bit planes, of which one was used for fixed

lines, limiting the number of available colours to 12. Colour dot

matrix printers and pen plotters were available, but also had a

limited range of colours (e.g. Figure 1). As the number of avail-

able display colours increased, k increased, giving rise to the

Simrad EK80 colour map based on EK500. As of 2019, we now

have high definition monitors that use light emitting diodes and

colour laser printers; both can render echograms in millions of

colours. This gives rise to a wide variety of colour map options

(Figure 2).

Acoustic data analysis still entails echogram interpretation by

skilled fisheries acousticians. Echograms are post-processed to

remove unwanted signal, e.g. seabed reflections (Blackwell et al.,

2019) and noise (Ryan et al., 2015), before identifying acoustic

targets and quantifying distribution, abundance and behaviour.

Thresholding is a common way of discriminating targets from

surrounding backscatter, with thresholds set based on visual in-

terpretation of echograms and the scattering characteristics of tar-

get species, validated by target fishing (Korneliussen, 2018).

Whilst automated, unsupervised algorithms exist for some

aspects of fisheries acoustic data processing, much work is still

undertaken manually using graphical, interactive software such as

Echoview (Echoview Software Pty Ltd), Large Scale Survey

System (LSSS; Korneliussen et al., 2016), MOVIES (Trenkel et al.,

2009), or ESP3 (https://sourceforge.net/projects/esp3, accessed

November 2019). It is, therefore, important that echogram data

are displayed faithfully, clearly, and consistently, and that colour

maps are chosen to optimize human–computer interaction.

The visual representation of data has a powerful effect on the

perception and interpretation of the structure of those data

(Rogowitz et al., 1996). Our ability to perceive the details of a vi-

sual scene is determined by the relative size and contrast of the

detail present (Campbell and Robson, 1968). Studies in medical

imaging have shown that poorly designed colour maps can lead

to imprecise readings and inaccurate interpretation (Borkin et al.,

2011). Colour map choice affects the visual appearance of an

echogram (Figure 2), but the colour map used by a particular

fisheries acoustician may be based on a number of factors: the

colour map may have been chosen to optimize a particular detec-

tion, comparison, or estimation task; the display software may

only provide a default colour map or a limited choice; the user

may have been trained using a particular colour map and now

have experience, familiarity and learned expertise specific to that

map; or the user may simply have a subjective preference.

Pseudo coloured images are used to show Metric (or value) in-

formation as well as form (shape and structure; Ware, 1988).

In psychophysical tests, greyscale colour maps better revealed

form, whilst colourful maps better revealed metric. To create a

colour map that reveals both metric and form, the colour se-

quence should increase monotonically in luminance and use a

range of hues. The hues provide accurate readings from a key,

while the luminance conveys form. Greyscale is, therefore, best

for detecting shape in echo traces and colour for presenting back-

scattering strength (Foote et al., 1991). Based on Ware (1988),

Foote et al. (1991) combined greyscale and red–blue as a colour

map option for BEI and this is the origin of the default echogram

colour map in LSSS.

Figure 1. Echogram dating from 1992, rendered using a colour plotter. Note the limited colour and spatial resolution. Data recorded using
a Simrad EK400 (120 kHz) connected to a Biosonics Echo Signal Processor, during cruise D198, RRS Discovery, Bellingshausen Sea, 1992
(Archives ref: 2001/5).

2 R. E. Blackwell et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article-abstract/doi/10.1093/icesjm
s/fsz242/5684813 by U

niversity of East Anglia user on 08 January 2020



Colour maps may be either qualitative (sometimes called cate-

gorical; where colour represents a category but does not imply

magnitude), sequential (where colour implies ordering and magni-

tude), diverging (where colour implies ordering and magnitude in

two directions from a central value), or cyclical (where colour

implies ordering in “wrap around” data; Brewer, 2015). Echograms

of Sv or TS, which are intended to represent the magnitude of

acoustic backscatter should, therefore, use a sequential colour map.

The human vision system is complex and there is a huge litera-

ture on colour perception (for a primer, see Baylor, 1995).

Colour is not intrinsic to objects, and we perceive colour using

reflected light, which varies depending on lighting conditions.

Light energy entering the eye has two fundamental dimensions:

intensity, which determines brightness and frequency, which

determines colour. The eye consists of rods and cones, which are

sensitive to intensity and frequency, respectively. We can perceive

millions of colours (Judd and Wyszecki, 1975), but different peo-

ple perceive colour in different ways as demonstrated by the 2015

internet sensation known as #thedress where some audiences

reported dress colours as blue and black, and others as gold and

white (Gegenfurtner et al., 2015).

The “Which Blair Project” provides a quick visual test for eval-

uating colour maps (Rogowitz and Kalvin, 2001). In psychophysi-

cal testing, the perceptual quality of colour maps was assessed by

Figure 2. Echograms depicting an Antarctic krill swarm plotted using a selection of colour maps. The swarm is �150 m in height and 1 km in
plan. Data collected using a Simrad EK60 scientific echosounder (120 kHz, ping interval IT ¼ 2s, nominal speed ¼ 10 kts) on board RRS James
Clark Ross, Cruise JR230, Southern Ocean, December 2009.
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using them to render a photograph of a human face. A strong

correlation was found among the perceived naturalness of images,

the luminance monotonicity, and the suitability of colour maps

for rendering continuous scalar data.

Colour spaces organize colours within a vector space. For ex-

ample, the RGB colour space organizes colours according to their

red, green, and blue components. Standard RGB (sRGB) is com-

monly used for computer displays, which mix red, green, and

blue light additively on a black screen to produce images. CMY

colour spaces are used for print media, mixing cyan, magenta,

and yellow ink on a white page to produce colours subtractively.

These colour spaces are device-dependent, with different screens,

cameras, scanners, and printers producing different colours. A

colour space is said to be perceptually uniform if a small pertur-

bation to a component value is equally perceptible across the

range of that value (Poynton, 1996); however, neither RGB nor

CMY colour spaces have this property. The CIELAB colour space

was designed by the International Commission on Illumination

(CIE) to have approximate perceptual uniformity by describing

any colour in a device independent manner using three dimen-

sions, L� for lightness (black–white), a� for green–red, and b� for

blue–yellow (Robertson, 1977, 1990). Euclidean distances in

CIELAB colour space can be used to approximate the magnitude

of perceived colour differences making it useful for the measure-

ment and comparison of colours (Brainard, 2003) and the per-

ceptual uniformity of colour maps.

Colour maps such as Rainbow have been widely criticized for a

lack of perceptual uniformity (Borland and Ii, 2007).

MathWorksTM changed its default MATLABTM colour map from

Rainbow to Parula in 2014 (revised in 2017) and Matplotlib

(Hunter, 2007) to Viridis in 2016. Both Parula and Viridis have

been carefully designed for colour contrast consistency, accessibil-

ity for viewers with red–green colour-blindness, and legibility

when printed in monochrome. Some scientific disciplines employ

specialized colour maps tailored to the subject matter. Many

oceanographic publications use cmocean (Thyng et al., 2016) and

the Brewer colour maps are commonly used in geography (Brewer,

2015). These colour maps have also been designed explicitly with

colour contrast consistency in mind.

Based on the evidence from Ware (1988), Brewer (2015), and

Borland and Ii (2007), we conclude that echogram colour maps

for displaying quantitative acoustic backscatter should be colour-

ful, sequential, and perceptually uniform. In this article, we mea-

sure whether fisheries acoustic colour maps are colourful,

sequential, and perceptually uniform using CIELAB. We compare

our results with colour maps used by the wider scientific commu-

nity and make recommendations concerning colour map selec-

tion for the presentation and interpretation of fisheries acoustic

echograms.

Materials and methods
A selection of fisheries acoustic echogram colour maps was

obtained from echosounder data collection and processing sys-

tems. These include BioSonics DT4, Simrad EK500, Simrad EK80,

Furuno FQ80, HTI, Kaijo, and Sonic from Echoview, and LSSS,

the default colour map from the LSSS. It is common for echo-

gram colour maps to have dark and light variants by using black

or white as a background colour. These background colours were

excluded from our analyses.

Data science tools include modern colour maps, which were

designed for colour contrast consistency, and so for comparison,

we also selected Matter from cmocean, Parula from MATLAB,

and Viridis from matplotlib. A subsampled version of Viridis hav-

ing 12 colours, fc1; c24; c47; . . . ; c254g called Viridis12 was created

to test the effect of reducing the number of colours (k). All col-

ours were converted into CIELAB colour space using the Colors.jl

software library (https://github.com/JuliaGraphics/Colors.jl, ver-

sion v0.9.5).

The colour maps from Rogowitz and Kalvin (2001) were recre-

ated and included in our analyses (the colour maps used in The

Which Blair Project are no longer available and were recon-

structed following advice from the original author). For LAB

Greyscale, Heated Body, Rainbow, HSV Greyscale, HSV Saturation

(increasing), and HSV Saturation (decreasing), we recreated the

colour maps programmatically in accordance with their descrip-

tions in the paper. For Isoluminant Rainbow and LAB Isoluminant

Saturation, we scanned the colour maps from the paper, adjusted

L� to ensure isoluminance, and interpolated to find 100 colours

for each map.

One hundred journal papers matching the search term

“fisheries echogram”, published after 2009 in the ICES Journal of

Marine Science, were examined (retrieved November 2019, list

available at https://github.com/RobBlackwell/hundred-fisheries-

acoustic-papers). Echogram colour maps were identified by visual

inspection. A paper was attributed to a colour map if that colour

map occurred at least once in the paper. If a paper contained

more than one colour map, it was attributed to all colour maps

present.

Colourfulness is the subjective human perception of the variety

and intensity of colours in an image, with greyscale images being

not colourful and rainbow images being highly colourful. We de-

termined the colourfulness of each colour map by using it to plot

a sample echogram (Figure 2) and measuring the colourfulness of

the resulting image according to Hasler and Süsstrunk (2003).

They used non-expert viewers to rate the colourfulness of a set of

natural images and fitted a statistical model yielding a metric

M̂
ð3Þ

, where M̂
ð3Þ ¼ 0 means not colourful, M̂

ð3Þ ¼ 15 slightly

colourful, M̂
ð3Þ ¼ 33 moderately colourful, M̂

ð3Þ ¼ 45 averagely

colourful, M̂
ð3Þ ¼ 59 quite colourful, M̂

ð3Þ ¼ 82 highly colourful,

and M̂
ð3Þ ¼ 109 extremely colourful.

A colour map is sequential if it is monotonically increasing in

luminance (Rogowitz and Kalvin, 2001; Brewer, 2015). The

Spearman rank correlation coefficient can be used to measure the

monotonicity of an ordered set of numbers. We used the

Spearman rank correlation coefficient of lightness, (rsðfcL� jc 2 Cg;
f1 . . .kgÞ if lDL� > 0) to measure monotonicity and thus deter-

mine whether a colour map is sequential. A colour map is sequen-

tial and monotonically increasing in lightness if rs ¼ 1 and

sequential and monotonically decreasing in lightness if rs ¼ �1.

The CIEDE2000 colour distance metric (DE�00) is a refinement

to the CIELAB Euclidean distance metric (Witt, 2007). We de-

fined a colour map as perceptually uniform if CIEDE2000 colour

distances were uniform across the colour map range. The

Pearson’s correlation coefficient of CIEDE2000 colour distances,

from the first colour to each of the other colours in turn

qðfDE�00ðc1; cÞjc 2 fc2; . . . ; ckgg; f1 . . .k � 1gÞ), was used to de-

termine linearity of colour distance. A colour map was defined as

perceptually uniform if q¼ 1 .

Results
Of the 100 journal papers analysed, 78 contained data from a

Simrad instrument. Echoview was used for analysis in 48 papers,
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LSSS in 11, and MOVIES in 4. The EK500 (34%) and “Rainbow”

(16%) colour maps were the most frequently used for echograms,

followed by LSSS (8%), “Greyscale” (7%), and “Other” (14%).

Each colour map under test was used to render a photograph

of a human face as in the Which Blair Project (Rogowitz and

Kalvin, 2001) (Figure 3). There is a large variation in the natural-

ness of the images and the results appear to be consistent with

Rogowitz and Kalvins’ observation that LAB Greyscale and

Heated Body produce more natural images than either HSV

Saturation Increasing or Rainbow.

All of the fisheries acoustics colour maps bar LSSS are extremely

colourful (M̂
ð3Þ
> 109). LSSS is quite colourful (M̂

ð3Þ ¼ 79).

Parula is the most colourful of the modern colour maps, being ex-

tremely colourful (M̂
ð3Þ ¼ 158), but most are quite colourful

Figure 3. A human face rendered using a selection of colour maps. According to Rogowitz and Kalvin (2001), those images that appear most
natural use colour maps better suited to visualizing continuous scalar data.

Colour maps for fisheries acoustic echograms 5
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(M̂
ð3Þ
> 59) or highly colourful (M̂

ð3Þ
> 82). The Rainbow colour

map is the most colourful (M̂
ð3Þ ¼ 236) and the isoluminant

colour maps the least colourful (LAB Isoluminant Saturation,

M̂
ð3Þ ¼ 35 and Isoluminant Rainbow, M̂

ð3Þ ¼ 62) not including

the grey scales. In general, fisheries acoustic colour maps are more

colourful than modern colour maps.

Using rs, we determine those colour maps, which are sequential

(Table 1 and Figure 4). None of the fisheries acoustic colour

maps is sequential, but LSSS comes closest (rs ¼ �0:94). Of the

sequential colour maps, Heated Body, HSV Saturation

(Increasing), Parula, LAB Greyscale, Viridis, Viridis12, and HSV

Greyscale are monotonically increasing (rs ¼ 1:00). Whereas

Matter and HSV Saturation (Decreasing) are monotonically

decreasing (rs ¼ �1:00).

None of the fisheries acoustic colour maps is perceptually

uniform (q¼ 1), but LSSS comes closest (q ¼ 0:95). Matter is

perfectly perceptually uniform (q ¼ 1:00), but LAB Greyscale,

Viridis, Viridis12, and HSV Greyscale are approximately perceptu-

ally uniform (q � 1:00).

The colour maps contain between 11 and 256 individual col-

ours (k), with Furuno FQ80 having 11 colours and Viridis having

256 colours. Notably, reducing the number of colours in the

Viridis colour map to 12 (Viridis12), did not change whether it

was sequential, did not reduce its perceptual uniformity, and had

only a small effect on its colourfulness. The colourfulness (M̂
ð3Þ

)

of a colour map is not proportional to its length (k).

Discussion
The purpose of an echogram image is to effectively convey

acoustic information to a human viewer. Echosounder receivers

are sensitive and have a very high dynamic range. It is typical to

use a logarithmic scale (decibels) to make power measurements

easier to work with, and to allow sufficient colour contrast

between values in an echogram display. The logarithmic scale

is monotonically increasing and it is reasonable to require equal

perceptual contrast increments per decibel across the colour

map range.

The choice of colour map has a significant effect on the ap-

pearance of an image and the detail revealed (Campbell and

Robson, 1968). The Which Blair Project used a subjective test

(image naturalness) to assess colour maps (Rogowitz and Kalvin,

2001); in this article, colour maps are ordered by objective meas-

ures of lightness monotonicity (rs
) and uniformity of colour

distance (q) with consistent results. We use these measurements

to compare colour maps from fisheries acoustics with modern

colour maps designed for colour contrast consistency.

Although sequential colour maps are widely recommended for

visualizing continuous scalar data such as Sv and TS (Rogowitz

and Kalvin, 2001), none of the fisheries acoustic colour maps

tested is sequential. When a colour map is not sequential, greater-

than and less-than relationships are not immediately evident

(Borland and Ii, 2007). Non-sequential colour maps can intro-

duce false gradients that can covertly exaggerate features in some

regions, whilst minimizing features elsewhere (Thyng et al.,

2016).

Rainbow echogram colour maps are still used in the fisheries

acoustic literature (16%), despite being widely criticized for their

lack of perceptual uniformity (Borland and Ii, 2007). In our tests,

some fisheries acoustic colour maps (Simrad EK80, Simrad

EK500, HTI, and Sonic) were shown to have even lower percep-

tual uniformity than the Rainbow colour map used by Rogowitz

and Kalvin (2001). Like Rainbow, these fisheries acoustics colour

maps lack perceptual ordering, have uncontrolled luminance

variation and non-data dependent gradients. Non-perceptually

uniform colour maps can hinder the effective visualization and

interpretation of data by confusing, obscuring, and misleading

(Borland and Ii, 2007).

The Simrad EK500 scientific echosounder was introduced in

1989 and is now obsolete, but the EK500 colour map is still

widely used (34%), and was even applied to Simrad EK80 data in

one of our examined papers. The EK500 colour map appears to

be closely related to Rainbow and may have been intended to

make colour bars easy to read. Despite its popularity and famil-

iarity, we have shown that the EK500 colour map is not sequential

(rs ¼ 0:06) and has highly uneven perceptual contrast over its

range (q ¼ 0:26). Echoview was used in 48% of the papers, but

EK500 is not the Echoview default, suggesting that users are mak-

ing a conscious choice of colour map. Simrad instruments were

used in 78% of the papers examined, and this may help to explain

the continued popularity of EK500.

Of the fisheries acoustics colour maps tested, LSSS is closest to

being sequential (rs ¼ �0:94) and perceptually uniform

(q ¼ 0:95). LSSS originates from the combined greyscale and

red–blue colour map designed by Foote et al. (1991). Like LSSS,

modern colour maps such as Parula and Viridis are designed to

combine monotonic luminance with a range of hues (Ware,

1988), but are more colourful, truly sequential, and have better

perceptual uniformity.

Sequential colour maps with high perceptual uniformity tend

to have lower colourfulness than perceptually uneven colour

maps, e.g. Viridis (M̂
ð3Þ ¼ 95) vs. Rainbow (M̂

ð3Þ ¼ 236). It is

Table 1. Colour maps ordered by lightness monotonicity (rs) and
perceptual uniformity (q).

Name k M̂
ð3Þ

rs q

LAB Iso. Sat.1 100 35 0.96
Iso. Rainbow1 100 62 0.67
EK802 64 151 0.02 0.28
Furuno FQ802 11 186 0.03 0.78
EK5002 12 186 0.06 0.26
HTI2 31 235 0.06 0.24
Rainbow1 100 236 �0.21 0.46
Sonic2 96 193 0.25 0.34
Kaijo2 15 165 �0.53 0.83
DT42 16 198 0.65 0.70
LSSS2 52 79 �0.94 0.95
HSV Sat. Dec.1 100 93 �1.00 0.94
Heated Body1 100 82 1.00 0.97
HSV Sat. Inc.1 100 125 1.00 0.98
Parula3 64 158 1.00 0.98
LAB Greyscale1 100 0 1.00 0.99
Viridis3 256 95 1.00 0.99
Viridis123 12 91 1.00 0.99
HSV Greyscale1 100 0 1.00 0.99
Matter3 256 83 �1.00 1.00

The first column is the colour map name with a superscript indicating its ori-
gin [(1) from Rogowitz and Kalvin (2001), (2) a fisheries acoustic colour
map, or (3) a modern colour map designed for colour contrast consistency].
k is the number of colours; M̂

ð3Þ
is colourfulness; rs is the Spearman rank

correlation coefficient of lightness (L� ; �1.0 or 1.0 indicates a sequential
colour map) and q is the Pearson’s correlation coefficient of CIEDE2000
colour distance (1.0 indicates perfect perceptual uniformity).

6 R. E. Blackwell et al.
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natural to want colourful echograms, but the lack of perceptual

ordering of the rainbow colours red, orange, yellow, green, blue,

indigo, and violet, gives rise to a trade-off between colourfulness

and perceptual uniformity. It would be difficult or impossible to

simply adjust existing echogram colour schemes to improve their

perceptual uniformity. All of the fisheries acoustics colour maps,

except LSSS, are highly colourful and this may help to explain

their continued popularity.

The number of colours (k) in the colour maps tested did not

influence whether colour maps were sequential, their degree of

perceptual uniformity nor the colourfulness of resulting echo-

grams. Our methods work irrespective of k. As k decreases so

does the radiometric resolution of resulting images (compare

Viridis12 to Viridis in Figure 3). As k decreases so does the num-

ber of colours on the scale bar, which may make it easier to read

(compare Viridis12 to Viridis in Figure 2). However, care must be

taken when using colour maps with reduced k that reduced radio-

metric resolution in echograms does not hide important detail.

More than half of the colour maps tested have increasing light-

ness (rs > 0) but Kaijo, LSSS and Matter have strongly decreasing

lightness (rs < �0:5). This causes them to look much more like

colour negative film images in Figure 3. Whilst both monotoni-

cally increasing and monotonically decreasing colour maps are

considered sequential, it is interesting to compare Viridis and

Figure 4. Lightness by colour sequence for each colour map. rs is the Spearman rank correlation coefficient (1.0 or �1.0 for a sequential
colour map).
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Matter in Figure 2. The former uses lightness to indicate more

intense volume backscatter at the bottom of the krill swarm,

whilst the latter uses darkness to imply density. For echograms

that have been processed for noise removal, monotonically in-

creasing colour maps may be more suited to computer screens

(less bright light), and monotonically decreasing colour maps

more suited to print media (less ink).

Greyscale colour maps are used in the literature that we ana-

lysed (7%), but it is unclear whether the objective was to portray

morphological aspects of the data (Ware, 1988) or simply to re-

duce printing costs. Unlike greyscale, Viridis and Parula, some

fisheries acoustics colour maps are highly non-sequential

(rs ! 0) and do not maintain legibility when reproduced in

monochrome.

About 8% of men and 0.4% of women have colour vision defi-

ciency (CVD; Spalding, 1999). When we presented our prelimi-

nary results at the Working Group for Fisheries Acoustic Science

and Technology (WGFAST) in 2019, a number of fisheries acous-

ticians told us that they had CVD and preferred greyscale colour

maps for accessibility. The greyscale colour maps tested here are

sequential (rs ¼ 1:00) and approximately perceptually uniform

(q � 1:00). Tufte (1983) suggests that colour often generates

graphical puzzles and that grey shades may be superior for the

presentation of quantitative data; however, there is evidence that

we can only distinguish limited shades of grey and potentially

millions of colours (Poynton, 1996). Greyscale echograms may be

a good choice for accessibility, but Viridis and Parula have been

designed with CVD in mind, and users without CVD may benefit

from a wider colour palette. Colour maps can be adjusted for

observers with particular CVD variants (Jefferson and Harvey,

2006).

Echograms are sometimes used to show regions segmented

according to categories (e.g. fish, zooplankton, seabed, or noise)

or multi-frequency characteristics (e.g. Jech and Michaels, 2006).

Such qualitative data require qualitative colour maps (Brewer,

2015). Qualitative colour maps are purposely designed to be col-

ourful and use high perceptual contrast between colours to dis-

tinguish categories. Where categorization is based on signal

intensity (e.g. target strength or acoustic backscattering strength),

there is a natural desire for the colour map to be both sequential

and qualitative. Our results show that perceptually uniform col-

our maps tend to be less colourful than non-perceptually uni-

form, but that colour maps such as Parula can provide a

compromise.

Split-beam echosounders, described by Foote et al. (1986), also

record phase angle data diverging from 0�, which can be dis-

played using a diverging colour map. DT4 has a single turning

point and is thus diverging, but its lightness profile is not sym-

metric (Figure 4). Despite having three turning points, the Sonic

colour map has a sharp central peak in its lightness profile and

could be used as a diverging colour map (Figure 4). However,

Sonic is not perceptually uniform and better diverging colour

maps are widely available. Good diverging colour maps are

symmetrical, having exactly one turning point in their lightness

profile, and have colourful, sequential, and perceptually uniform

legs (e.g. cmocean balance).

As echosounder resolution and precision increases, echogram

data contain ever more detail [e.g. the Simrad EK80 has a range

resolution of centimetres (Lavery et al., 2017)]. The echogram

shown in Figure 1 has low spatial resolution and low radiometric

resolution, but a modern computer monitor may display more

than 240 dots per inch with millions of colours. Colour maps

should be chosen carefully to make best use of the available dis-

play capability; however, we have reached a point where the hu-

man vision system may not be able to discriminate all the features

present in an echogram image. As range and power resolution

increases, the use of computational methods for echogram seg-

mentation, classification, and interpretation (Korneliussen, 2018)

will likely become more effective than manual methods.

The CIELAB colour space and CIEDE2000 colour distance

measurements are approximations of human visual perception.

The effectiveness of a colour map is also influenced by factors

including simultaneous contrast (Ware, 1988), lighting environ-

ment (Baylor, 1995), and the eye’s dark adaptation. Still, the

methods presented here offer simple, reliable, and objective meas-

ures for assessing and comparing colour maps.

None of the colour maps tested is extremely colourful, sequen-

tial, and perceptually uniform, so there is no single colour map

that meets every requirement. Modern colour maps are available

from other scientific disciplines (e.g. Hunter, 2007; Brewer, 2015;

Thyng et al., 2016) that are not yet widely implemented in

fisheries acoustic software, but may offer additional choice and

advantages over traditional fisheries acoustic colour maps. We

hope that Table 1 and the methods herein will allow fisheries

acousticians to make more informed decisions when selecting

echogram colour maps.

Recommendations
When using echograms to detect morphological structure in

acoustic data, sequential, perceptually uniform greyscale colour

maps are recommended.

When using echograms to present quantitative data (e.g. Sv or

TS) colour maps should be colourful, sequential, and perceptually

uniform. Of the fisheries acoustic colour maps tested, LSSS comes

closest to being sequential and perceptually uniform. However,

modern colour maps have been specifically designed for colour

contrast consistency, accessibility for viewers with red–green

colour-blindness, and legibility when printed in monochrome

(e.g. Viridis, Parula).

When using echograms to present diverging data (e.g. split-beam

angle), diverging colour maps should be used, with symmetrical

legs, each being colourful, sequential and perceptually uniform.

When using echograms to present categorical data (e.g. fish

schools, seabed), qualitative colour maps should be used.
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