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Abstract Each year, tropical rivers export a dissolved organic carbon (DOC) flux to the global oceans that
is equivalent to ~4% of the global land sink for atmospheric CO2. Among the most refractory fractions of
terrigenous DOC is dissolved black carbon (DBC), which constitutes ~10% of the total DOC flux and derives
from the charcoal and soot (aerosol) produced during biomass burning and fossil fuel combustion. Black
carbon (BC) has disproportionate storage potential in oceanic pools and so its export has implications for the
fate and residence time of terrigenous organic carbon (OC). In contrast to bulk DOC, there is limited
knowledge of the environmental factors that control riverine fluxes of DBC. We thus completed a
comprehensive assessment of the factors controlling DBC export in tropical rivers with catchments
distributed across environmental gradients of hydrology, topography, climate, and soil properties.
Generalized linear models explained 70 and 64% of the observed variance in DOC and DBC concentrations,
respectively. DOC and DBC concentrations displayed coupled responses to the dominant factors controlling
their riverine export (soil moisture, catchment slope, and catchment stocks of OC or BC, respectively)
but varied divergently across gradients of temperature and soil properties. DBC concentrations also varied
strongly with aerosol BC deposition rate, indicating further potential for deviation of DBC fluxes from those
of DOC due to secondary inputs of DBC from this unmatched source. Overall, this study identifies the
specific drivers of BC dynamics in river catchments and fundamentally enhances our understanding of
refractory DOC export to the global oceans.

1. Introduction

The riverine export of dissolved organic carbon (DOC) is one of themajor fluxes of carbon across the land‐to‐
ocean aquatic continuum (Regnier et al., 2013). It is estimated that 208 ± 28 Tg of DOC per year is exported
by rivers to the global oceans, predominantly from stocks of soil organic carbon (SOC) in their drainage
catchments, with 62% of this export occurring in tropical rivers (Dai et al., 2012). The export of DOC by glo-
bal rivers is an important process within the global carbon cycle, with global fluxes equating to ~7% of the net
land sink for atmospheric CO2 (le Quéré et al., 2018). On the order of 10% of this DOC is in the form of dis-
solved black carbon (DBC), which is composed of polycondensed aromatic molecules produced by the
incomplete combustion of organic matter in biomass and fossil fuels (Jaffe et al., 2013; Wagner et al.,
2018). The storage of terrigenous DOC in the global oceans regulates atmospheric concentrations of CO2

(Bauer et al., 2013; Bianchi, 2011), and DBC is a particularly pertinent fraction of this DOC because its che-
mical properties make it intrinsically resistant to degradation (Tranvik, 2018; Wagner et al., 2018). The
recent realization that ignoring lateral fluxes of carbon from terrestrial to marine environments results in
nontrivial errors in terrestrial carbon accounting, combined with evidence for the anthropogenic perturba-
tion of the DOC export, has triggered a renewed focus on identifying the environmental factors that control
its export, character, and fate (Battin et al., 2009; Cole et al., 2007; Raymond et al., 2016; Regnier et al., 2013).
As part of this agenda it will be pivotal to develop a mechanistic understanding of the environmental factors
that control the export of DBC across the land‐to‐ocean aquatic continuum (Coppola et al., 2018; Dittmar &
Stubbins, 2014; Wagner et al., 2018).
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The DBC exported by rivers derives from stocks of charcoal stored in the soils of river catchments (Dittmar
et al., 2012; Jaffe et al., 2013; Wagner et al., 2018) and from aerosol (soot) deposited from the atmosphere to
river catchments (Jones et al., 2017; Wang et al., 2016). Black carbon (BC) is a product of biomass and fossil
fuel combustion and is distinguished from bulk organic carbon (OC) by its condensed aromatic structure
and low functionality (Dittmar, 2008; Masiello, 2004). These properties make BC highly resistant to chemical
and biological decomposition in environmental matrices, which promote its accumulation in soils, sedi-
ments, and oceanic DOC (Bird et al., 2015; Schmidt & Noack, 2000). If biomass carbon stocks are allowed
to recover following a fire, the BC produced by biomass burning represents an additional terrestrial store
of carbon (i.e., a sequestration sink for CO2) owing to its longevity in these stores relative to noncombusted
organic carbon (Santín et al., 2015). A long‐term net sink for atmospheric CO2 develops if this sink is not
offset by CO2 evolution from legacy BC stocks (Jones et al., 2019; Landry & Matthews, 2017). The transfer
of BC from land to ocean is an important constraint on the balance of these CO2 sinks and sources because
this extends its residence time from decades to centuries in soils (Kuzyakov et al., 2014; Singh et al., 2012) to
centuries to millennia in oceanic stores (Coppola et al., 2014; Coppola & Druffel, 2016).

Over the past three decades, considerable progress has been made in understanding the factors that control
the rates of DOC export from catchments to river channels. One element of this progress has been the iden-
tification of correlations between the environmental characteristics of river catchments and the observed
concentrations of DOC in channels draining those catchments. Studies have been conducted at catchment
scales ranging from relatively small headwater channels (Ågren et al., 2007; Aitkenhead et al., 1999; Clair
et al., 1994; Dillon & Molot, 1997; Eckhardt & Moore, 1990; Frost et al., 2006; Gergel et al., 1999;
Mulholland, 1997; Rasmussen et al., 1989; Wilson & Xenopoulos, 2008), to regionally and globally signifi-
cant rivers (Aitkenhead & McDowell, 2000; Hope et al., 1997; Huang et al., 2012; Ludwig et al., 1996;
Mattsson et al., 2005). These studies show that a small number of dominant factors drive the variability in
riverine DOC concentration and fluxes. Predictors that typically explain significant portions of this variabil-
ity include SOC stocks, soil moisture, mean catchment slope, wetland cover, and antecedent precipitation
(Aitkenhead‐Peterson et al., 2003; Harrison et al., 2005; Mulholland, 2003). The first of these factors repre-
sents the major stock of organic carbon that is available for mobilization in the dissolved phase, while the
latter factors relate principally to hydrological controls on the rate at which this organic carbon is accessed
and mobilized (Neff & Asner, 2001; Rasmussen et al., 1989). Statistical models fitted to empirical data have
facilitated the construction of process‐based numerical models of DOC export by constraining the role of
environmental conditions in the export of DOC from catchments (Lauerwald et al., 2017; Nakhavali et al.,
2017; Neff & Asner, 2001).

The studies discussed above have consistently highlighted the role of hydrology in determining rates of DOC
export from SOC stocks in river catchments. As SOC is disproportionately stored in the uppermost soil
horizons, the contact time between drainage water and SOC is subject to hydrological controls that deter-
mine the depth of the water table. Soil moisture can be viewed as a proxy for the depth of the water table,
with higher moisture levels indicating that a larger component of the drainage flow path is in contact with
the upper organic soil horizons (Inamdar et al., 2011;Lambert et al., 2011 ; Singh et al., 2014). Consequently,
increases in DOC export by rivers are widely observed during wet seasons (Lambert et al., 2011; Singh et al.,
2014) and isolated rainfall or storm events (Inamdar et al., 2011; Raymond et al., 2016; Raymond & Saiers,
2010; Stanley et al., 2012; Vidon et al., 2008; Yoon & Raymond, 2012). Soil moisture tracks the seasonal
balance of precipitation and evapotranspiration plus discharge, thus representing the seasonal hydrology
of a catchment. Catchment slope is also an indicator of the contact time between water and soil organic
matter because the geometry of catchments determines the depth soils and the rate at which precipitation
is conveyed to channels (Aitkenhead & McDowell, 2000; Dillon & Molot, 1997; Ludwig et al., 1996;
Mattsson et al., 2009; Rasmussen et al., 1989; Sobek et al., 2007; Sutfin et al., 2016): steep catchments typi-
cally exhibit thin organic soil horizons and rapid rates of water transfer to drainage channels, thus restricting
interaction between water and soil organic matter andmoderating rates of DOC export, whereas catchments
with low slopes promote slow water drainage and the accumulation of thick organic horizons, thus enhan-
cing contact time between water and soil organic matter and promoting DOC export.

Globally, a strong linear relationship has been identified between the concentrations of DBC and DOC in
river channels, which suggests that DBC and DOC are exported from catchments in a coupled manner
across the gradients in environmental conditions that occur at this scale (Jaffe et al., 2013; Wagner et al.,
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2018). DBC export fluxes are thus generally considered to be coupled to those of DOC export, with global‐
scale fluxes of DBC predicted by a simple linear relationship with equivalent estimates of DOC export
(Jaffe et al., 2013). A potential explanation for this close relationship is that the process of DBC
mobilization from soil BC stocks is subject to the same environmental controls as DOC mobilization from
SOC stocks, including the hydrological factors discussed above. Nonetheless, there has not yet been a
comprehensive analysis of the variability in riverine fluxes of DBC across the environmental gradients
that are known to control rates of DOC export.

In the current study, we simultaneously assessed how rates of DOC and DBC export by rivers are controlled
by the environmental conditions in South American tropical river catchments. Tropical rivers have particu-
lar relevance to global DBC export because they contribute 62% of the global DOC export flux (Dai et al.,
2012) and because around 90% of global burned area occurs in the tropics (Chen et al., 2017; Giglio et al.,
2013). We fitted statistical models that robustly predicted DOC and DBC concentrations using hydrological,
topographical, soil and climate variables, and upstream stocks of SOC and SBC, respectively, in channels
whose catchments show significant diversity in these factors. Factors were chosen specifically because they
are known to influence riverine DOC concentrations (Aitkenhead‐Peterson et al., 2003; Mulholland, 2003)
or because they have been implicated as processes governing the dynamics of DOC and DBC in soil
(Kaiser & Kalbitz, 2012; Kuzyakov et al., 2014; Kuzyakov & Blagodatskaya, 2015).

We also investigated the role of aerosol BC deposition to river catchments as a driver of variability in DBC
export from river catchments. Aerosol BC has traditionally been considered a negligible source of riverine
DBC on the basis that it contributes less than 30% toward the total global production flux for BC (Bird
et al., 2015). Nonetheless, a number of recent studies have challenged this view by demonstrating that aero-
sol BCmakes contributions on the order of 5–25% of the total riverine DBC load in some high‐latitude (Ding
et al., 2015; Stubbins et al., 2012), temperate (Wang et al., 2016), and tropical (Jones et al., 2017) catchments.
Further evidence is required in order to validate the contribution of BC aerosol to riverine DBC at regional
and global scales (Bao et al., 2019; Wagner et al., 2018). The deposition rate of aerosol BC relates to regional
rates of emission from several sources (e.g., industry, deforestation, wildfires, and agriculture) combined
with wind patterns and the efficiency of wet and dry deposition processes (Bao et al., 2017; Bond et al.,
2013; Jurado et al., 2008). Consequently, the spatial distribution of aerosol BC in river catchments does
not align with that of soil BC stocks. This study provided an opportunity to assess the influence of aerosol
BC deposition on riverine loads of DBC at the continental scale.

We fitted generalized linear models (GLMs) with land cover, soil properties, recent weather and soil moist-
ure conditions, stocks of SOC and SBC, and aerosol BC in river catchments as predictors of DBC and DOC
concentrations measured in Brazilian rivers between 2013 and 2016. The statistical power of the models is
high owing to the large sample size of the reference dataset (192 samples) and the distribution of sampled
channels across tropical forest and savannah biomes spanning a latitudinal range of over 20°. These catch-
ments of the sampled rivers displayed significant gradients in the predictor variables considered in this
study. Our analyses allowed us to explain why the concentrations of DBC and DOC from river catchments
are generally coupled in river systems, while we also identify the factors that weaken this relationship.

2. Sampling Campaigns

The sampling locations were distributed within six study regions (Figure 1), three within the tropical forest
biome (AF1, AF2, and AMZ1) and three in the Cerrado (C1–C3). AF1 and AF2 are situated within the
domain of the Atlantic Forest, which stretches ~500 km inland from the Atlantic coastline of Brazil. Over
the past two centuries the native Atlantic Forest has been pervasively cleared by slash‐and‐burn deforesta-
tion and today just 7–8% of the original 1.5 million km2 of forest remains (Ribeiro et al., 2009). Study region
AMZ1 is located in the arc of deforestation in Southern Amazonia, where the forest frontier has moved pro-
gressively northward over the past 50 years and fire has been amajor tool for vegetation clearance (Fearnside
et al., 2009; Malhi et al., 2008; Tyukavina et al., 2017). All three tropical forest study regions feature expan-
sive agriculture with interspersed small forest fragments, although some larger forest fragments remain in
national parks and private reserves (supporting information Text S1). The samples collected in AF1, AF2,
and AMZ1 represented a variety of headwater channels, tributaries, and regionally significant river channels
whose catchment areas ranged from 35 to 85,600 km2 (Table S1).
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Study regions C1, C2, and C3 are located in the Cerrado, which dominates the natural land cover of the
Brazilian interior. The biome is composed of several vegetation physiognomies ranging from low‐lying,
grass‐dominated campo sujo and campo Cerrado to the increasingly shrub‐dominated Cerrado sensu stricto,
Cerrado denso, and dry tropical forest (Cerradão; Klink et al., 1995). Natural Cerrado vegetation once
covered over 2 million km2 of Brazil, around 25% of its territory, but today, only 46% of this area remains
following progressive disturbance over the past 50 years (Salazar et al., 2015). Since 1970, the biome has
experienced widespread clearing by fire and conversion to planted pasture and irrigated cash crops (Klink
& Machado, 2005; Oliveira & Marquis, 2002; Pivello, 2011). The Cerrado study regions featured a typical
degraded Cerrado landscape; agricultural land uses are interspersed with fragmented sections of natural
dry forest, shrubland, and grassland. Natural cover is concentrated in national and state parks and is other-
wise restricted to drainage channels and gullies where the terrain is unfavorable for agriculture. The samples
collected in AF1, AF2, and AMZ1 represented headwater channels and tributaries to major rivers, with
catchment areas ranging from 10 to 1,300 km2. The samples collected in C1, C2, and C3 represented a variety
of headwater channels and tributaries whose catchment area ranged from 11 to 1,300 km2 (Table S1). For
further information regarding the regions studied, the reader is referred to supporting information Text S1
(Fearnside et al., 2009; Klink & Machado, 2005; Malhi et al., 2008; Oliveira & Marquis, 2002; Pivello,
2011; Ribeiro et al., 2009; Salazar et al., 2015; Tyukavina et al., 2017).

Figure 1. Map of the field sites distributed across Brazilian Atlantic Forest (AF1 and AF2), Cerrado (C1, C2, and C3), and Amazonia (AMZ1). The natural domains
of these ecoregions are hatched, stippled, and cross‐hatched, respectively. The sampling locations are shown as black stars, while the upstream catchment area of
the sampling locations is represented by the colored fill. Drainage channels delineated using ArcHydro are also shown for the individual study regions.
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We completed the sampling campaigns in AF1, C1, C2, C3, and AMZ1 between April and May 2016 during
the transition from the wet season to the dry season. Sampling campaigns in AF2 were completed by
Marques et al. (2017) during three periods with differing hydrological conditions, specifically in January
2013 (wet season), August 2013 (dry season), and February 2014 (wet season). River water discharge rates
varied by a factor of 4 across the sampling campaigns at the most downstream gauge in AF2 and were
1,875, 478, and 719 m3/s, respectively (Marques et al., 2017). Our reference data set thus included measure-
ments from samples that represented both a large spatial domain and a range of hydrological conditions.

3. Methodology
3.1. Field and Laboratory Methods
3.1.1. Sampling Design
The aim of the sampling campaigns was to include catchments displaying wide variability in all explanatory
variables included in the analysis. To achieve this, the sampling regions were positioned in multiple ecore-
gions of Brazil across which soil carbon stocks and climate were known to differ. Further, the spatial cover-
age of the study regions ensured that they were spread across a large gradient of BC aerosol deposition rates.
Variability in land cover, soil type, and clay content was achieved by sampling in many catchments within
each study region, across which sufficient variability in these parameters was present. To represent variabil-
ity in soil moisture and rainfall, we incorporated data from samples collected over multiple seasons and a
large spatial domain (as discussed above). The supporting information data set provided includes the mea-
surements of DOC and DBC from all sampling campaigns, the values of each explanatory factor with respect
to the upstream catchment of each sampling location and during each sampling campaign, and supporting
information such as catchment sizes and sampling coordinates (see the acknowledgements section for
details regarding access to this data).
3.1.2. Sampling Procedure
Samples of surface water were collected from bridges and boats at each sampling location. The river water
was poured through a pre‐rinsed funnel into 1.5‐L PET bottles. The bottles were covered and kept in cool,
dark conditions. GPS locations were logged using a Garmin GPSMAP 64S handheld device.
3.1.3. Analytical Procedures
The entire methodological procedure, from collection to laboratory analyses, is identical to that used pre-
viously by Marques et al. (2017) meaning that samples from all sampling locations included in the current
study were processed in the same manner. Here a summary of the key aspects of the analytical procedure
is provided. However, for further information the reader is directed toward supporting information Text
S2 (Bao et al., 2017; Brodowski et al., 2005; Coppola et al., 2014; Ding et al., 2014, 2013, 2015; Dittmar,
2008; Dittmar et al., 2012; Dittmar, de Rezende, et al., 2012; Dittmar & Paeng, 2009; Glaser et al., 1998;
Jaffe et al., 2013; Khan et al., 2016; Marques et al., 2017; Nakane et al., 2017; Spencer et al., 2015; Stubbins
et al., 2012).

At the end of each day of sampling in the field, samples were filtered through pre‐combusted GF/F filters
(Whatmann, nominal pore size 0.7 μm), two 150‐ml aliquots were subsampled from each sample for DOC
analysis, and a further 500 ml of each water sample was acidified to pH 2 with HCl (32%, analytical grade).
Procedural blanks, including the filtration step, were obtained using ultrapure water. Solid phase extraction
(SPE) was then performed on the acidified samples using Bond Elut PPL SPE cartridges (1 g; Agilent
Technologies), following a large number of foregoing studies (Dittmar, 2008; Dittmar, de Rezende, et al.,
2012; Marques et al., 2017). All aliquots (for DOC analysis) and solid phase extracted samples (for DBC
analysis) were then kept in cool, dark conditions during transport to the laboratory.

In the laboratory, the DOC concentration in the 150‐ml aliquots was assessed by automated total organic
carbon (TOC) analysis on a Shimadzu TOC 5000 analyzer. Procedural blank samples did not contain
detectable quantities of DOC. DBC concentrations were determined following the benzene polycarboxylic
acids method used in many preceding studies of DBC in aquatic environments (Dittmar, 2008; Dittmar,
Paeng, et al., 2012; Marques et al., 2017; Spencer et al., 2015). This method consists of five steps: first,
DOM is eluted from the SPE cartridges using HPLC‐grade methanol; second, aliquots of the extract are
transferred to glass ampoules and the methanol is evaporated; third, the DOM is redissolved in HNO3 and
the ampoules are flame sealed and heated for 9 hr at 170 °C in a furnace; fourth, the HNO3 is evaporated
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and the DOM residue is redissolved in a phosphate buffer at pH 7.2; finally, benzene polycarboxylic acids
produced by the partial oxidation of polycondensed aromatic compounds are quantified by ultrahigh‐
performance liquid chromatography (Waters Acquity UPLC) with a photodiode array light‐absorbance
detector (Dittmar, de Rezende, et al., 2012; Stubbins, Niggemann, & Dittmar, 2012). Concentrations of
DBC are calculated from the concentrations of benzene pentacarboxylic acid (B5CA) and benzene hexacar-
boxylic acid (B6CA) using a well‐established power‐function relationship (Stubbins, Niggemann, &
Dittmar, 2012).

3.2. Catchment Delineation

The catchment drainage areas upstream of all sampling locations were delineated using the ArcGIS
ArcHydro toolbox (Kraemer & Panda, 2009). Void‐filled SRTM digital elevation model (DEM) grids with a
resolution of ~90 m were used as inputs to the ArcHydro modeling framework, which determines the direc-
tion of flow and downstream accumulation of flow paths based on elevation data from the DEM. Streams
were defined at a drainage area threshold of 1 km2. Sampling locations were mapped to the stream grid gen-
erated by ArcHydro, and the upstream catchment of each sampling location was computed as areas draining
to these locations.

3.3. Generalized Linear Modeling

Observed concentrations of DOC and DBC in the river water samples collected in the Brazilian river catch-
ments were modeled using GLMs fitted to each data set (GLMDOC and GLMDBC, respectively) using the R
statistics package (R Core Team, 2017). Full details of the model fitting procedure are provided in supporting
information Text S3 (Breheny & Burchett, 2013; Burnham&Anderson, 2002; Fox et al., 2016; fox & weisberg
2011; Fox &Monette, 1992; Johnson &Omland, 2004; Lakens, 2013; Levine &Hullett, 2002; Mela & Kopalle,
2002; R Core Team, 2017; Sullivan & Feinn, 2012; Zhang, 2016); however, a brief outline of the approach to
model fitting is provided here. The independent variables included in the model were selected to represent a
number of environmental factors, which were specified a priori, and thus, no stepwise or criterion‐based
variable selection procedures were followed (Burnham & Anderson, 2002; Johnson & Omland, 2004). The
combination of error family and link function of the GLM models was selected so as to maximize explained
variance (R2) without compromising the normal distribution of residual errors. GLMDOC was fitted with a
Gamma error family and a logarithmic link function, whereas GLMDBC was fitted with a Gaussian error
family and a logarithmic link function. Models were validated by assuring that the standard assumptions
of residual normality, homoscedasticity, and multicollinearity were satisfied (Fox et al., 2016; fox, & weis-
berg 2011; Mela & Kopalle, 2002). Unduly influential outliers, identified by Bonferroni outlier tests for stu-
dentized residuals, were iteratively removed (Fox et al., 2011).

Adjusted R2 values (henceforth R2) were calculated using the rsq package for R following the variance‐func-
tion‐based approach (Zhang, 2016). Partial eta‐squared (η2p) values were calculated for each independent
variable as a measure of effect size. η2p measures the (adjusted) effect of a variable as the proportion of
explained variance in the dependent remaining after the effects of other factors present in the model have
been partialled out. Similar to R2, η2p is an estimate of the proportion of variance accounted for by an indi-
vidual effect (Lakens, 2013; Levine & Hullett, 2002; Sullivan & Feinn, 2012). Partial residual plotting was
used to illustrate the relationship between each independent variable and the dependent variable given that
other independent variables are also included in the model (Breheny & Burchett, 2013). The partial residuals
were plotted across the gradients or factor levels of each independent variable while assuming that all other
continuous independent variables held their median value and that all other categorical independent vari-
ables held their modal value.

A GLMmodel was also fitted to the data set of DBC/DOC ratios from the samples (GLMDBC/DOC; supporting
information). The same procedure was followed as described above; however, a prior step was added in
which all outliers excluded from GLMDOC and GLMDBC were also excluded from GLMDBC/DOC.

3.4. Independent Variables

Table 1 provides a summary of the independent variables included in the analysis. For each independent
variable, the value assigned to each sample was calculated as the spatially averaged mean within the area

10.1029/2018GB006140Global Biogeochemical Cycles

JONES ET AL. 854



upstream of the sampling point; this value was determined using the isectpolyrst function of the Geospatial
Modelling Environment (Beyer, 2015).
3.4.1. Land Cover
The MapBiomas collection 2.3 land cover data set was chosen to represent modern land cover in all
catchments (Brazilian Annual Land Use and Land Cover Mapping Project Team, 2017). The main advan-
tage of using the MapBiomas data set over other regional mapping options is the consistency of its meth-
odology, classification scheme, and resolution (30 m) across all ecoregions (Lapola et al., 2014; Tyukavina
et al., 2017). The classification scheme was simplified as detailed in supporting information Text S4
(Brazilian Annual Land Use and Land Cover Mapping Project Team, 2017; Lapola et al., 2014;
Tyukavina et al., 2017), and the resulting classes were forest, pasture, cropland, grassland, water bodies,
urban, and other.
3.4.2. Soil Organic Carbon, Clay Content, and Taxonomy
SoilGrids1km is a global 3‐D soil model fitted to 110,000 soil profiles, distributed globally, using 75
environmental covariates representing soil‐forming factors (Hengl et al., 2014). SoilGrids1km builds upon
the taxonomic mapping units derived from the Harmonized World Soil Database (FAO & IIASA, 2009) with
data relating to climate, vegetation productivity, and lithology. Several outputs from this model were uti-
lized, specifically SOC stocks (Mg C km−2), clay (<2‐μm) content (%), and the predicted most probable soil
class of the FAO World Reference Base (WRB) soil taxonomy scheme (Baxter, 2007). The spatial resolution
of each data set was 1 km. WRB intergrade soil classifiers were dropped from the schema (supporting infor-
mation). SOC stocks were represented in the analysis by predicted values for the depth interval of 0–30 cm
from SoilGrids1km. Meanwhile, soil clay content was represented by its predicted value at a depth of 30 cm.
The representativeness of these depth selections, of values in the entire soil column, was validated by the
strong linear relationships with values at other depths (5 and 100 cm; supporting information Text S6 and
Figure S1). Full details regarding our use of the SoilGrids1km data are provided in supporting information
Text S4 (Baxter, 2007).

Table 1
Summary of the Variables Used in GLMDOC and GLMDBC, Including the Model or Remote Sensing Data From Which They Derive, Units, Value Used in the GLM
Models, Available Resolution, and the Relevant Reference for the Data Set

Variable Source Unit Data value Resolution Reference

Continuous variables
Soil organic carbon (SOC)
stock (<30 cm)

SoilGrids1km Mg C km−2 Spatial average 1 km Hengl et al. (2014)

Soil black carbon (SBC)
Stock (<30 cm)

Linear multicovariate model
from reference paper

Mg C km−2 Spatial average 1 km Reisser et al. (2016)

Soil clay content (at 30 cm) SoilGrids1km % (mass) Spatial average 1 km Hengl et al. (2014)
Slope SRTM DEM % Spatial average 90 m Farr et al. (2007)
Precipitation (total in
7 days to sampling)

TRMM (3B42RT) mm Spatial average ~25 km Huffman et al. (2010)

Temperature (average
maximum daily value in
7 days to sampling)

“Daily gridded meteorological
variables in Brazil”

°C Spatial average ~25 km Xavier et al. (2015)

Soil moisture (average value
in 7 days to sampling)

ESA CCI SM (v03.3) m3/m3 Spatial average ~25 km Dorigo et al. (2017)

Aerosol BC deposition
(3 years to sampling)

HadGEM2‐ES kg C km−2 Spatial average Native: 1.875° × 1.25°
Interpolated: ~5 km

Bellouin et al. (2011),
Collins et al. (2011), and
Jones et al. (2011)

Categorical variables
Land coverb MapBiomas (Collection 2.3) Compositionala K‐means cluster of

spatial average
30 m Brazilian Annual Land Use

and Land Cover Mapping
Project Team (2017)

FAO World Reference Base
(WRB) soil classificationc

SoilGrids1km Compositionala K‐means cluster of
spatial average

1 km Hengl et al. (2014)

aFractional contributions of individual classes sum to unity. bFactor levels: forest, grassland, pasture, cropland, water, urban, and other. cFactor levels:
Ferralsol, Acrisol, Nitisol, Arenosol, Cambisol, Phaeozem, Leptosol, Gleysol, Lixisol, Andosol, Fluvisol.
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3.4.3. Weather Variables
Precipitation was represented by data from the Tropical Rainfall Measuring Mission (TRMM) multisatel-
lite precipitation analysis product 3B42RT (Huffman et al., 2010), specifically the accumulated rainfall in
the 7‐day period prior to the collection of each sample (expressed in mm). Initially, only rainfall occurring
in the 2‐day period prior to sampling (also from TRMM 3B42RT) was considered as a variable on the
basis that all catchments in our data set had a hydrological lag time of <48 hr (when calculated using
catchment slope and catchment length following Watt & Chow, 1985). However, rainfall was low in
the studied catchments in the 2‐day period prior to sampling (data provided in the supporting information
data set): 76% experienced no rainfall, just 8% experienced rainfall in excess of 1 mm, and only two catch-
ments (<1%) experienced rainfall in excess of 10 mm. Given these dry conditions immediately prior to
sampling, the 7‐day rainfall variable predominantly represented the effect of rainfall in the period 3–7 days
prior to sample collection. We discuss the implications of this period of influence for our results in sec-
tions 5.1 and 5.3.

Surface air temperature was also included on the basis that these broadly correlate with soil temperature at

large spatial scales (Smerdon et al., 2006) and affect the rates of SOC and SBC decomposition (Cheng et al.,

2008; Sierra et al., 2015). Daily maximum surface air temperature data were extracted from a data set of

gridded meteorological variables in Brazil, which is based upon the interpolation of observational data from

735 weather stations across the country (Xavier et al., 2015). The daily maximum temperatures (°C) were

averaged in the 7 days prior to the sampling. The spatial resolution of both the rainfall and temperature data

sets was 0.25° (~25 km).
3.4.4. Soil Moisture
Soil moisture was represented by satellite observations from the European Space Agency Climate Change
Institute (ESA CCI) soil moisture product (Dorigo et al., 2017), which merges active and passive microwave
soil moisture retrievals from multiple satellites into a combined product with a spatial resolution of 0.25°
and daily temporal resolution (Fang et al., 2016). The daily soil moisture values, expressed in volume of
water per volume of soil (m3/m3) were averaged over the 7‐day period preceding the collection of
each sample.
3.4.5. Soil Black Carbon
In a meta‐analysis of 560 measurements of soil BC and OC concentrations, Reisser et al. (2016) reported a
general linear model for BC/SOC ratios that included categorical variables relating to clay content, pH, mean
annual precipitation (MAP), mean annual surface air temperature (MAT), and land cover. This model was
applied in each catchment by taking the average clay content and pH from SoilGrids1km (Hengl et al., 2014),
climate data (Willmott & Matsuura, 2000), and land cover information from MapBiomas 2.3 (Brazilian
Annual Land Use and Land Cover Mapping Project Team, 2017). The BC/SOC ratios were calculated by
weighting the contributions of individual land cover fractions according to their spatial extents. Stocks of
BC (Mg C km−2) were subsequently calculated by applying the BC/SOC factor to stocks of SOC from
SoilGrids1km. Full details of this procedure are provided in supporting information Text S4 (Reisser et al.,
2016; Willmott & Matsuura, 2000).
3.4.6. Aerosol BC Deposits
Aerosol BC deposition was modeled at the scale of South America using the UK Met Office Hadley Centre
Global Environment Model version 2 Earth system model (HadGEM2‐ES; Figure 2; Collins et al., 2011;
Jones et al., 2011). HadGEM2‐ES represents the life cycle of various aerosol species (Bellouin et al.,
2011), including BC from fossil fuel and biofuel emissions and biomass burning aerosol, which comprises
a BC component internally mixed with organic carbon (Haywood et al., 2003). Processes such as transport,
mixing, and deposition are represented explicitly through physically based parameterizations that have
been developed and constrained using observations. HadGEM2‐ES was run with the same setup as
reported in detail in our previous work (Jones et al., 2017), including its resolution (1.875° × 1.25°), BC
emission grids, and aerosol scheme. Deposition rates from HadGEM2‐ES were exported as points located
at the central location of each grid cell, and these rates were then interpolated to a finer grid (resolution
0.05°). Detail regarding the HadGEM2‐ES model setup and interpolation procedure is provided in support-
ing information Text S4 (Akagi et al., 2010; Diehl et al., 2012; Granier et al., 2011; Jones et al., 2017;
Lamarque et al., 2010; Olson et al., 2001; Ramankutty et al., 2008; van der Werf et al., 2010; van
Leeuwen et al., 2014).
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3.5. K‐Means Clustering

The land cover and soil classification variables included in this study are examples of compositional data
composed of multiple proportions summing to unity. For compositional variables such as these, it is manda-
tory to transform the data before inclusion in statistical models because the information relevant to the
environmental effects of variability is contained within the ratios between classes, rather than the individual
proportions (Parent et al., 2012; Pawlowsky‐Glahn et al., 2015; Pawlowsky‐Glahn & Egozcue, 2006). K‐
means clustering was used to categorize the data set to a small number of groups of catchments with com-
mon land cover and soil class distributions. The effectiveness of this approach for dealing with compositional
data has been demonstrated in diverse applications (Godichon‐Baggioni et al., 2017), and it has been used in
a wide range of spatial classification analyses (Hartigan & Wong, 1979; Kumar et al., 2011; Solidoro et al.,
2007; Ye & Wright, 2010; Zscheischler et al., 2012).

Full discussion of the clustering approach and results are provided in supporting information Text S5
(Godichon‐Baggioni et al., 2017; Hartigan & Wong, 1979; Kassambara & Mundt, 2016; Kumar et al., 2011;
Parent et al., 2012; Pawlowsky‐Glahn et al., 2015; Pawlowsky‐Glahn & Egozcue, 2006; R Core Team,
2017; Solidoro et al., 2007; Tibshirani et al., 2001; Ye & Wright, 2010; Zscheischler et al., 2012). Figure 3
shows the composition of the centroid of each group of catchments that was identified by k‐means cluster-
ing, in addition to the distribution of the catchments across these groups in each of the ecoregions included
in the study. With regard to soil type, the majority of catchments in the Atlantic Forest and Cerrado ecore-
gions were categorized as Custer A, which was dominated by the Ferralsol soil class. Catchments grouped to
Cluster D, which was characterized as a combination of predominantly Ferralsol and Nitisol soils, were also
present in these ecoregions. A small number of catchments in the Atlantic Forest ecoregion were grouped to
Cluster B, which exhibited high Cambisol and Ferralsol extent. All Amazonian catchments were grouped
into either Cluster A or Cluster C (Acrisol‐dominated) soil classes.

With regard to land cover, the catchments were spread across a greater number of clusters in all ecoregions.
Cluster C, which was characterized by mixed cover of pasture, forest, and some cropland, was the most

Figure 2. Aerosol BC deposition rates (kg · km–2 · year–1) to the South American continent between 2009 and 2016 mod-
eled using HadGEM2‐ES. Grey crosses mark the central points of the HadGEM2‐ES grids from which the deposition
rates were interpolated, as described in the main text. The approximate locations of the six study regions are marked with
black stars (cf. Figure 1).

10.1029/2018GB006140Global Biogeochemical Cycles

JONES ET AL. 857



common cover in the Atlantic Forest ecoregion and in Amazonia. A greater number of catchments were
grouped to Cluster E (highly forested/wooded) in Amazonia than in Atlantic Forest and Cerrado. Cluster
D (highly urbanized) was only present in two catchments of the Atlantic Forest ecoregion. Few
catchments were assigned to Cluster B, which exhibited high cover of cropland, in Amazonia or Atlantic
Forest, whereas this cluster was common in the Cerrado. The other cluster with high forest and cropland
cover (Cluster A) was found in all areas but was uncommon in Amazonia. Catchments with high pasture
cover (Cluster F) were most common in Amazonia and also present within the Cerrado and Atlantic Forest.

4. Results

Tables 2 and 3 show summaries of the GLMs fitted to the data set of DOC concentrations (GLMDOC) and
DBC concentrations (GLMDBC), respectively, including tests for significance and effect size for all indepen-
dent variables and pairwise tests for significant difference between categorical factors. Figures 4 and 5 show
related partial residual plots of the variation in the concentrations predicted by each model across the range
of values or factor levels for each independent variable included. Figure 6 shows a comparison of modeled
concentrations from GLMDOC and GLMDBC with observed concentrations of DOC and DBC, respectively.

GLMDOC explained a large portion of the observed variance in DOC concentrations in the Brazilian river
channels (R2 = 0.70), and the root‐mean‐square error of the predictions was low (0.26 mg/L) in relation to
the mean fitted value (1.79 mg/L). The analysis of variance (ANOVA) F test showed that the SOC stocks,
slope, soil moisture, soil classification cluster, clay content, and temperature had statistically significant
(nonzero) effects on DOC concentration, while land cover cluster had no significant effect (Table 2 and
Figure 4). GLMDBC also explained a substantial portion of the observed variance in DBC concentrations
(R2 = 0.64), and the root‐mean‐square error of the predictions was similarly low (0.040 mg/L) in relation
to the mean fitted value (0.175 mg/L). SBC stocks, aerosol BC stocks, slope, soil moisture, temperature, soil
classification cluster, rainfall, and soil clay content all had statistically significant effects on DBC

Figure 3. The compositional cover of (left panel) soil class and (right panel) land covers in the centroid of each k‐means cluster produced for these variables. Each
centroid characterizes the composition of soil and land cover in the catchments grouped into its corresponding cluster. Stacked column charts show the percentage
of catchments in the Atlantic Forest, Amazonia, and Cerrado ecoregions that were grouped into each k‐means cluster.
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concentration, while land cover cluster had no significant effect (Table 3 and Figure 5). The generalized
variance‐inflation factor (GVIF) threshold of 10(1/(2*df)) was not exceeded by any variable in either GLM;
however, there were moderate correlations between SOC and clay content, SOC and slope, and soil
moisture and rainfall (supporting information Figure S2).

GLMDOC and GLMDBC showed a comparable effect of upstream SOC and SBC on the concentrations of DOC
and DBC in channels (Figures 4 and 5). In the respective models, increases in upstream SOC and SBC stocks
were modeled to produce nonlinear increases in their concentrations. According to η2p values, the partial
proportion of variance accounted for by the effects of SOC stock and SBC stock in the respective models
was 19% and 16% (Tables 2 and 3, respectively). The similarity of these η2p values suggests that DOC and
DBC were comparably sensitive to the variability in the upstream densities of SOC and DBC.

The partial proportion of variance accounted for by the aerosol BC term (32%) in GLMDBC was twice
greater than that of SBC, which demonstrates that DBC concentrations in these channels were more sen-
sitive to variability in upstream aerosol BC input than they were to upstream stocks of SBC (Table 3 and
Figure 5). Removing the aerosol BC term from GLMDBC had negative outcomes for model fit; the R2

value of this nested model fell to 0.47, while the residual deviance was significantly greater than in
the full model (ANOVA F‐test; p ≪ 0.001). Thus, the inclusion of aerosol BC substantially improved
model fit.

GLMDOC and GLMDBC suggested that concentrations of DOC and DBC varied across similar gradients of a
small number of dominant environmental controls. Specifically, increases in soil moisture and reductions
in slope were modeled to produce nonlinear increases in their concentrations (Tables 2 and 3 and

Table 2
Outputs From GLMDOC, Which Was Fitted to Observed DOC Concentrations (mg/L)

Variablea df

Estimate ANOVA (II) Effect Tukey HSD

mean s. e. F Pr(>|F|) η2p Z Pr(>|z|)

Soil OC stock (Mg C ha−1) 1 2.1E−4 3.4E−5 38.50 <0.001 *** 0.186
Clay (%) 1 −0.026 7.6E−3 10.65 0.001 ** 0.059
Slope (%) 1 −0.042 4.6E−3 76.10 <0.001 *** 0.282
Soil moisture (m3/m3) 1 0.026 4.2E−3 40.55 <0.001 *** 0.222
Rainfall (mm) 1 4.6E−4 7.0E−4 0.45 0.501 0.003
Temperature (°C) 1 0.035 0.013 7.48 0.007 ** 0.042
Soil class cluster 3 3.69 0.013 * 0.061
B −0.345 0.166
C 0.224 0.118
D −0.013 0.141
(C‐B) 0.569 0.178 3.20 0.007 **

Land cover cluster 5 1.40 0.226 0.040
B −0.132 0.108
C −0.120 0.074
D 0.259 0.175
E −0.139 0.082
F −0.033 0.070
(Intercept)b −1.258 0.580

Model residuals (mg/L):

Min 1Q Median 3Q Max

−0.910 −0.139 −0.014 0.120 0.719

Note. As this model was fitted with a logarithmic link function, it predicts the natural logarithm of DOC concentrations. The mean (± standard error) parameter
estimate is shown for each variable. Abbreviations in column headings are as follows: df, degrees of freedom; s. e., standard error; F, the F statistic from an
ANOVA type II test for significance of individual model parameters; Pr(>|F|), F statistic significance level; η2p, the partial proportion of variance explained
by each variable; Z, the Z statistic from a Tukey HSD post hoc test for significant differences between levels of a factor; Pr(>|Z|), Z statistic significance level.
The median, interquartile, and extreme values of the distribution of model residuals are also provided (mg/L). Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05
‘.’ 0.1 ‘’ 1.
aFor categorical variables, significant differences between classes are shown. For example, (B‐A) signifies that the row relates to difference between Clusters A
and B. Tukey HSD post hoc tests the null hypothesis that the difference between two groups is zero. Only significant and marginally significant differences are
shown. bThe intercept did not differ significantly from zero according to a t test not shown in the table (p = 0.702).
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Figures 4 and 5). The partial proportion of variance accounted for by these variables exceeded that of all
other significant variables, except for stocks, by factors of 3.1–8.4 in GLMDOC and by factors of 1.8–8.5 in
GLMDBC. The effect size of the slope variable was a factor of 1.2 greater in GLMDOC than in GLMDBC,
whereas the effect size of soil moisture was slightly lower in GLMDOC than in GLMDBC. In combination
with the variables representing stocks of BC and OC, these factors were responsible for the majority of the
explained variance in the model, which suggests that these were the primary environmental controls on
DOC and DBC export from catchment stocks to channels.

The remaining environmental variables that explained significant portions of the variance in DOC and DBC
differed somewhat between GLMDOC and GLMDBC. In GLMDOC, these variables were, in order of reducing
η2p, soil classification cluster, soil clay content, and temperature (Table 2). In GLMDBC these variables were
temperature, soil classification cluster, rainfall, and soil clay content (Table 3). The main differences in the
effect size of the mutually significant variables of the models related to clay content, whose η2p was twice
greater in GLMDOC than GLMDBC; temperature, whose η2p was a factor of 3.5 greater in GLMDBC; and soil
classification cluster, whose η2p was a factor of 2.1 greater in GLMDBC. Rainfall was a significant term in
GLMDBC but not in GLMDOC. The magnitude of the effects of each independent variable on DOC and
DBC concentrations is visible in the partial residual plots shown in Figures 4 and 5.

In addition to the greater magnitude of variability in DBC concentration than DOC concentration observed
across soil classification clusters, the factor levels over which DOC and DBC varied were not identical in
GLMDOC and GLMDBC. The mean DOC concentration was modeled to be significantly higher in channels

Table 3
Outputs From GLMDBC, Which Was Fitted to Observed DBC Concentrations (mg/L)

Variablea df

Estimate ANOVA (II) Effect Tukey HSD

Mean s. e. F Pr(>|F|) η2p z Pr(>|z|)

Soil BC stock (Mg C km−1) 1 3.9E−3 7.1E−4 30.36 <0.001 *** 0.155
Aerosol BC deposit stock (kg C km−2) 1 0.011 1.2E−3 77.13 <0.001 *** 0.319
Clay (%) 1 −0.013 6.0E−3 4.74 0.031 * 0.028
Slope (%) 1 −0.034 5.0E−3 51.54 <0.001 *** 0.238
Soil moisture (m3/m3) 1 0.039 5.5E−3 51.42 <0.001 *** 0.238
Rainfall (mm) 1 −3.6E−3 8.5E−4 16.65 <0.001 *** 0.092
Temperature (°C) 1 0.075 0.015 25.52 <0.001 *** 0.134
Soil class cluster 3 7.84 <0.001 *** 0.125
B −0.453 0.148
C −0.416 0.108
D 0.197 0.104
(B‐A) −0.453 0.148 −3.07 0.011 *

(C‐A) −0.416 0.108 −3.87 <0.001 ***

(D‐B) 0.651 0.170 3.82 <0.001 ***

(D‐C) 0.613 0.136 4.49 <0.001 ***

Land cover cluster 5 1.59 0.164 0.046
B −0.055 0.118
C 0.011 0.082
D 0.219 0.162
E 0.126 0.080
F 0.179 0.073
(Intercept)b −5.714 0.673

Model Residuals (mg L‐1):
Min 1Q Median 3Q Max

−0.095 −0.022 −0.003 0.027 0.119

Note. As this model was fitted with a logarithmic link function, it predicts the natural logarithm of DBC concentrations. The median, interquartile, and extreme
values of the distribution of model residuals are also provided (mg/L). Heading abbreviations are as listed in the caption of Table 2. Significance codes: 0 ‘***’
0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1.
aFor categorical variables, significant differences between classes are shown. For example, (B‐A) signifies that the row relates to difference between Clusters A
and B. Tukey HSD post hoc tests the null hypothesis that the difference between two groups is zero. Only significant and marginally significant differences are
shown. bThe intercept differed significantly from zero according to a t test not shown in the table (p < 0.001).
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downstream of catchments assigned to the soil Cluster C (Acrisol‐dominated) than those grouped into
Cluster B (Cambisol‐dominated). In contrast, DBC concentrations were modeled to be similar in channels
draining catchments in Clusters B and C. Moreover, concentrations of DBC (but not DOC) downstream of
catchments in both of these clusters were modeled to be lower than those downstream of catchments in
Clusters A (Ferralsol‐dominated) and D (Nitisol‐dominated). Overall, the models indicate that the export
of DBC from soils was more sensitive to soil mineralogical and physicochemical properties than DOC.

Supporting information Figures S3 and S4 show how explanatory variables interact to affect DOC and DBC
concentrations. For DOC, rising soil moisture enhances the positive relationship between DOC concentra-
tion and upstream SOC stocks, whereas rising slope and soil clay content moderate that relationship.
Meanwhile, the highest concentrations of DBC are observed in channels draining catchments with high
aerosol BC stocks, SBC stocks, and soil moisture but low slope.

5. Discussion

This study evaluated the effects of a diverse range of catchment characteristics on the riverine loads of DOC
and DBC in a large set of samples from Brazilian rivers. The discussion below first addresses advances made
in the understanding of DOC export and then focuses on the apparent coupling of DOC and DBC export pro-
cesses, drivers of decoupling, and the contribution of aerosols to DBC export.

Figure 4. Modeled DOC concentrations (±95% confidence intervals) shown fitted to partial residuals of DOC across the
range of each variable included in the GLMDOC model. In each plot, the values of all other continuous variables are
held at their median value and the values of all other categorical variables are held at their modal value.
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5.1. Controls on DOC Concentrations

Overall, 70% of the variability in observed DOC concentrations was explained by the catchment character-
istics considered. GLMDOC showed that variability in the concentrations of DOC in the Brazilian river chan-
nels was predominantly driven by (i) upstream stocks of SOC and (ii) hydrological factors associated with
drainage and the contact time between water and SOC (slope and soil moisture). Small but significant por-
tions of the explained variability were associated with secondary factors linked to (iii) the mineralogy and
physicochemical properties of the soil (soil class cluster and clay content) and (iv) recent temperatures.
Neither rainfall nor land cover explained a significant portion of the variability in DOC concentration.

A large number of foregoing studies have shown that upstream stocks of SOC are the dominant source of
DOC to freshwater systems (Aitkenhead‐Peterson et al., 2003; Dai et al., 2012; Sobek et al., 2007). This
dependency is evidenced by the strong relationship that is typically observed between the spatial extent of
land covers with rich stocks of SOC, such as peatland and wetland, and the DOC concentrations in channels
(Ågren et al., 2007; Dillon & Molot, 1997; Frost et al., 2006; Gergel et al., 1999; Mattsson et al., 2005;
Mulholland, 1997; Wilson & Xenopoulos, 2008). Further, direct correlation between SOC stocks and DOC

Figure 5. Modeled DBC concentrations (±95% confidence intervals) shown fitted to partial residuals of DBC across the
range of each variable included in the GLMDBC model. In each plot, the values of all other continuous variables are
held at their median value and the values of all other categorical variables are held at their modal value.
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concentrations has been demonstrated at regional to global scales (Hope et al., 1997; Ludwig et al., 1996).
The significant effect of catchment SOC stocks on DOC concentrations evident in GLMDOC is thus
consistent with foregoing research.

The dominant controls over the rate of DOC export from stocks of SOC were slope and soil moisture, which
have also been implicated as important controls on DOC concentration and export fluxes in previous ana-
lyses. Due to its controls over soil drainage, flow paths to channels, and the depth of organic soils, slope is
an indicator of the contact time between water and SOC stocks (Dillon & Molot, 1997; Ludwig et al.,
1996). Increases in catchment slope are associated with enhanced runoff flow generation and shallower
organic soils, which promote the rapid delivery of water to channels (Aitkenhead & McDowell, 2000;
Dillon &Molot, 1997; Rasmussen et al., 1989). Our work adds to the collection of studies showing an inverse
relationship between slope and DOC concentrations in lakes (Rasmussen et al., 1989; Xenopoulos et al.,
2003), local‐ to regional‐scale river systems (Clair et al., 1994; Frost et al., 2006; Mulholland, 1997), and glob-
ally significant catchments (Ludwig et al., 1996). This highlights the role of the hydrological setting, bounded
by topography, in modulating rates of DOC mobilization.

Meanwhile, soil moisture can be considered an indicator of the hydrological state of a catchment on seasonal
timescales because it responds in a delayed or smoothed manner to variability in input (precipitation) and
output (including discharge and evapotranspiration). DOC mobilization depends on soil moisture due to
its control on the contact time between drainage water and SOC and thus rates of SOC dissolution. High
levels of soil moisture indicate that the water table is high and thus that a greater fraction of the hydrological
flow path is in contact with the organic soil horizons where SOC is disproportionately held, enhancing the
desorption and dissolution of SOC to DOC (Inamdar et al., 2011; Lambert et al., 2011; Raymond et al., 2016;
Singh et al., 2014). This process is compounded by coincident biological responses to soil moisture; specifi-
cally, by reducing osmotic stress on microbial cells, high soil moisture also enhances the efficiency with
which microbial communities convert substrates to DOC with a relative aversion to restabilization
(Davidson & Janssens, 2006; Kaiser & Kalbitz, 2012; Kaiser & Zech, 2000; Malik & Gleixner, 2013;
Moyano et al., 2013; Sierra et al., 2015; von Lützow et al., 2006). It was previously shown in headwater catch-
ments that soil moisture anomalies explain the temporal variability in the relationship between SOC stocks
and DOC export fluxes (Wilson & Xenopoulos, 2008).

The dominance of SOC stocks, soil moisture, and catchment slope as factors explaining variability in DOC
concentration helps to explain the strength of the relationship between the spatial extent of wetlands and
peatlands and the concentrations or export of DOC that has been observed in a large number of foregoing
studies (Ågren et al., 2007; Dillon & Molot, 1997; Frost et al., 2006; Gergel et al., 1999; Harrison et al.,
2005; Mattsson et al., 2005; Mulholland, 1997; Wilson & Xenopoulos, 2008). These environments typically

Figure 6. Comparisons of measured and modeled concentrations (mg/L) of DOC (left panel) and DBC (central panel), from GLMDOC and GLMDBC, respectively.
Lines of best fit from simple linear regression models are plotted. Dashed lines show the y = x (1:1) line. The ratios of DBC concentrations to DOC concentrations
(right panel), from GLMDBC and GLMDOC, respectively, are plotted as red points, while measured values are plotted as black points. Symbol shape differs for
samples from Atlantic Forest (AF; crosses), Amazonia (AMZ; triangles), and Cerrado (C; circles). Lines of best fit through points from all ecoregions are from loess
smoothing functions plotted for each data set. The dashed line shows the y = 0.1x (0.1:1) line.
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store large SOC stocks, occupy regions of low slope, and exhibit poor drainage, thus incorporating the
extreme values of the three variables that produce the greatest concentrations of DOC in drainage channels
according to GLMDOC.

Among the secondary factors that exerted significant control on DOC concentrations were soil clay content
and soil classification cluster. Soil clay content and taxonomy have not previously been included as indepen-
dent variables in statistical analyses of the variability in riverine DOC concentrations, presumably due to a
paucity of data at the required spatial or temporal resolutions. Nonetheless, the potential for soil textural and
physicochemical properties to influence the export of DOC from catchments is well recognized in the litera-
ture concerning the cycling of OC in soils. Specifically, OC is cyclically transferred between pools of SOC and
DOC by the processes of microbial decomposition, desorption, and adsorption (Kaiser & Kalbitz, 2012). This
cycle can be halted or slowed via the formation of organomineral associations with metal oxides derived
from clay weathering or by the physical protection of OC within soil (micro‐) aggregates, both of which favor
its stabilization in the SOC pool (Baldock & Skjemstad, 2000; Bruun et al., 2010; Doetterl et al., 2018; Kaiser
& Guggenberger, 2000; Kaiser et al., 1996; Kaiser & Kalbitz, 2012; Kaiser & Zech, 2000; Mulholland, 1997;
Oren & Chefetz, 2012; Six et al., 2002; von Lützow et al., 2006). Since the retention of OC is, by definition,
inversely related to its availability for export, the formation of organo‐mineral complexes and micro‐
aggregates inversely controls the rates of DOC export from catchments. The current study utilized high‐
resolution predictions of clay content and soil classification that were not available at the time of previously
published analyses. GLMDOC showed that significant nonlinear reductions in DOC concentration occurred
across the environmental gradient of soil clay content present in the study catchments (24–58%). In addition,
catchments that were dominated by Cambisol (soil classification Cluster B) were associated with a signifi-
cantly lower mean DOC concentration than catchments dominated by Acrisol (Cluster C). GLMDOC demon-
strates at the continental scale that soil clay content and mineralogy influence the dynamics OC.

DOC concentrations have previously been shown to increase during rainfall events in temperate catch-
ments, including during storms that generate on the order of 10–25% of annual discharge (Dhillon &
Inamdar, 2014; Inamdar et al., 2011; Yoon & Raymond, 2012). We found that rainfall was relatively low
in the week prior to sampling in the majority of our study catchments, lying within a range of 2–4, 2–4,
and 0–1% of mean annual rainfall in AF1, AMZ1, and the Cerrado sites, respectively (supporting informa-
tion data set). This indicates relatively limited potential for rainfall to influence rates of DOC mobilization
in several of our study regions during the period of study. Nonetheless, the range was higher in AF2, span-
ning 4–14%, 0–0.6%, and 0–8% in the 2013 wet season, 2013 dry season, and 2014 wet season, respectively,
and it is reasonable to expect DOC concentrations to have shown some variability driven by antecedent rain-
fall. We suggest that DOC concentrations showed no response to 7‐day rainfall because a low fraction of this
rainfall occurred within the hydrological lag time (2 days at most; section 4.4.2) prior to the collection of the
majority of our samples. While the 7‐day rainfall variable predominantly represented rainfall during the 3–
7 days prior to sampling, the discharge generated by rainfall during the 3–7 days prior to sampling can be
expected to have passed through the sampling locations prior to sample collection.

Overall, the results are highly consistent with previous studies of spatiotemporal variability in DOC concen-
trations at large spatial scales and outside of extreme precipitation events, which provides confidence that
the dynamics of DOC in the rivers studied here are driven by the same processes that have been observed
globally in many river systems. While our study focuses on tropical catchments in South America, the con-
sistency of the environmental controls on DOC concentrations identified in our study with the controls iden-
tified in other tropical (Huang et al., 2012), temperate (Dillon & Molot, 1997; Frost et al., 2006; Hope et al.,
1997; Wilson & Xenopoulos, 2008), high‐latitude (Ågren et al., 2008; Clair et al., 1994; Mattsson et al., 2005),
and global data sets (Aitkenhead‐Peterson et al., 2003; Harrison et al., 2005; Ludwig et al., 1996; Mulholland,
2003) indicates that the results of this study have general relevance to organic matter cycling in global river
catchments. Inclusion of soil clay content and mineralogy as explanatory variables also revealed their signif-
icant, though secondary, effects on DOC retention and export at large geographic scales.

5.2. Coupled Drivers of DBC and DOC Export

This study represents the most comprehensive attempt to model the effects of multiple independent vari-
ables on DBC concentrations in river systems. Overall, 64% of the variability in observed DBC concentrations
was explained by the independent variables that were considered (R2 of GLMDBC = 0.64). The primary
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factors that explained the majority of the variability in DBC concentration were similar to those driving
variability in DOC concentrations, specifically (i) upstream stocks of BC associated with both SBC and aero-
sol BC deposits and (ii) hydrological factors associated with drainage and the contact time between water
and SOC (slope and soil moisture; Table 3 and Figure 5). Significant portions of the explained variability
were also associated with secondary factors linked to (iii) the mineralogy and physicochemical properties
of the soil (soil class cluster and clay content) and (iv) recent weather conditions (temperature and rainfall).
Land cover was not modeled to significantly affect the concentration of DBC.

GLMDOC and GLMDBC identify the same primary factors as the dominant drivers of variability in DOC and
DBC. Specifically, upstream SBC stocks and slope and soil moisture were responsible for the majority of the
explained variance in the concentrations of DBC. The consistency between GLMDOC and GLMDBC is a sig-
nificant result because it suggests that the export of DBC from river channels is dependent on the same set of
first‐order processes. The outputs from GLMDBC/DOC (supporting information Text S7 and Table S2) support
these inferences by demonstrating that the dominant environmental variables affecting DOC and DBC con-
centrations, specifically slope and soil moisture, had no significant effect on DBC/DOC ratios. Thus, neither
DOC nor DBC was affected disproportionately by variability in slope or soil moisture.

This result aligns with the hypothesis of Jaffe et al. (2013), who suggested that the processes governing DOC
and DBC export must be highly coupled on the basis of the simple linear relationship that exists between
their concentrations in a global data set. Two explanations have previously been proposed to explain the
apparent coupling of DBC and DOC export in freshwater systems. First, the solubilization of SBC to DBC
may be a direct result of hydrophobic interactions between SBC and DOC in soil pore space, which lead
to DOC acting as an agent for DBC mobilization. This hypothesis was recently posed and experimentally
trialled by Wagner et al. (2017), who suggested that pore water DOC forms intermolecular associations with
SBC through van der Waals forces, hydrogen bonding, or cation bridging. However, soil leaching experi-
ments did not reveal a relationship between DOC addition to soil and the quantity of DBC leached
(Wagner et al., 2017). An alternative explanation for the strong relationship between DBC and DOC concen-
trations in river systems is that the factors driving the solubilization of SOC and export of DOC operate syn-
chronously across environmental gradients to solubilize SBC and export DBC from soils. The consistency of
the principal drivers of variability in GLMDOC and GLMDBC, and the magnitude of their effects, clearly pro-
vides support for the latter hypothesis and moreover suggests that coupling is driven by hydrological factors.
Specifically, the synchronized influences of slope and soil moisture on the riverine concentrations of DOC
and DBC suggest that the hydrological setting and seasonal‐scale hydrological state of these catchment have
parallel controls on rates of DOC and DBC mobilization from soils.

5.3. Drivers of Decoupling

Despite the evidence for a general hydrological coupling of DOC and DBC dynamics, there were several dis-
continuities between GLMDOC and GLMDBC. Differences in the effect sizes of rainfall, temperature, soil clay
content, and soil classification in GLMDOC and GLMDBC suggest that these environmental factors have dif-
ferential effects on DOC or DBC export. Further, GLMDBC/DOC revealed that two of these factors (tempera-
ture and soil clay content) significantly affected riverine DBC/DOC ratios (supporting information Text S7
and Table S2). While these environmental factors were all associated with relatively minor portions of the
explained variance in DOC and DBC concentration in comparison to stocks, slope, and soil moisture, the
differential effects of these factors indicate their ability to decouple the fluxes of DOC and DBC from
river systems.

DBC concentrations were more sensitive to recent temperature than DOC concentrations. This observation
aligns well with expectations from kinetic theory applied to soil organic matter cycling, which suggests that
the temperature sensitivity of decomposition increases with its recalcitrance (Davidson & Janssens, 2006;
Dungait et al., 2012; von Lützow & Kögel‐Knabner, 2009). As SBC is a particularly recalcitrant form of
SOC, its temperature sensitivity is deductively greater than that of bulk SOC, although problems with separ-
ating the labile and recalcitrant components of charcoal have impeded the empirical assessment of this phe-
nomenon in incubation studies (Nguyen et al., 2010). A general measure for the temperature sensitivity of
SOC decomposition is the proportional change in the rate of SOCmineralization due to a 10 °C temperature
increase (Q10 coefficient). The current study provides an indirect indication of the relativeQ10 values of SOC
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and SBC.With all factors other than temperature held at their median or modal value (as in Figures 4 and 5),
the dQ10 values, defined here as the proportional change in the rate of DOC or DBC export due to a 10 °C
temperature increase, were 1.5 and 2.3, respectively. If it is assumed that rates of DOC and DBC export from
soil each correlate with the rates of their mineralization, which though speculative is perhaps realistic given
the inherent connection of these processes to decomposition, then the ratio between dQ10 values may prove
to be a useful predictor of the ratio between theQ10 values that apply to bulk SOC and SBC. The one previous
study that measured the temperature sensitivity of BC across an environmental temperature gradient
showed a Q10 value of 3.4 (Cheng et al., 2008), which is within the overall range of sensitivities displayed
by SOC (~1.5–4; von Lützow&Kögel‐Knabner, 2009). To our knowledge, no work has yet measured the tem-
perature sensitivity of SOC and SBC simultaneously.

DBC concentrations showed relatively lower sensitivity to soil clay content than DOC concentrations, which
contrasts with the hypothesis expressed in previous work that the stabilization and retention of DBCmay be
particularly sensitive to clay content (Bruun et al., 2014; Singh et al., 2015; Soucémarianadin et al., 2014).
This hypothesis has been held because it is thought that the aromatic structure and polar functionality of
BC promote interaction with clay minerals and uncharged SOC, which in theory make it more prone to pro-
tection within organo‐mineral aggregates (Czimczik & Masiello, 2007; von Lützow et al., 2006). However,
despite these theoretical considerations, contradictory results have been observed in previous research on
the effect of clay content on BC cycling in soil. For example, Singh et al. (2015) observed no significant
change in charcoal decomposition rate over a clay content range of 8–18%, in contrast to Bruun et al.
(2014) who measured a significant reduction across a range of 11–23%. In another study, clay content was
found to have a lesser bearing on BC decomposition than soil mineralogy (Fang et al., 2014), which is con-
sistent with the higher effect size of soil classification cluster than clay content in GLMDBC (Table 3). It is
recognized that the role of clay‐mineral interactions in the soil dynamics of BC is poorly understood and that
more evidence will be required in order to support further interpretation of their effects at large scales (Fang
et al., 2018).

DBC concentrations reduced significantly across the rainfall gradient, in contrast to concentrations of DOC,
which showed no significant trend across the same gradient. Moreover, GLMDBC/DOC suggested that this dif-
ference in response had a marginally significant effect on DBC/DOC ratios in the sampled channels, indicat-
ing a dilution of DBC fluxes relative to DOC fluxes across a rainfall gradient. We suggest two potential
mechanisms for the dilution of DBC relative to DOC as a result of rainfall. First, although the concentrations
of SOC and SBC both reduce with soil depth, such that the majority of both stocks are held in the organic
layer, studies typically report that SBC is a smaller component of total SOC stocks in the organic horizon
than in mineral horizons (Brodowski et al., 2007; Koele et al., 2017; Rodionov et al., 2010;
Soucémarianadin et al., 2014). Near‐surface flow paths generated by rainfall events might thus be expected
to disproportionately mobilize bulk SOC relative to SBC, decoupling the relationship between DBC and
DOC in river channels. We do not believe that this mechanism drove the dilution of riverine DBC in our
study because the data set analyzed here did not include substantial rainfall events in the 2 days prior to sam-
pling (section 6.1). A more likely explanation for the BC dilution observed in our study relates to the dispro-
portionate effect of antecedent rainfall (3–7 days prior to sampling) on BC and OC mobilization. SBC stocks
are inherently more recalcitrant than SOC (Kuzyakov et al., 2014; Schmidt et al., 2011), which places a lower
limit on the rate at which DBC can be mobilized than the rate at which DOC can be mobilized from soils.
During a rainfall event, the maximum rate of DBCmobilization from SBCmay fail to keep pace with the rate
at which DBC is evacuated from soil pore space, resulting in a relative and absolute depletion of the latent
stock of DBC in soil pore space following rainfall. A persistence of this depletion following rainfall might
explain why riverine DBC concentrations fell across the rainfall gradient represented in our study.

The pulse‐shunt concept refers to the hydrological flushing of DOC from catchments to channels during
rainfall or snowmelt events (the pulse) followed by the rapid transfer of this DOC through river systems
(the shunt; Raymond et al., 2016). The related concept of hysteresis refers to variation in the relationship
between catchment stocks of organic matter (including SOC) and riverine concentrations of dissolved
organic matter (including DOC), which is driven by variability in the composition and quality of catchment
organic matter stocks and by the timing with respect to foregoing hydrological events (Evans & Davies, 1998;
Vaughan et al., 2017;Wagner et al., 2019). In practical terms, hysteresis means that different fractions of SOC
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can respond discordantly and on different timescales to a pulse. SBC, as a subpool of bulk SOC stocks, has
unique molecular properties that limit its rate of decomposition relative to other fractions of SOC, and this
indicates that, following a pulse, the latent stock of DBC in soil pore space is likely to recover over longer
timescales than the latent stock of bulk DOC (Hockaday et al., 2007; Kuzyakov et al., 2014). On this basis
it is plausible that for a period following rainfall, pore water DOC is deficient in DBC and the relative stock
of DBC available for export to channels is reduced (Bao et al., 2019; Wagner et al., 2015). These concepts may
help to explain our observation of a negative relationship between riverine DBC concentrations and antece-
dent rainfall (which occurred predominantly in the 3–7 days prior to sampling), despite the apparent
absence of any rainfall effect on riverine DOC concentrations. Specifically, we suggest that pore water
DOC concentrations rebounded following antecedent rainfall, resulting in no observable effect of rainfall
on riverine DOC concentrations at the time of sampling, whereas pore water DBC concentrations remained
suppressed following the prior rainfall, resulting in a reduction in DBC export from catchments across the
rainfall gradient. Overall, our results indicate that seasonal hydrology (represented by soil moisture) and
hydrological setting (represented by catchment slope) are critical factors moderating the rate at which
SBC stocks are solubilized and made available for export as DBC, while the dilution effect of preceding rain-
fall on riverine DBC concentrations may result from the flushing of DBC from soil pore space and a deficit in
the period that follows. This interpretation is also consistent with the dilution of DBC concentrations
observed during high‐discharge events in temperate catchments (Bao et al., 2019; Wagner et al., 2015) and
with the asymptotic limitation to increases in DBC concentration across seasonal discharge gradients that
was previously observed in AF2 (Dittmar, de Rezende, et al., 2012).

Our results yield substantial new insight into the processes driving the export of DBC from catchment stocks
of BC in these tropical river catchments, as well as the factors that control the rate of these processes. It
remains to be tested explicitly whether a similar array of environmental factors controls the export of
DBC from other tropical, temperate, or high‐latitude river systems. Nonetheless, the factors controlling
DOC export in the catchments studied here are highly consistent with those operating in diverse environ-
ments studied previously (section 6.1) and this suggests that the drivers of organic matter dynamics in these
tropical catchments are broadly comparable to those of a wide range of other global catchments. This, com-
bined with the explicable consistencies and distinctions between GLMDOC and GLMDBC (discussed above),
provides a degree of confidence that the environmental factors implicated here are likely to be important
controls on the export of DBC in catchments in other global settings. We suggest that these environmental
controls should be represented by explanatory variables in future studies of riverine DBC export in other
regions of the world

5.4. The Influence of Aerosol BC Deposits

GLMDBC showed that the partial proportion of variance in DBC concentration accounted for by aerosol BC
deposition outweighed that of SBC stocks by a factor of 2, signifying that DBC concentrations in river chan-
nels were more sensitive to upstream stocks of aerosol BC than they were to stocks of SBC. This finding fol-
lows a number of recent studies that have demonstrated the potential of aerosol BC to contribute nontrivially
toward the DBC load of river channels. The influence of aerosol BC on export has been demonstrated
through direct 14C isotopic methods, which identify DBC derived from fossil fuels (Wang et al., 2016),
through spatial evidence for DBC fluxes from catchments without considerable charcoal stocks (Ding
et al., 2015), and through the physical modeling of DBC inputs to channels (Jones et al., 2017). In the current
study, a statistical model of the factors explaining variability in riverine concentrations of DBC identified
aerosol deposition as the independent variable capable of explaining the greatest proportion of variability
in DBC concentration in river channels. This implies that BC aerosol deposition has the potential to drive
decoupling of DOC and DBC export, although the stock of aerosol BC deposits was linked to only marginally
significant variability in the observed DBC/DOC ratio (Table S2).

The strength of the effect of BC aerosol deposition on observed DBC concentrations alone does not suggest
that the contribution of BC aerosol to the DBC load of rivers dominates over that of soil BC sources. We pre-
viously reported that the contribution of BC aerosol to the riverine DBC load of the Paraíba do Sul River
(study region AF1) was most likely to be in the region of 5–18% (Jones et al., 2017), while 15–22% of the
riverine DBC load in major Chinese rivers was found to derive from fossil fuel aerosols (Wang et al.,
2016). This suggests that the major source of DBC to inland aquatic systems is the soil stock of BC, in
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agreement with previous studies at the catchment and global scale (Dittmar, de Rezende, et al., 2012; Jaffe
et al., 2013). Therefore, the most reasonable explanation for the robust influence of BC aerosol on riverine
concentrations of DBC is that soil stocks of BC supply a base flow of DBC to channels, upon which measur-
able variability is superimposed by the delivery of BC aerosol deposits.

Overall, the rate of aerosol BC deposition to the South American tropical river catchments was observed to
explain a greater proportion of the variability in DBC concentration than any other factor included in the
analysis, and hence, this work supports the developing theory that aerosol deposits make a consequential
contribution to fluxes of DBC across the land‐ocean continuum. A recent review of DBC dynamics in aquatic
systems suggests that further evidence is required in order to assert that BC aerosol makes nontrivial contri-
butions to riverine DBC at regional scales andworldwide (Wagner et al., 2018). In the current study the effect
of BC aerosol was apparent at the continental scale in catchments spanning regions with diverse soil proper-
ties, land cover, recent weather conditions, and topography.

5.5. Active Pipe Processes as Sources of Unexplained Variance

While GLMDOC and GLMDBC explain significant portions of the observed variance in DBC and DOC con-
centrations, a limitation of our approach was the absence of factors representing in‐channel dynamics of
DOC and DBC. The concentration of DOC in river channels is a function not only of inputs from upstream
catchments but also of processes occurring in transit such as autochthonous DOC production, exchange of
OC between the dissolved and particulate phases, biotic mineralization, and photo‐oxidation (Cole et al.,
2007; Stanley et al., 2012; Tank et al., 2010). Some of these processes have also been shown to affect DBC con-
centrations in some aquatic systems, although at present the wider importance of these processes for BC
dynamics in aquatic pools is poorly understood (Coppola et al., 2014; Stubbins, Niggemann, & Dittmar,
2012; Wagner et al., 2018). In‐channel processing has previously been conceptualized as an active pipemodel
of a river system, in which a fraction of the riverine carbon is either transferred to river bed sediments or
mineralized during transit (Cole et al., 2007; Raymond et al., 2016; Regnier et al., 2013). This model contrasts
with the passive pipe model in which the carbon reaching channels is exported without modification to the
global oceans. Our results show that the majority of the observed variance in DBC and DOC concentration is
explained by catchment properties, especially hydrological factors; however, the unexplained variance of the
fitted models might relate in part to active pipe processes that are not represented by our study design.

6. Conclusion

In this study we investigated the influence of a diverse range of environmental factors on the riverine export
of DOC and DBC. We observed that the dominant factors explaining variability in DOC and DBC concentra-
tions are shared. Specifically, soil moisture, slope, and the availability of OC and BC, respectively, in
upstream catchments were found to be key explanatory variables with comparable effect sizes on each
dependent variable. We conclude that the synchronized influences of soil moisture and slope on the export
of DOC and DBC from upstream stocks of soil OC and BC, respectively, can explain the coupling of DOC and
DBC concentrations in regional and global data sets. These factors relate to the hydrological setting and sea-
sonal state of the catchments and thus indicate that it is principally hydrological factors that drive the
coupled dynamics of DBC and DOC in these systems.

Despite this, we also identify a number of environmental factors that weaken the relationship between DOC
and DBC. Relative to DOC concentrations, DBC concentrations were significantly more sensitive to tem-
perature and less sensitive to soil clay content. We conclude that spatial and temporal variability in these fac-
tors may drive the decoupling of DBC and DOC dynamics in river catchments. Antecedent rainfall also
drove significant variation in DBC concentration while having no significant effect on DOC concentration,
which also resulted in marginally significant variation to DBC/DOC ratios. We propose that the delayed
recovery of soil pore water DBC stocks relative to pore water DOC stocks following rainfall is a mechanism
for the hydrological decoupling of DBC and DOC export fluxes.

Finally, at an unprecedented geographic scale, our model suggests that aerosol BC contributes significantly
toward riverine fluxes of DBC. The fitted models indicated that BC aerosol deposition rates exert a twice
greater effect on DBC concentrations than the magnitude of soil BC stocks, which is most reasonably
explained by the superimposition of aerosol‐derived DBC fluxes upon a base flow of DBC from soil BC
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stocks. This result is the strongest evidence yet that aerosol BC deposits make ubiquitous and nontrivial con-
tributions to the riverine load of DBC at large spatial scales and across catchments with diverse hydrology,
topography, climate, and soil properties.
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