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Abstract. Accurate assessment of anthropogenic carbon dioxide (CO;) emissions and their redistribution
among the atmosphere, ocean, and terrestrial biosphere — the “global carbon budget” — is important to better un-
derstand the global carbon cycle, support the development of climate policies, and project future climate change.
Here we describe data sets and methodology to quantify the five major components of the global carbon budget
and their uncertainties. CO; emissions from fossil fuels and industry (Efp) are based on energy statistics and
cement production data, respectively, while emissions from land-use change (ELyc), mainly deforestation, are
based on land-cover change data and bookkeeping models. The global atmospheric CO, concentration is mea-
sured directly and its rate of growth (G arm) is computed from the annual changes in concentration. The ocean
CO; sink (Socean) and terrestrial CO» sink (Spanp) are estimated with global process models constrained by
observations. The resulting carbon budget imbalance (Bpy), the difference between the estimated total emis-
sions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect
data and understanding of the contemporary carbon cycle. All uncertainties are reported as £1o. For the last
decade available (2007-2016), Epg was 9.4 £0.5GtCyr—!, ELyc 1.3£0.7GtCyr~!, Garm 4.7 £0.1GtCyr !,
SoceaN 2.4+ 0.5GtCyr~!, and S anp 3.0 £ 0.8 GtCyr~!, with a budget imbalance By of 0.6 GtC yr~! indi-
cating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in Epp was ap-
proximately zero and emissions remained at 9.9 4 0.5 GtC yr~!. Also for 2016, Epyc was 1.3 £0.7GtCyr~!,
G atm Was 6.1 0.2 GtC yr~!, Socpan was 2.6 £0.5GtCyr—!, and Sy anp was 2.7 + 1.0 GtC yr~!, with a small
Bmv of —0.3 GtC. G arm continued to be higher in 2016 compared to the past decade (2007-2016), reflecting
in part the high fossil emissions and the small Spanp consistent with El Nifio conditions. The global atmo-
spheric CO; concentration reached 402.8 &+ 0.1 ppm averaged over 2016. For 2017, preliminary data for the first
6—9 months indicate a renewed growth in Egg of +2.0 % (range of 0.8 to 3.0 %) based on national emissions
projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent
changes in the carbon intensity of the economy for the rest of the world. This living data update documents
changes in the methods and data sets used in this new global carbon budget compared with previous publications
of this data set (Le Quéré et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from
https://doi.org/10.18160/GCP-2017 (GCP, 2017).
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atmosphere, ocean, and terrestrial biosphere on timescales

The concentration of carbon dioxide (CO;) in the atmo-
sphere has increased from approximately 277 parts per mil-
lion (ppm) in 1750 (Joos and Spahni, 2008), the beginning of
the industrial era, to 402.8 0.1 ppm in 2016 (Dlugokencky
and Tans, 2018; Fig. 1). The atmospheric CO; increase above
pre-industrial levels was, initially, primarily caused by the
release of carbon to the atmosphere from deforestation and
other land-use change activities (Ciais et al., 2013). While
emissions from fossil fuels started before the industrial era,
they only became the dominant source of anthropogenic
emissions to the atmosphere from around 1920 and their rel-
ative share has continued to increase until present. Anthro-
pogenic emissions occur on top of an active natural carbon
cycle that circulates carbon between the reservoirs of the
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from sub-daily to millennia, while exchanges with geologic
reservoirs occur on longer timescales (Archer et al., 2009).
The global carbon budget presented here refers to the
mean, variations, and trends in the perturbation of CO; in
the environment, referenced to the beginning of the indus-
trial era. It quantifies the input of CO; to the atmosphere
by emissions from human activities, the growth rate of at-
mospheric CO; concentration, and the resulting changes in
the storage of carbon in the land and ocean reservoirs in re-
sponse to increasing atmospheric CO» levels, climate change
and variability, and other anthropogenic and natural changes
(Fig. 2). An understanding of this perturbation budget over
time and the underlying variability and trends of the natu-
ral carbon cycle are necessary to understand the response of
natural sinks to changes in climate, CO, and land-use change

Earth Syst. Sci. Data, 10, 405448, 2018
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Figure 1. Surface average atmospheric CO, concentration (ppm).
The 1980-2017 monthly data are from NOAA/ESRL (Dlugokencky
and Tans, 2018) and are based on an average of direct atmospheric
CO; measurements from multiple stations in the marine boundary
layer (Masarie and Tans, 1995). The 1958-1979 monthly data are
from the Scripps Institution of Oceanography, based on an average
of direct atmospheric CO, measurements from the Mauna Loa and
South Pole stations (Keeling et al., 1976). To take into account the
difference of mean CO; and seasonality between the NOAA/ESRL
and the Scripps station networks used here, the Scripps surface av-
erage (from two stations) was deseasonalised and harmonised to
match the NOAA/ESRL surface average (from multiple stations)
by adding the mean difference of 0.542 ppm, calculated here from
overlapping data during 1980-2012.

drivers, and the permissible emissions for a given climate sta-
bilisation target.

The components of the CO, budget that are reported an-
nually in this paper include separate estimates for the CO,
emissions from (1) fossil fuel combustion and oxidation and
cement production (Egg; GtC yr_l) and (2) the emissions re-
sulting from deliberate human activities on land, including
those leading to land-use change (Epyc; GtC yr—!); and their
partitioning among (3) the growth rate of atmospheric CO»
concentration (G atm; GtC yr_1 ); and the uptake of CO; (the
“CO, sinks”) in (4) the ocean (Socgan; GtC yr_l) and (5) on
land (Sp.anD; GtC yr_l). The CO; sinks as defined here con-
ceptually include the response of the land (including inland
waters and estuaries) and ocean (including coasts and territo-
rial sea) to elevated CO, and changes in climate, rivers, and
other environmental conditions, although in practice not all
processes are accounted for (see Sect. 2.7). The global emis-
sions and their partitioning among the atmosphere, ocean,
and land are in reality in balance; however, due to imper-
fect spatial and/or temporal data coverage, errors in each es-
timate, and smaller terms not included in our budget esti-
mate (discussed in Sect. 2.7), their sum does not necessarily
add up to zero. We introduce here a budget imbalance (Bpy),
which is a measure of the mismatch between the estimated
emissions and the estimated changes in the atmosphere, land,
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and ocean. This is an important change in calculation of the
global carbon budget, which opens up new insights in the
assessment of each term individually (Schimel et al., 2015).
With this change, the full global carbon budget now reads as
follows:

Err+ Eruc = G at™ + SoceaN + SLanp + Biv. (D

Garm is usually reported in ppmyr—!, which we con-

vert to units of carbon mass per year, GtCyr~!, using
1 ppm=2.12 GtC (Table 1). We also include a quantifica-
tion of Epr by country, computed with both territorial and
consumption-based accounting (see Sect. 2), and discuss
missing terms from sources other than the combustion of fos-
sil fuels (see Sect. 2.7).

The CO; budget has been assessed by the Intergovernmen-
tal Panel on Climate Change (IPCC) in all assessment re-
ports (Ciais et al., 2013; Denman et al., 2007; Prentice et al.,
2001; Schimel et al., 1995; Watson et al., 1990) and by oth-
ers (e.g. Ballantyne et al., 2012). The IPCC methodology has
been adapted and used by the Global Carbon Project (GCP,
http://www.globalcarbonproject.org), which has coordinated
a cooperative community effort for the annual publication
of global carbon budgets up to year 2005 (Raupach et al.,
2007; including fossil emissions only), year 2006 (Canadell
et al., 2007), year 2007 (published online; GCP, 2007), year
2008 (Le Quéré et al., 2009), year 2009 (Friedlingstein et al.,
2010), year 2010 (Peters et al., 2012b), year 2012 (Le Quéré
et al., 2013; Peters et al., 2013), year 2013 (Le Quéré et al.,
2014), year 2014 (Friedlingstein et al., 2014; Le Quéré et
al., 2015b), year 2015 (Jackson et al., 2016; Le Quéré et al.,
2015a), and most recently year 2016 (Le Quéré et al., 2016).
Each of these papers updated previous estimates with the lat-
est available information for the entire time series.

We adopt a range of £1 standard deviation (o) to report
the uncertainties in our estimates, representing a likelihood
of 68 % that the true value will be within the provided range
if the errors have a Gaussian distribution. This choice reflects
the difficulty of characterising the uncertainty in the CO,
fluxes between the atmosphere and the ocean and land reser-
voirs individually, particularly on an annual basis, as well as
the difficulty of updating the CO, emissions from land-use
change. A likelihood of 68 % provides an indication of our
current capability to quantify each term and its uncertainty
given the available information. For comparison, the Fifth
Assessment Report of the IPCC (ARS) generally reported a
likelihood of 90 % for large data sets whose uncertainty is
well characterised, or for long time intervals less affected by
year-to-year variability. Our 68 % uncertainty value is near
the 66 % which the IPCC characterises as “likely” for values
falling into the =10 interval. The uncertainties reported here
combine statistical analysis of the underlying data and ex-
pert judgement of the likelihood of results lying outside this
range. The limitations of current information are discussed in
the paper and have been examined in detail elsewhere (Bal-
lantyne et al., 2015; Zscheischler et al., 2017). We also use a

www.earth-syst-sci-data.net/10/405/2018/
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Figure 2. Schematic representation of the overall perturbation of the global carbon cycle caused by anthropogenic activities, averaged
globally for the decade 2007-2016. The values represent emission from fossil fuels and industry (Efg), emissions from deforestation and
other land-use change (E7 yc), the growth rate in atmospheric CO; concentration (G aTMm ), and the uptake of carbon by the sinks in the ocean

(Socean) and land (S; AND) reservoirs. The budget imbalance (Byyy) is also shown. All fluxes are in units of GtC yr

~1 with uncertainties

reported as £1o (68 % confidence that the real value lies within the given interval) as described in the text. This figure is an update of
one prepared by the International Geosphere-Biosphere Programme for the GCP, using diagrams created with symbols from the Integration
and Application Network, University of Maryland Center for Environmental Science (http://ian.umces.edu/symbols/), first presented in Le

Quéré (2009).

Table 1. Factors used to convert carbon in various units (by convention, Unit 1 = Unit 2 conversion).

Unit 1 Unit 2 Conversion  Source

GtC (gigatonnes of carbon) ppm (parts per million)? 2.12b Ballantyne et al. (2012)

GtC (gigatonnes of carbon) PgC (petagrams of carbon) 1 SI unit conversion

GtCO; (gigatonnes of carbon dioxide)  GtC (gigatonnes of carbon) 3.664 44.01/12.011 in mass equivalent
GtC (gigatonnes of carbon) MtC (megatonnes of carbon) 1000  SI unit conversion

@ Measurements of atmospheric CO; concentration have units of dry-air mole fraction. “ppm” is an abbreviation for micromole per mol of dry air.

b The use of a factor of 2.12 assumes that all the atmosphere is well mixed within 1 year. In reality, only the troposphere is well mixed and the growth rate of
CO; concentration in the less well-mixed stratosphere is not measured by sites from the NOAA network. Using a factor of 2.12 makes the approximation that
the growth rate of CO, concentration in the stratosphere equals that of the troposphere on a yearly basis.

qualitative assessment of confidence level to characterise the
annual estimates from each term based on the type, amount,
quality, and consistency of the evidence as defined by the
IPCC (Stocker et al., 2013).

All quantities are presented in units of gigatonnes of car-
bon (GtC, 10'3 gC), which is the same as petagrams of car-

www.earth-syst-sci-data.net/10/405/2018/

bon (PgC; Table 1). Units of gigatonnes of CO, (or billion
tonnes of CO) used in policy are equal to 3.664 multiplied
by the value in units of GtC.

This paper provides a detailed description of the data sets
and methodology used to compute the global carbon bud-
get estimates for the period pre-industrial (1750) to 2016

Earth Syst. Sci. Data, 10, 405-448, 2018
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Table 2. How to cite the individual components of the global carbon budget presented here.

Component

Primary reference

Global emissions from fossil fuels and industry
(EFF), total and by fuel type

Boden et al. (2017)

National territorial emissions from fossil fuels
and industry (EFp)

CDIAC source: Boden et al. (2017),
UNFCCC (2017)

National consumption-based emissions from
fossil fuels and industry (Efp) by country (con-
sumption)

Peters et al. (2011b) updated as described in this
paper

Land-use change emissions (Epyc)

Average from Houghton and Nassikas (2017)
and Hansis et al. (2015), both updated as de-
scribed in this paper

Growth rate in atmospheric CO, concentration
(Garm)

Dlugokencky and Tans (2018)

Ocean and land CO, sinks (Socgan and
SLAND)

This paper for Socgan and Spanp and refer-
ences in Table 4 for individual models

and in more detail for the period 1959 to 2016. It also pro-
vides decadal averages starting in 1960 including the last
decade (2007-2016), results for the year 2016, and a pro-
jection for year 2017. Finally it provides cumulative emis-
sions from fossil fuels and land-use change since year 1750,
the pre-industrial period, and since year 1870, the reference
year for the cumulative carbon estimate used by the IPCC
(ARS5) based on the availability of global temperature data
(Stocker et al., 2013). This paper is updated every year using
the format of “living data” to keep a record of budget versions
and the changes in new data, revision of data, and changes in
methodology that lead to changes in estimates of the carbon
budget. Additional materials associated with the release of
each new version will be posted at the Global Carbon Project
website (http://www.globalcarbonproject.org/carbonbudget),
with fossil fuel emissions also available through the Global
Carbon Atlas (http://www.globalcarbonatlas.org). With this
approach, we aim to provide the highest transparency and
traceability in the reporting of CO3, the key driver of climate
change.

2 Methods

Multiple organisations and research groups around the world
generated the original measurements and data used to com-
plete the global carbon budget. The effort presented here is
thus mainly one of synthesis, where results from individual
groups are collated, analysed, and evaluated for consistency.
We facilitate access to original data with the understanding
that primary data sets will be referenced in future work (see
Table 2 for how to cite the data sets). Descriptions of the
measurements, models, and methodologies follow below and

Earth Syst. Sci. Data, 10, 405448, 2018

in depth descriptions of each component are described else-
where.

This is the 12th version of the global carbon budget and
the sixth revised version in the format of a living data up-
date. It builds on the latest published global carbon budget
of Le Quéré et al. (2016). The main changes are (1) the in-
clusion of data to year 2016 (inclusive) and a projection for
the global carbon budget for year 2017; (2) the use of two
bookkeeping models to assess Epyc (instead of one); (3) the
use of dynamic global vegetation models (DGVMs) to assess
SLAND; (4) the direct use of global ocean biogeochemistry
models (GOBMs) to assess Socean With no normalisation
to observations; (5) the introduction of the budget imbalance
Brmv as the difference between the estimated emissions and
sinks, thus removing the assumption in previous global car-
bon budgets that the main uncertainties are primarily on the
land sink (SpanDp) and recognising uncertainties in the esti-
mate of SoceaN, particularly on decadal timescales; (6) the
addition of a table presenting the major known sources of un-
certainties; and (7) the expansion of the model descriptions.
The main methodological differences between annual carbon
budgets are summarised in Table 3.

The use of DGVMs and GOBMs to assess Spanp and
Socean with the introduction of the Bpy (3—5 above) is a
substantial difference from previous global carbon budget
publications. This change was introduced after a commu-
nity discussion held at the 10th International CO, Confer-
ence in 2017, in recognition of two arguments brought for-
ward by the community. First, recent evidence based on ob-
served oceanic constraints suggests that the ocean models
used in our global carbon budget may be underestimating
the decadal and semi-decadal variability in the ocean sink
(Landschiitzer et al., 2015; DeVries et al., 2017). Second, the

www.earth-syst-sci-data.net/10/405/2018/
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growing need to verify reported emissions with Earth sys-
tem observations requires that we progress rapidly towards
the resolution of remaining inconsistencies in the global car-
bon budget (Peters et al., 2017). Furthermore, reviewers of
Le Quéré et al. (2016) requested that this new edition of the
global carbon budget focuses on what we do not know, rather
than on what we know. We introduce this change in anticipa-
tion that it will trigger new ideas in the way we think about
the global carbon budget; produce new, more stringent con-
straints on each of its components; and result in more evident
and transparent attribution of uncertainties.

2.1 COy emissions from fossil fuels and industry (Egg)
2.1.1 Emissions estimates

The estimates of global and national CO; emissions from
fossil fuels, including gas flaring and cement production
(EFr), rely primarily on energy consumption data, specif-
ically data on hydrocarbon fuels, collated and archived by
several organisations (Andres et al., 2012). We use four main
data sets for historical emissions (1751-2016):

1. Global and national emission estimates from CDIAC for
the time period 1751-2014 (Boden et al., 2017), as it is
the only data set that extends back to 1751 by country.

2. Official UNFCCC national inventory reports for 1990-
2015 for the 42 Annex I countries in the UNFCCC (UN-
FCCC, 2017), as we assess these to be the most accurate
estimates because they are compiled by experts within
countries which have access to detailed energy data, and
they are periodically reviewed.

3. The BP Statistical Review of World Energy (BP, 2017),
to project the emissions forward to 2016 to ensure the
most recent estimates possible.

4. The US Geological Survey estimates of cement produc-
tion (USGS, 2017), to estimate cement emissions.

In the following we provide more details in each data set
and additional modifications that are required to make the
data set consistent and usable.

CDIAC. The CDIAC estimates have been updated annu-
ally to include the most recent year (2014) and to include
statistical revisions to recent historical data (UN, 2017). Fuel
masses and volumes are converted to fuel energy content us-
ing country-level coefficients provided by the UN and then
converted to CO;, emissions using conversion factors that
take into account the relationship between carbon content
and energy (heat) content of the different fuel types (coal,
oil, gas, gas flaring) and the combustion efficiency (Marland
and Rotty, 1984).

UNFCCC. Estimates from the UNFCCC national inven-
tory reports follow the IPCC guidelines (IPCC, 2006) but
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have a slightly larger system boundary than CDIAC by in-
cluding emissions coming from carbonates other than in ce-
ment manufacturing. We reallocate the detailed UNFCCC es-
timates to the CDIAC definitions of coal, oil, gas, cement,
and other to allow consistent comparisons over time and be-
tween countries.

BP. For the most recent period when the UNFCCC (2017)
and CDIAC (2015-2016) estimates are not available, we
generate preliminary estimates using the BP Statistical Re-
view of World Energy (Andres et al., 2014; Myhre et al.,
2009). We apply the BP growth rates by fuel type (coal,
oil, gas) to estimate 2016 emissions based on 2015 estimates
(UNFCCC) and to estimate 2015 and 2016 based on 2014
estimates (CDIAC). BP’s data set explicitly covers about
70 countries (96 % of global emissions), and for the remain-
ing countries we use growth rates from the subregion the
country belongs to. For the most recent years, flaring is as-
sumed constant from the most recent available year of data
(2015 for countries that report to the UNFCCC, 2014 for the
remainder).

USGS. Estimates of emissions from cement production are
based on USGS (USGS, 2017), applying the emission fac-
tors from CDIAC (Marland and Rotty, 1984). The CDIAC
cement emissions are known to be high and are likely to be
revised downwards next year (Andrew, 2018). Some fraction
of the CaO and MgO in cement is returned to the carbonate
form during cement weathering but this is omitted here (Xi
et al., 2016).

Country mappings. The published CDIAC data set in-
cludes 256 countries and regions. This list includes coun-
tries that no longer exist, such as the USSR and Yugoslavia.
We reduce the list to 220 countries by reallocating emissions
to the currently defined territories, using mass-preserving
aggregation or disaggregation. Examples of aggregation in-
clude merging East and West Germany to the currently de-
fined Germany. Examples of disaggregation include reallo-
cating the emissions from the former USSR to the resulting
independent countries. For disaggregation, we use the emis-
sion shares when the current territories first appeared, and
thus historical estimates of disaggregated countries should
be treated with extreme care.

Global total. Our global estimate is based on CDIAC, and
this is greater than the sum of emissions from all countries.
This is largely attributable to emissions that occur in interna-
tional territory, in particular the combustion of fuels used in
international shipping and aviation (bunker fuels). The emis-
sions from international bunker fuels are calculated based on
where the fuels were loaded, but we do not include them
in the national emissions estimates. Other differences occur
(1) because the sum of imports in all countries is not equal to
the sum of exports and (2) because of inconsistent national
reporting, differing treatment of oxidation of non-fuel uses of
hydrocarbons (e.g. as solvents, lubricants, feedstocks), and
(3) changes in fuel stored (Andres et al., 2012).
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2.1.2 Uncertainty assessment for Erg

We estimate the uncertainty of the global emissions from fos-
sil fuels and industry at &5 % (scaled down from the pub-
lished £10% at +20 to the use of 1o bounds reported
here; Andres et al., 2012). This is consistent with a more
detailed recent analysis of uncertainty of +8.4 % at +2¢
(Andres et al., 2014) and at the high-end of the range of
+5-10% at £20 reported by Ballantyne et al. (2015). This
includes an assessment of uncertainties in the amounts of
fuel consumed, the carbon and heat contents of fuels, and
the combustion efficiency. While we consider a fixed uncer-
tainty of £5 % for all years, the uncertainty as a percentage
of the emissions is growing with time because of the larger
share of global emissions from emerging economies and de-
veloping countries (Marland et al., 2009). Generally, emis-
sions from mature economies with good statistical processes
have an uncertainty of only a few per cent (Marland, 2008),
while developing countries such as China have uncertainties
of around £10 % (for ==10; Gregg et al., 2008). Uncertainties
of emissions are likely to be mainly systematic errors related
to underlying biases of energy statistics and to the accounting
method used by each country.

We assign a medium confidence to the results presented
here because they are based on indirect estimates of emis-
sions using energy data (Durant et al., 2011). There is only
limited and indirect evidence for emissions, although there is
a high agreement among the available estimates within the
given uncertainty (Andres et al., 2014, 2012), and emission
estimates are consistent with a range of other observations
(Ciais et al., 2013), even though their regional and national
partitioning is more uncertain (Francey et al., 2013).

2.1.3 Emissions embodied in goods and services

CDIAC, UNFCCC, and BP national emission statistics “in-
clude greenhouse gas emissions and removals taking place
within national territory and offshore areas over which the
country has jurisdiction” (Rypdal et al., 2006) and are called
territorial emission inventories. Consumption-based emis-
sion inventories allocate emissions to products that are con-
sumed within a country and are conceptually calculated as
the territorial emissions minus the “embodied” territorial
emissions to produce exported products plus the emissions
in other countries to produce imported products (consump-
tion = territorial — exports 4 imports). Consumption-based
emission attribution results (e.g. Davis and Caldeira, 2010)
provide additional information to territorial-based emissions
that can be used to understand emission drivers (Hertwich
and Peters, 2009) and quantify emission transfers by the
trade of products between countries (Peters et al., 2011b).
The consumption-based emissions have the same global to-
tal but reflect the trade-driven movement of emissions across
the Earth’s surface in response to human activities.
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We estimate consumption-based emissions from 1990 to
2015 by enumerating the global supply chain using a global
model of the economic relationships between economic sec-
tors within and between every country (Andrew and Peters,
2013; Peters et al., 2011a). Our analysis is based on the eco-
nomic and trade data from the Global Trade and Analysis
Project (GTAP; Narayanan et al., 2015), and we make de-
tailed estimates for the years 1997 (GTAP version 5), 2001
(GTAP6), and 2004, 2007, and 2011 (GTAP9.2), covering
57 sectors and 141 countries and regions. The detailed re-
sults are then extended into an annual time series from 1990
to the latest year of the gross domestic product (GDP) data
(2015 in this budget), using GDP data by expenditure in cur-
rent exchange rate of US dollars (USD; from the UN Na-
tional Accounts Main Aggregates Database; UN, 2016) and
time series of trade data from GTAP (based on the method-
ology in Peters et al., 2011b). We estimate the sector-level
CO; emissions using the GTAP data and methodology, in-
clude flaring and cement emissions from CDIAC, and then
scale the national totals (excluding bunker fuels) to match
the emission estimates from the carbon budget. We do not
provide a separate uncertainty estimate for the consumption-
based emissions, but based on model comparisons and sen-
sitivity analysis, they are unlikely to be significantly differ-
ent than for the territorial emission estimates (Peters et al.,
2012a).

2.1.4 Growth rate in emissions

We report the annual growth rate in emissions for adjacent
years (in percent per year) by calculating the difference be-
tween the two years and then normalising to the emissions in
the first year: (Egp(fo+1) — Erp(f0))/ Erp(fo) X 100 %. We ap-
ply a leap-year adjustment to ensure valid interpretations of
annual growth rates. This affects the growth rate by about
0.3% (1/365) and causes growth rates to go up approxi-
mately 0.3 % if the first year is a leap year and down 0.3 % if
the second year is a leap year.

The relative growth rate of Epp over time periods of
greater than 1 year can be rewritten using its logarithm equiv-
alent as follows:

1 dEFF_d(lnEFF)
Epp dt dr

2)

Here we calculate relative growth rates in emissions for
multi-year periods (e.g. a decade) by fitting a linear trend to
In(EFr) in Eq. (2), reported in percent per year.

2.1.5 Emissions projections

To gain insight on emission trends for the current year
(2017), we provide an assessment of global fossil fuel and in-
dustry emissions, Efp, by combining individual assessments
of emissions for China, USA, India (the three countries with
the largest emissions), and the rest of the world. Although the
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EU in aggregate emits more than India, neither official fore-
casts nor monthly energy statistics are available for the EU as
a whole to make a projection for 2017. In consequence, we
use GDP projections to infer the emissions for this region.

Our 2017 estimate for China uses (1) estimates of coal
consumption, production, imports, and inventory changes
from the China Coal Industry Association (CCIA) and
the National Energy Agency of China (NEA) for January
through June (CCIA, 2017; NEA, 2017); (2) estimated con-
sumption of natural gas and petroleum for January through
June from NEA (CCIA, 2017; NEA, 2017); and (3) produc-
tion of cement reported for January through August (NBS,
2017). Using these data, we estimate the change in emissions
for the corresponding months in 2017 compared to 2016 as-
suming no change in the energy and carbon content of coal
for 2017. We then use a central estimate for the growth rate of
the whole year that is adjusted down somewhat relative to the
first half of the year to account for a slowing trend in indus-
trial growth observed since July and qualitative statements
from the NEA saying that they expect oil and coal consump-
tion to be relatively stable for the second half of the year.
The main sources of uncertainty are from inconsistencies be-
tween available data sources, incomplete data on inventory
changes, the carbon content of coal, and the assumptions for
the behaviour for the rest of the year. These are discussed
further in Sect. 3.2.1.

For the USA, we use the forecast of the US Energy Infor-
mation Administration (EIA) for emissions from fossil fuels
(EIA, 2017). This is based on an energy forecasting model
which is revised monthly and takes into account heating-
degree days, household expenditures by fuel type, energy
markets, policies, and other effects. We combine this with
our estimate of emissions from cement production using the
monthly US cement data from USGS for January—June, as-
suming changes in cement production over the first part of
the year apply throughout the year. While the EIA’s fore-
casts for current full-year emissions have on average been
revised downwards, only nine such forecasts are available, so
we conservatively use the full range of adjustments following
revision and additionally assume symmetrical uncertainty to
give +2.7 % around the central forecast.

For India, we use (1) coal production and sales data from
the Ministry of Mines, Coal India Limited (CIL, 2017; Min-
istry of Mines, 2017) and Singareni Collieries Company
Limited (SCCL, 2017), combined with imports data from
the Ministry of Commerce and Industry (MCI, 2017) and
power station stocks data from the Central Electricity Au-
thority (CEA, 2017); (2) oil production and consumption
data from the Ministry of Petroleum and Natural Gas (PPAC,
2017b); (3) natural gas production and import data from the
Ministry of Petroleum and Natural Gas (PPAC, 2017a); and
(4) cement production data from the Office of the Economic
Adpvisor (OEA, 2017). The main source of uncertainty in the
projection of India’s emissions is the assumption of persis-
tent growth for the rest of the year.
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For the rest of the world, we use the close relation-
ship between the growth in GDP and the growth in emis-
sions (Raupach et al., 2007) to project emissions for the
current year. This is based on a simplified Kaya identity,
whereby Epp (GtCyr~!) is decomposed by the product of
GDP (USDyr~!) and the fossil fuel carbon intensity of the
economy (/rp; GtC USD 1) as follows:

EFF = GDP x IFF- (3)

Taking a time derivative of Eq. (3) and rearranging gives

| dEgp 1 dGDP

Epg dt  GDP dr

1 dlfr
Irp dr ’

“)

where the left-hand term is the relative growth rate of Efp
and the right-hand terms are the relative growth rates of GDP
and Ipp, respectively, which can simply be added linearly to
give the overall growth rate.

The growth rates are reported in percent by multiplying
each term by 100. As preliminary estimates of annual change
in GDP are made well before the end of a calendar year, mak-
ing assumptions on the growth rate of Irr allows us to make
projections of the annual change in CO; emissions well be-
fore the end of a calendar year. The Irf is based on GDP in
constant PPP (purchasing power parity) from the IEA up to
2014 (IEA/OECD, 2016) and extended using the IMF growth
rates for 2015 and 2016 (IMF, 2017). Interannual variability
in Igp is the largest source of uncertainty in the GDP-based
emissions projections. We thus use the standard deviation of
the annual Igr for the period 20062016 as a measure of un-
certainty, reflecting a =10 as in the rest of the carbon budget.
This is £1.1% yr~! for the rest of the world (global emis-
sions minus China, USA, and India).

The 2017 projection for the world is made of the sum of
the projections for China, USA, India, and the rest. The un-
certainty is added in quadrature among the three regions. The
uncertainty here reflects the best of our expert opinion.

2.2 CO» emissions from land use, land-use change,
and forestry (ELyc)

The net CO, flux from land use, land-use change, and
forestry reported here (ELyc, called land-use change emis-
sions in the following) include CO, fluxes from deforesta-
tion, afforestation, logging and forest degradation (including
harvest activity), shifting cultivation (cycle of cutting forest
for agriculture, then abandoning), and regrowth of forests
following wood harvest or abandonment of agriculture. Only
some land management activities are included in our land-
use change emissions estimates (Table Al). Some of these
activities lead to emissions of CO; to the atmosphere, while
others lead to CO;, sinks. Epyc is the net sum of all an-
thropogenic activities considered. Our annual estimate for
1959-2016 is provided as the average of results from two
bookkeeping models (Sect. 2.2.1): the estimate published
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by Houghton and Nassikas (2017; hereafter H&N2017) ex-
tended here to 2016 and the average of two simulations done
with the BLUE model (bookkeeping of land-use emissions;
Hansis et al., 2015). In addition, we use results from DGVMs
(see Sect. 2.2.3 and Table Al) to help quantify the uncer-
tainty in Epyc and to explore the consistency of our under-
standing. The three methods are described below, and differ-
ences are discussed in Sect. 3.2.

2.2.1 Bookkeeping models

Land-use change CO, emissions and uptake fluxes are cal-
culated by two bookkeeping models. Both are based on
the original bookkeeping approach of Houghton (2003) that
keeps track of the carbon stored in vegetation and soils be-
fore and after a land-use change (transitions between various
natural vegetation types, croplands, and pastures). Literature-
based response curves describe decay of vegetation and soil
carbon, including transfer to product pools of different life-
times, as well as carbon uptake due to regrowth. Additionally,
they represents permanent degradation of forests by lower
vegetation and soil carbon stocks for secondary as compared
to the primary forests and forest management such as wood
harvest.

The bookkeeping models do not include land ecosystems’
transient response to changes in climate, atmospheric CO»,
and other environmental factors, and the carbon densities are
based on contemporary data reflecting stable environmental
conditions at that time. Since carbon densities remain fixed
over time in bookkeeping models, the additional sink capac-
ity that ecosystems provide in response to CO, fertilisation
and some other environmental changes is not captured by
these models (Pongratz et al., 2014; see Sect. 2.7.3).

The H&N2017 and BLUE models differ in (1) computa-
tional units (country-level vs. spatially explicit treatment of
land-use change), (2) processes represented (see Table Al),
and (3) carbon densities assigned to vegetation and soil of
each vegetation type. A notable change in H&N2017 over the
original approach by Houghton (2003) used in earlier bud-
get estimates is that no shifting cultivation or other back and
forth transitions at a level below country level are included.
Only a decline in forest area in a country as indicated by
the Forest Resource Assessment of the FAO that exceeds the
expansion of agricultural area as indicated by the FAO is as-
sumed to represent a concurrent expansion and abandonment
of cropland. In contrast, the BLUE model includes sub-grid-
scale transitions at the grid level between all vegetation types
as indicated by the harmonised land-use change data (LUH2)
data set (Hurtt et al., 2018). Furthermore, H&N2017 assume
conversion of natural grasslands to pasture, while BLUE al-
locates pasture proportionally on all natural vegetation that
exists in a grid cell. This is one reason for generally higher
emissions in BLUE. H&N2017 add carbon emissions from
peat burning, based on the Global Fire Emissions Database
(GFED4s; van der Werf et al., 2017), and peat drainage,
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based on estimates by Hooijer et al. (2010), to the output
of their bookkeeping model for the countries of Indonesia
and Malaysia. Peat burning and emissions from the organic
layers of drained peat soils, which are not captured by book-
keeping methods directly, need to be included to represent
the substantially larger emissions and interannual variability
due to synergies of land-use and climate variability in South-
east Asia, in particular during El-Nifio events. Similarly to
H&N2017, peat burning and drainage-related emissions are
also added to the BLUE estimate based on GFED4s (van der
Werf et al., 2017), adding the peat burning for the GFED re-
gion of equatorial Asia and the peat drainage for Southeast
Asia from Hooijer et al. (2010).

The two bookkeeping estimates used in this study also dif-
fer with respect to the land-use change data used to drive the
models. H&N2017 base their estimates directly on the For-
est Resource Assessment of the FAO which provides statis-
tics on forest-cover change and management at intervals of
5 years (FAO, 2015). The data are based on countries’ self-
reporting, some of which include satellite data in more re-
cent assessments. Changes in land use other than forests are
based on annual, national changes in cropland and pasture
areas reported by FAO (FAOSTAT, 2015). BLUE uses the
harmonised land-use change data LUH2 (Hurtt et al., 2018)
which describes land-use change, also based on the FAO
data, but downscaled at a quarter-degree spatial resolution,
considering sub-grid-scale transitions between primary for-
est, secondary forest, cropland, pasture, and rangeland. The
new LUH2 data provide a new distinction between range-
lands and pasture. This is implemented by assuming range-
lands are treated either all as pastures or all as natural vege-
tation. These two assumptions are then averaged to provide
the BLUE result that is closest to the expected real value.

The estimate of H&N2017 was extended here by 1 year (to
2016) by adding the anomaly of total peat emissions (burning
and drainage) from GFED4s over the previous decade (2006—
2015) to the decadal average of the bookkeeping result. A
small correction to their 2015 value was also made based on
the updated peat burning of GFED4s.

2.2.2 Dynamic global vegetation models (DGVMs)

Land-use change CO, emissions have also been estimated
using an ensemble of 12 DGVM simulations. The DGVMs
account for deforestation and regrowth, the most important
components of E7yc, but they do not represent all processes
resulting directly from human activities on land (Table Al).
All DGVMs represent processes of vegetation growth and
mortality, as well as decomposition of dead organic matter
associated with natural cycles, and include the vegetation
and soil carbon response to increasing atmospheric CO; lev-
els and to climate variability and change. Some models ex-
plicitly simulate the coupling of carbon and nitrogen cycles
and account for atmospheric N deposition (Table Al). The
DGVMs are independent from the other budget terms except
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Table 4. References for the process models, pCO;-based ocean flux products, and atmospheric inversions included in Figs. 6-8. All models
and products are updated with new data to end of year 2016.

Model/data name Reference Change from Le Quéré et al. (2016)

Bookkeeping models for land-use change emissions

BLUE Hansis et al. (2015) Not applicable (not used in previous carbon budgets)

H&N2017 Houghton and Nassikas (2017)  Updated from Houghton et al. (2012); key differences in-
clude revised land-use change data to FAO2015, revised
vegetation carbon densities, Indonesian and Malaysian peat
burning and drainage added, and removal of shifting culti-
vation.

Dynamic global vegetation models

CABLE Haverd et al. (2017) Optimisation of plant investment in rubisco- vs. electron-
transport-limited photosynthesis; temperature-dependent
onset of spring recovery in evergreen needle leaves.

CLASS-CTEM Melton and Arora (2016) A soil colour index is now used to determine soil albedo as
opposed to soil texture. Soil albedo still gets modulated by
other factors including soil moisture.

CLM4.5(BGC) Oleson et al. (2013) No change.

DLEM Tian et al. (2015) Consideration of the expansion of cropland and pasture,
compared with no pasture expansion in previous version.

ISAM Jain et al. (2013) No change.

JSBACH Reick et al. (2013)2 Adapted the preprocessing of the LUH data; scaling of crop

and pasture states and transitions with the desert fractions
in JSBACH in order to maintain as much of the prescribed
agricultural areas as possible.

JULESP Clark et al. (2011)°¢ No Change.

LPJ-GUESS Smith et al. (2014)4 LUH?2 with land use aggregated to LPJ-GUESS land cover
inputs, shifting cultivation based on LUH2 gross transitions
matrix, and wood harvest based on LUH2 area fractions of
wood harvest; o, reduction by 15 %.

LPJ® Sitch et al. (2003)f No change.

LPX-Bern Keller et al. (2017) Updated model parameter values (Keller et al., 2017) due to
assimilation of observational data.

OCN Zaehle and Friend (2010)8 Uses 1293, including minor bug fixes; use of the CMIP6 N
deposition data set

ORCHIDEE Krinner et al. (2005)h Improved water stress, new soil albedo, improved snow
scheme.

ORCHIDEE-MICT  Guimberteau et al. (2018) New version of ORCHIDEE including fires, permafrost re-

gions coupling between soil thermodynamics and carbon
dynamics, and managed grasslands.

SDGVM Woodward et al. (1995)i Uses Kattge et al. (2009) Vecmax~ leaf N relationships
(with Oxisol relationship for evergreen broad leaves).

VISIT Kato et al. (2013)j LUH2 is applied for land use, wood harvest, and land-use
change. Sensitivity of soil decomposition parameters from
Lloyd and Taylor (1994) are modified.
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Model/data name Reference

Change from Le Quéré et al. (2016)

Global ocean biogeochemistry models

CCSM-BEC Doney et al. (2009)

Change in atmospheric CO, concentrationX.

CSIRO Law et al. (2017)

Physical model change from MOM4 to MOMS and at-
mospheric forcing from JRA-55.

MITgcm-REcoM2 Hauck et al. (2016)

1 % iron solubility and atmospheric forcing from JRA-
55.

MPIOM-HAMOCC! Ilyina et al. (2013)

Cyanobacteria added to HAMOCC (Paulsen et al.,
2017).

NEMO-PISCES (CNRM) Séférian et al. (2013) No change.
NEMO-PISCES (IPSL) Aumont and Bopp (2006) No change.
NEMO-PlankTOMS5 Buitenhuis et al. (2010)™ No change.
NorESM-OC Schwinger et al. (2016) No change.
pCO;y-based flux ocean products

Landschiitzer Landschiitzer et al. (2016) No change.

Jena CarboScope Rodenbeck et al. (2014)

Updated to version oc_1.5.

Atmospheric inversions

CarbonTracker Europe (CTE)

van der Laan-Luijkx et al. (2017)

Minor changes in the inversion setup.

Jena CarboScope Rodenbeck et al. (2003)

Prior fluxes, outlier removal, changes in atmospheric
observations station suite.

CAMS Chevallier et al. (2005)

Change from half-hourly observations to daily averages
of well-mixed conditions.

2 See also Goll et al. (2015).
Joint UK Land Environment Simulator.
¢ See also Best et al. (2011).

d To account for the differences between the derivation of shortwave radiation (SWRAD) from CRU cloudiness and SWRAD from CRU-NCEP, the photosynthesis

scaling parameter o, was modified (—15 %) to yield similar results.
¢ Lund-Potsdam—Jena.

f Compared to published version, decreased LPJ wood harvest efficiency so that 50 % of biomass was removed off-site compared to 85 % used in the 2012 budget.
Residue management of managed grasslands increased so that 100 % of harvested grass enters the litter pool.

£ See also Zaehle et al. (2011).

h Compared to published version, revised parameters values for photosynthetic capacity for boreal forests (following assimilation of FLUXNET data), updated
parameters values for stem allocation, maintenance respiration and biomass export for tropical forests (based on literature), and CO, down-regulation process added

to photosynthesis.
! See also Woodward and Lomas (2004) and Walker et al. (2017).
J See also Ito and Inatomi (2012).

k Previous simulations used atmospheric CO, concentration from the IPCC 1S92a scenario. This has been rerun using observed atmospheric CO, concentration

consistent with the protocol used here.
I Last included in Le Quéré et al. (2015a).
M With no nutrient restoring below the mixed layer depth.

for their use of atmospheric CO, concentration to calculate
the fertilisation effect of CO, on plant photosynthesis.

The DGVMs used the HYDE land-use change data set
(Klein Goldewijk et al., 2017a, b), which provides annual,
half-degree, fractional data on cropland and pasture. These
data are based on annual FAO statistics of change in agricul-
tural area available to 2012 (FAOSTAT, 2015). For the years
2015 and 2016, the HYDE data were extrapolated by coun-
try for pastures and cropland separately based on the trend
in agricultural area over the previous 5 years. Some models

www.earth-syst-sci-data.net/10/405/2018/

also use an update of the more comprehensive harmonised
land-use data set (Hurtt et al., 2011), that further includes
fractional data on primary vegetation and secondary vegeta-
tion, as well as all underlying transitions between land-use
states (Hurtt et al., 2018). This new data set is of quarter-
degree fractional areas of land-use states and all transitions
between those states, including a new wood harvest recon-
struction, new representation of shifting cultivation, crop ro-
tations, management information including irrigation, and
fertiliser application. The land-use states now include five
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different crop types in addition to the pasture-rangeland split
discussed before. Wood harvest patterns are constrained with
Landsat forest loss data.

DGVMs implement land-use change differently (e.g. an
increased cropland fraction in a grid cell can either be at the
expense of grassland or shrubs, or forest, the latter resulting
in deforestation; land cover fractions of the non-agricultural
land differ between models). Similarly, model-specific as-
sumptions are applied to convert deforested biomass or de-
forested area, and other forest product pools into carbon, and
different choices are made regarding the allocation of range-
lands as natural vegetation or pastures.

The DGVM model runs were forced by either 6-hourly
CRU-NCEP or by monthly CRU temperature, precipitation,
and cloud cover fields (transformed into incoming surface ra-
diation) based on observations and provided on a 0.5° x 0.5°
grid and updated to 2016 (Harris et al., 2014; Viovy, 2016).
The forcing data include both gridded observations of cli-
mate and global atmospheric CO;, which change over time
(Dlugokencky and Tans, 2018), and N deposition (as used in
some models; Table Al).

Two sets of simulations were performed with the DGVMs.
The first forced initially with historical changes in land cover
distribution, climate, atmospheric CO, concentration, and N
deposition and the second, as further described below, with
a time-invariant pre-industrial land cover distribution, allow-
ing the models to estimate, by difference with the first sim-
ulation, the dynamic evolution of biomass and soil carbon
pools in response to prescribed land-cover change. Eypyc is
diagnosed in each model by the difference between these
two simulations. We only retain model outputs with posi-
tive Epyc during the 1990s (Table A1l). Using the difference
between these two DGVM simulations to diagnose Epyc
means the DGVMs account for the loss of additional sink ca-
pacity (around 0.3 GtC yr—!; see Sect. 2.7.3), while the book-
keeping models do not.

2.2.3 Uncertainty assessment for £| yc

Differences between the bookkeeping models and DGVM
models originate from three main sources: the different
methodologies, the land-use and land-cover data set, and
the different processes represented (Table Al). We examine
the results from the DGVM models and of the bookkeeping
method to assess the uncertainty in Epyc.

The Epyc estimate from the DGVMs’ multi-model mean
is consistent with the average of the emissions from the
bookkeeping models (Table 5). However, there are large dif-
ferences among individual DGVMs (standard deviation at
around 0.5-0.6 GtC yr’l; Table 5), between the two book-
keeping models (average of 0.5 GtCyr—!), and between the
current estimate of H&N2017 and its previous model version
(Houghton et al., 2012) as used in past global carbon bud-
gets (Le Quéré et al., 2016; average of 0.3 GtC yr~!). Given
the large spread in new estimates we raise our assessment of
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uncertainty in Epyc to £0.7 GtC yr~! (from £0.5 GtC yr—')
as a semi-quantitative measure of uncertainty for annual and
decadal emissions. This reflects our best value judgment that
there is at least a 68 % chance (£10) that the true land-use
change emission lies within the given range, for the range of
processes considered here. Prior to 1959, the uncertainty in
E1uc was taken from the standard deviation of the DGVMs.
We assign low confidence to the annual estimates of Epyc
because of the inconsistencies among estimates and of the
difficulties in quantifying some of the processes in DGVMs.

2.2.4 Emissions projections

We provide an assessment of Epyc for 2017 by adding the
anomaly of fire emissions in deforestation areas, including
those from peat fires, from GFED4s (van der Werf et al.,
2017) over the last year available. Emissions are estimated
using active fire data (MCD14ML; Giglio et al., 2003), which
are available in near-real time, and correlations between
those and GFED4s emissions for the 2001-2016 period for
the 12 corresponding months. Emissions during January—
October cover most of the fire season in the Amazon and
Southeast Asia, where a large part of the global deforestation
takes place.

2.3 Growth rate in atmospheric CO» concentration
(Gatm)

2.3.1 Global growth rate in atmospheric CO»
concentration

The rate of growth of the atmospheric CO, concentra-
tion is provided by the US National Oceanic and Atmo-
spheric Administration Earth System Research Laboratory
(NOAAV/ESRL; Dlugokencky and Tans, 2018), which is up-
dated from Ballantyne et al. (2012). For the 1959—-1980 pe-
riod, the global growth rate is based on measurements of
atmospheric CO; concentration averaged from the Mauna
Loa and South Pole stations, as observed by the CO, Pro-
gram at Scripps Institution of Oceanography (Keeling et al.,
1976). For the 1980-2016 time period, the global growth rate
is based on the average of multiple stations selected from
the marine boundary layer sites with well-mixed background
air (Ballantyne et al., 2012), after fitting each station with a
smoothed curve as a function of time and averaging by lati-
tude band (Masarie and Tans, 1995). The annual growth rate
is estimated by Dlugokencky and Tans (2018) from atmo-
spheric CO; concentration by taking the average of the most
recent December—January months corrected for the average
seasonal cycle and subtracting this same average 1 year ear-
lier. The growth rate in units of ppm yr—! is converted to units
of GtCyr~! by multiplying by a factor of 2.12 GtC ppm~!
(Ballantyne et al., 2012).
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Table 5. Comparison of results from the bookkeeping method and budget residuals with results from the DGVMs and inverse estimates for
different periods, last decade, and last year available. All values are in GtC yr_l. The DGVM uncertainties represent =10 of the decadal or
annual (for 2016 only) estimates from the individual DGVMs; for the inverse models all three results are given where available.

Mean (GtC yrf1 )

1960-1969  1970-1979  1980-1989  1990-1999  2000-2009 2007-2016 ‘ 2016
Land-use change emissions (Ep yc) ‘
Bookkeeping methods 1.4£0.7 1.1£0.7 1.2+£0.7 1.3£0.7 1.2£0.7 1.3£0.7 1.3£0.7
DGVMs 1.3£0.5 1.2+£0.5 1.2+04 1.2£0.3 1.2+04 1.3£04 1.4£0.8
Terrestrial sink (S AND)
Residual sink from global budget 1.8+£0.9 1.8+0.9 1.5+0.9 2.6+0.9 3.0+£0.9 3.6+1.0 24+1.0
(EFF + ELuc — GAT™M — SOCEAN)
DGVMs 1.4£0.7 24+0.6 2.0£0.6 25+£05 29+0.8 3.0+£0.8 27+£1.0
Total land fluxes (S aAND — ELUC)
Budget constraint 04+0.5 0.7+0.6 0.4+0.6 1.3+0.6 1.7+0.6 234+0.7 1.1+0.7
(EFF — G ATM — SOCEAN)
DGVMs 0.1£0.9 1.2+£0.8 0.7£0.7 1.2£0.5 1.7£0.8 1.7£0.7 1.3£1.0
Inversions (CTE/Jena —/—/- —/—/- —/-/0.2 -/0.6/1.3  1.4/1.1/1.9  1.8/1.4/2.3 | 0.0/0.0/2.2
CarboScope/CAMS)*

* Estimates are corrected for the pre-industrial influence of river fluxes (Sect. 2.7.2). See Tables A3 and 4 for references.

The uncertainty around the atmospheric growth rate is
due to three main factors: first, the long-term reproducibil-
ity of reference gas standards (around 0.03 ppm for 1o from
the 1980s); second, the network composition of the marine
boundary layer with some sites coming or going, gaps in the
time series at each site, etc. (Dlugokencky and Tans, 2018)
— the latter uncertainty was estimated by NOAA/ESRL with
a Monte Carlo method by constructing 100 alternative net-
works (around 0.1 ppm; NOAA/ESRL, 2017; Masarie, and
Tans, 1995); third, the uncertainty associated with using the
average CO; concentration from a surface network to ap-
proximate the true atmospheric average CO, concentration
(mass-weighted, in three dimensions) as needed to assess
the total atmospheric CO, burden. In reality these will dif-
fer, especially owing to the finite rates of vertical mixing
and stratosphere—troposphere exchange. For example, excess
CO, from tropical emissions will arrive at stations in the net-
work after a delay of months or more, and the signals will
continue to evolve as the excess mixes throughout the tro-
posphere and the stratosphere. The excess measured at the
stations will not exactly track changes in total atmospheric
burden, with offsets in magnitude and phasing. This effect
must be very small on decadal and longer timescales, when
the atmosphere can be considered well mixed. Preliminary
estimates suggest this effect would increase the annual un-
certainty, but a full analysis is not yet available. We there-
fore maintain an uncertainty around the annual growth rate
based on the multiple stations data set ranges between 0.11
and 0.72 GtC yr~!, with a mean of 0.61 GtCyr~! for 1959
1979 and 0.19 GtCyr~! for 1980-2016, when a larger set
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of stations were available as provided by Dlugokencky and
Tans (2018). We also maintain the uncertainty of the decadal
averaged growth rate at £0.1 GtCyr—! as in Le Quéré et
al. (2016) based on previous IPCC assessments, but recog-
nising further exploration of this uncertainty is required.

We assign a high confidence to the annual estimates of
G atMm because they are based on direct measurements from
multiple and consistent instruments and stations distributed
around the world (Ballantyne et al., 2012).

In order to estimate the total carbon accumulated in the at-
mosphere since 1750 or 1870, we use an atmospheric CO;
concentration of 277 & 3 or 288 + 3 ppm, respectively, based
on a cubic spline fit to ice core data (Joos and Spahni,
2008). The uncertainty of £3 ppm (converted to £1o) is
taken directly from the IPCC’s assessment (Ciais et al.,
2013). Typical uncertainties in the growth rate in atmo-
spheric CO; concentration from ice core data are equivalent
to £0.1-0.15 GtC yr~! as evaluated from the Law Dome data
(Etheridge et al., 1996) for individual 20-year intervals over
the period from 1870 to 1960 (Bruno and Joos, 1997).

2.3.2 Growth rate projection

We provide an assessment of Gy for 2017 based on the
observed increase in atmospheric CO; concentration at the
Mauna Loa station for January to September and monthly
forecasts for October to December updated from Betts et
al. (2016). The forecast uses a statistical relationship be-
tween annual CO; growth rate and sea surface temperatures
(SSTs) in the Nifio3.4 region. The forecast SSTs from the
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GloSea seasonal forecast model were then used to estimate
monthly CO; concentrations at Mauna Loa throughout the
following calendar year, assuming a stationary seasonal cy-
cle. The forecast CO, concentrations for January to August
2017 were close to the observations, so updating the 2017
forecast by simply averaging the observed and forecast val-
ues is considered justified. Growth at Mauna Loa is closely
correlated with the global growth (» =0.95) and is used here
as a proxy for global growth.

2.4 Ocean COs> sink

Estimates of the global ocean CO; sink Socgan are from
an ensemble of global ocean biogeochemistry models that
meet observational constraints over the 1990s (see below).
We use observation-based estimates of Socgan to provide a
qualitative assessment of confidence in the reported results
and to estimate the cumulative accumulation of Socgan over
the pre-industrial period.

2.4.1 Observation-based estimates

We use the observational constraints assessed by IPCC of a
mean ocean CO» sink of 2.24 0.4 GtCyr~! for the 1990s
(Denman et al., 2007) to verify that the GOBMs provide
a realistic assessment of Socgan. This is based on indirect
observations and their spread, using the methods that are
deemed most reliable for the assessment of this quantity. The
IPCC did not revise its assessment in 2013. The observa-
tions are based on ocean—land CO; sink partitioning from
observed atmospheric O, /N> concentration trends (Man-
ning and Keeling, 2006; updated in Keeling and Manning,
2014), an oceanic inversion method constrained by ocean
biogeochemistry data (Mikaloff Fletcher et al., 2006), and a
method based on penetration timescale for CFCs (McNeil et
al., 2003). This estimate is consistent with a range of meth-
ods (Wanninkhof et al., 2013). Here we use the IPCC confi-
dence interval of 90 % to avoid rejecting models that may be
outliers but are still plausible.

We also use two estimates of the ocean CO; sink and its
variability based on interpolations of measurements of sur-
face ocean fugacity of CO; (pCO; corrected for the non-
ideal behaviour of the gas; Pfeil et al., 2013). We refer to
these as pCO;-based flux estimates. The measurements are
from the Surface Ocean CO; Atlas version 5, which is an up-
date of version 3 (Bakker et al., 2016) and contains quality-
controlled data to 2016 (see data attribution Table A4). The
SOCAT v5 data were mapped using a data-driven diagnos-
tic method (Rodenbeck et al., 2013) and a combined self-
organising map and feed-forward neural network (Land-
schiitzer et al., 2014). The global pCO;-based flux estimates
were adjusted to remove the pre-industrial ocean source of
CO; to the atmosphere of 0.45GtCyr~! from river input
to the ocean (Jacobson et al., 2007), per our definition of
SoceaN. As this adjustment is made in figures only, we do
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not account for the uncertainty in the river flux. Several other
ocean sink products based on observations are also available,
but they show large discrepancies with observed variability
that need to be resolved. Here we used the two pCO;-based
flux products that had the best fit to observations for their
representation of tropical and global variability (Rodenbeck
et al., 2015).

We further use results from two diagnostic ocean mod-
els of Khatiwala et al. (2013) and DeVries (2014) to es-
timate the anthropogenic carbon accumulated in the ocean
prior to 1959. The two approaches assume constant ocean
circulation and biological fluxes over the pre-industrial pe-
riod, with Socgan estimated as a response in the change in
atmospheric CO, concentration calibrated to observations.
The uncertainty in cumulative uptake of £20 GtC (converted
to +10) is taken directly from the IPCC’s review of the lit-
erature (Rhein et al., 2013), or about £30 % for the annual
values (Khatiwala et al., 2009).

2.4.2 Global ocean biogeochemistry models (GOBMs)

The ocean CO; sink for 1959-2016 is estimated using eight
GOBMs (Table A2). All GOBMs fell within 90 % confidence
of the observed range, or 1.6 to 2.8 GtC yr~! for the 1990s.
The GOBMs represent the physical, chemical, and biological
processes that influence the surface ocean concentration of
CO; and thus the air—sea CO, flux. The GOBMs are forced
by meteorological reanalysis and atmospheric CO; concen-
tration data available for the entire time period and mostly
differ in the source of the atmospheric forcing data, spin-
up strategies, and in the resolution of the oceanic physical
processes (Table A2). GOBMs do not include the effects of
anthropogenic changes in nutrient supply, which could lead
to an increase in the ocean sink of up to about 0.3 GtC yr~!
over the industrial period (Duce et al., 2008). They also do
not include the perturbation associated with changes in river
organic carbon, which is discussed Sect. 2.7.

The ocean CO; sink for each GOBM is no longer nor-
malised to the observations as in previous global carbon bud-
gets (e.g. Le Quéré et al.,, 2016). The normalisation was
mostly intended to ensure Spanp had a realistic mean value
as it was previously estimated from the budget residual. With
the introduction of the budget residual (Eq. 1) all terms can
be estimated independently. Instead, the oceanic observa-
tions are used in the selection of the GOBMs, by using only
the GOBMs that produce an oceanic CO» sink over the 1990s
consistent with observations within 90 % confidence inter-
vals, as explained above.

2.4.3 Uncertainty assessment for Socean

The uncertainty around the mean ocean sink of anthro-
pogenic CO, was quantified by Denman et al. (2007) for
the 1990s (see Sect. 2.4.1). To quantify the uncertainty
around annual values, we examine the standard deviation
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of the GOBM ensemble, which averages between 0.2 and
0.3 GtC yr~! during 1959-2017. We estimate that the uncer-
tainty in the annual ocean CO; sink is about +0.5 GtC yr_1
from the combined uncertainty of the mean flux based on
observations of 0.4 GtCyr~! and the standard deviation
across GOBMs of up to £0.3 GtC yr~!, reflecting both the
uncertainty in the mean sink from observations during the
1990s (Denman et al., 2007; Sect. 2.4.1) and in the interan-
nual variability as assessed by GOBMs.

We examine the consistency between the variability of
the model-based and the pCO,-based flux products to
assess confidence in Socgan. The interannual variability
of the ocean fluxes (quantified as the standard deviation)
of the two pCOs-based products for 1986-2016 (where
they overlap) is £0.35GtCyr~! (Rédenbeck et al., 2014)
and +0.36 GtC yr_1 (Landschiitzer et al., 2015), compared
to £0.27 GtCyr~! for the normalised GOBM ensemble.
The standard deviation includes a component of trend and
decadal variability in addition to interannual variability, and
their relative influence differs across estimates. The estimates
generally produce a higher ocean CO, sink during strong El
Nifio events. The annual pCO,-based flux products corre-
late with the ocean CO; sink estimated here with a corre-
lation of r =0.75 (0.49 to 0.84 for individual GOBMs) and
r =0.78 (0.46 to 0.80) for the pCO;-based flux products of
Rodenbeck et al. (2014) and Landschiitzer et al. (2015), re-
spectively (simple linear regression), with their mutual cor-
relation at 0.70. The agreement between models and the flux
products reflects some consistency in their representation of
underlying variability since there is little overlap in their
methodology or use of observations. The use of annual data
for the correlation may reduce the strength of the relation-
ship because the dominant source of variability associated
with El Nifio events is less than 1 year. We assess a medium
confidence level to the annual ocean CO, sink and its uncer-
tainty because it is based on multiple lines of evidence, and
the results are consistent in that the interannual variability in
the GOBMs and data-based estimates are all generally small
compared to the variability in the growth rate of atmospheric
CO, concentration.

2.5 Terrestrial CO» sink

The terrestrial land sink (Spanp) is thought to be due to the
combined effects of fertilisation by rising atmospheric CO;
and N deposition on plant growth, as well as the effects of cli-
mate change such as the lengthening of the growing season in
northern temperate and boreal areas. S ANp does not include
gross land sinks directly resulting from land use and land-use
change (e.g. regrowth of vegetation) as these are part of the
net land-use flux (ELyc), although system boundaries make
it difficult to exactly attribute CO;, fluxes on land between
St.anp and Epyc (Erb et al., 2013).

New to the 2017 Global Carbon Budget, SpanD is es-
timated from the multi-model mean of the DGVMs (Ta-
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ble Al). As described in Sect. 2.2.3, DGVM simulations
include all climate variability and CO; effects over land.
The DGVMs do not include the perturbation associated
with changes in river organic carbon, which is discussed
Sect. 2.7. We apply three criteria for minimum DGVM re-
alism by including only those DGVMs with (1) steady state
after spin up; (2) where available, net land fluxes (SLAND —
Eruc), that is a carbon sink over the 1990s between —0.3
and 2.3 GtC yr~!, within 90 % confidence of constraints by
global atmospheric and oceanic observations (Keeling and
Manning, 2014; Wanninkhof et al., 2013); and (3) global
E1uc that is a carbon source over the 1990s. Three DGVMs
did not meet the criteria (1) for E1yc because of an issue
with the protocol and one did not meet the criteria (2).

The standard deviation of the annual CO» sink across the
DGVMs averages to £0.8 GtC yr~! for the period 1959 to
2016. We attach a medium confidence level to the annual
land CO; sink and its uncertainty because the estimates from
the residual budget and averaged DGVMs match well within
their respective uncertainties (Table 5).

2.6 The atmospheric perspective

The worldwide network of atmospheric measurements can
be used with atmospheric inversion methods to constrain the
location of the combined total surface CO; fluxes from all
sources, including fossil and land-use change emissions and
land and ocean CO; fluxes. The inversions assume Efg to be
well known, and they solve for the spatial and temporal dis-
tribution of land and ocean fluxes from the residual gradients
of CO, between stations that are not explained by emissions.

Three atmospheric inversions (Table A3) used atmo-
spheric CO, data to the end of 2016 (including prelimi-
nary values in some cases) to infer the spatio-temporal CO;
flux field. We focus here on the largest and most consis-
tent sources of information (namely the total CO; flux over
land regions and the distribution of the total land and ocean
CO; fluxes for the mid- to high-latitude Northern Hemi-
sphere (NH), 30-90° N; tropics, 30° S—30° N; and mid- to
high-latitude region of the Southern Hemisphere, 30-90° S)
and use these estimates to comment on the consistency across
various data streams and process-based estimates.

Atmospheric inversions

The three inversion systems used in this release are the
CarbonTracker Europe (CTE; van der Laan-Luijkx et al.,
2017), the Jena CarboScope (Rédenbeck, 2005), and CAMS
(Chevallier et al., 2005). See Table A3 for version numbers.
The three inversions are based on the same Bayesian inver-
sion principles that interpret the same, for the most part,
observed time series (or subsets thereof) but use different
methodologies (Table A3). These differences mainly concern
the selection of atmospheric CO; data, the used prior fluxes,
spatial breakdown (i.e. grid size), assumed correlation struc-
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tures, and mathematical approach. The details of these ap-
proaches are documented extensively in the references pro-
vided above. Each system uses a different transport model,
which was demonstrated to be a driving factor behind dif-
ferences in atmospherically based flux estimates, and specif-
ically their distribution across latitudinal bands (Stephens et
al., 2007).

The three inversions use atmospheric CO; observations
from various flask and in situ networks, as detailed in Ta-
ble A3. They prescribe global Egg, which is scaled to the
present study for CAMS and CTE, while CarboScope uses
CDIAC extended after 2013 using the emission growth rate
of the present study. Inversion results for the sum of natu-
ral ocean and land fluxes (Fig. 8) are more constrained in
the Northern Hemisphere than in the tropics, because of the
higher measurement station density in the NH. Results from
atmospheric inversions, similar to the pCO,-based ocean
flux products, are adjusted for the river fluxes. The atmo-
spheric inversions provide new information on the regional
distribution of fluxes.

2.7 Processes not included in the global carbon budget

The contribution of anthropogenic CO and CHy4 to the global
carbon budget has been partly neglected in Eq. (1) and is
described in Sect. 2.7.1. The contribution of anthropogenic
changes in river fluxes is conceptually included in Eq. (1) in
Socean and in Sp AND, but it is not represented in the process
models used to quantify these fluxes. This effect is discussed
in Sect. 2.7.2. Similarly, the loss of additional sink capacity
from reduced forest cover is missing in the combination of
approaches used here to estimate both land fluxes (ELyc and
SLaND) and its potential effect is discussed and quantified in
Sect. 2.7.3.

2.7.1 Contribution of anthropogenic CO and CHy4 to the
global carbon budget

Equation (1) includes only partly the net input of CO» to the
atmosphere from the chemical oxidation of reactive carbon-
containing gases from sources other than the combustion of
fossil fuels, such as (1) cement process emissions, since these
do not come from combustion of fossil fuels; (2) the oxida-
tion of fossil fuels; and (3) the assumption of immediate oxi-
dation of vented methane in oil production. However, it omits
any other anthropogenic carbon-containing gases that are
eventually oxidised in the atmosphere, such as anthropogenic
emissions of CO and CH4. An attempt is made in this section
to estimate their magnitude and identify the sources of un-
certainty. Anthropogenic CO emissions are from incomplete
fossil fuel and biofuel burning and deforestation fires. The
main anthropogenic emissions of fossil CH4 that matter for
the global carbon budget are the fugitive emissions of coal,
oil, and gas upstream sectors (see below). These emissions
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of CO and CHy contribute a net addition of fossil carbon to
the atmosphere.

In our estimate of Ergr we assumed (Sect. 2.1.1) that all the
fuel burned is emitted as CO;; thus, CO anthropogenic emis-
sions associated with incomplete combustion and their atmo-
spheric oxidation into CO, within a few months are already
counted implicitly in Erg and should not be counted twice
(same for Epyc and anthropogenic CO emissions by defor-
estation fires). Anthropogenic emissions of fossil CHy are
not included in Eff, because these fugitive emissions are not
included in the fuel inventories. Yet they contribute to the an-
nual CO, growth rate after CHy4 gets oxidised into CO,. An-
thropogenic emissions of fossil CHy represent 15 % of total
CHy emissions (Kirschke et al., 2013), that is 0.061 GtC ylr_1
for the past decade. Assuming steady state, these emissions
are all converted to CO, by OH oxidation and thus explain
0.06 GtCyr—! of the global CO, growth rate in the past
decade, or 0.07-0.1 GtCyr~! using the higher CH4 emis-
sions reported recently (Schwietzke et al., 2016).

Other anthropogenic changes in the sources of CO and
CHy from wildfires, biomass, wetlands, ruminants, or per-
mafrost changes are similarly assumed to have a small ef-
fect on the CO;, growth rate. The CH4 emissions and sinks
are published and analysed separately in the Global Methane
Budget publication that follows a similar approach to that
presented here (Saunois et al., 2016).

2.7.2 Anthropogenic carbon fluxes in the land to ocean
aquatic continuum

The approach used to determine the global carbon budget
refers to the mean, variations, and trends in the perturbation
of CO, in the atmosphere, referenced to the pre-industrial
era. Carbon is continuously displaced from the land to the
ocean through the land—ocean aquatic continuum (LOAC)
comprising freshwaters, estuaries, and coastal areas (Bauer
et al., 2013; Regnier et al., 2013). A significant fraction of
this lateral carbon flux is entirely “natural” and is thus a
steady state component of the pre-industrial carbon cycle.
We account for this pre-industrial flux where appropriate in
our study. However, changes in environmental conditions and
land-use change have caused an increase in the lateral trans-
port of carbon into the LOAC — a perturbation that is relevant
for the global carbon budget presented here.

The results of the analysis of Regnier et al. (2013) can be
summarised in two points of relevance for the anthropogenic
CO; budget. First, the anthropogenic perturbation has in-
creased the organic carbon export from terrestrial ecosystems
to the hydrosphere at a rate of 1.0 + 0.5 GtC yr—!, mainly ow-
ing to enhanced carbon export from soils. Second, this ex-
ported anthropogenic carbon is partly respired through the
LOAC; partly sequestered in sediments along the LOAC;
and, to a lesser extent, transferred in the open ocean where
it may accumulate. The increase in storage of land-derived
organic carbon in the LOAC and open ocean combined is es-
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timated by Regnier et al. (2013) at 0.65 & 0.35GtC yr—'. We
do not attempt to incorporate the changes in LOAC in our
study.

The inclusion of freshwater fluxes of anthropogenic CO»
affects the estimates of, and partitioning between, Sp aANp and
Socean in Eq. (1) in complementary ways, but does not af-
fect the other terms. This effect is not included in the GOBMs
and DGVMs used in our global carbon budget analysis pre-
sented here.

2.7.3 Loss of additional sink capacity

The DGVM simulations now used to estimate Sp ANp are car-
ried out with a time-invariant pre-industrial land-use mask.
Hence, they overestimate the land sink by ignoring histori-
cal changes in vegetation cover due to land use and how this
affected the global terrestrial biosphere’s capacity to remove
CO; from the atmosphere. Historical land-cover change was
dominated by transitions from vegetation types that can pro-
vide a large sink per area unit (typically forests) to others
less efficient in removing CO, from the atmosphere (typi-
cally croplands). The resultant decrease in land sink, called
the “loss of sink capacity”, is calculated as the difference be-
tween the actual land sink under changing land cover and the
counterfactual land sink under pre-industrial land cover.

An efficient protocol has yet to be designed to estimate the
magnitude of the loss of additional sink capacity in DGVMs.
Here, we provide a quantitative estimate of this term to
be used in the discussion. Our estimate uses the compact
Earth system model OSCAR (Gasser et al., 2017), whose
land carbon cycle component is designed to emulate the be-
haviour of TRENDY and CMIP5 complex models. We use
OSCAR v2.2.1 (an update of v2.2, with minor changes) in a
probabilistic setup identical to the one of Arneth et al. (2017)
but with a Monte Carlo ensemble of 2000 simulations. For
each, we calculate separately Spanp and the loss of ad-
ditional sink capacity. We then constrain the ensemble by
weighting each member to obtain a distribution of cumula-
tive Spanp over 1850-2005 close to the DGVMs used here.
From this ensemble, we estimate a loss of additional sink ca-
pacity of 0.4 + 0.3 GtC yr—! on average over 2005-2014 and
by extrapolation of 20 £ 15 GtC accumulated between 1870
and 2016.

3 Reslults

3.1 Global carbon budget mean and variability for
1959-2016

The global carbon budget averaged over the last half-century
is shown in Fig. 3. For this time period, 82 % of the to-
tal emissions (Epp+ EpLyuc) were caused by fossil fuels
and industry and 18 % by land-use change. The total emis-
sions were partitioned among the atmosphere (45 %), ocean
(23 %), and land (32 %). All components except land-use

www.earth-syst-sci-data.net/10/405/2018/

423

Fossil fuels and industry
Land-use change
Ocean

Land

Atmosphere

N

= Emissions

CO, flux (GtC yr™)
o

1
EN

-8

-1 I I I I I
1%00 1920 1940 1960 1980 2000 2020

Time (yr)

Figure 3. Combined components of the global carbon budget il-
lustrated in Fig. 2 as a function of time, for emissions from fossil
fuels and industry (EfF; grey) and emissions from land-use change
(Eryc; brown), as well as their partitioning among the atmosphere
(G aTMm; purple), land (S AND; green), and oceans (Socgan; blue).
The partitioning is based on nearly independent estimates from ob-
servations (for Garym) and from process model ensembles con-
strained by data (for Socgan and SpanD) and does not exactly
add up to the sum of the emissions, resulting in a budget imbal-
ance which is represented by the difference between the bottom red
line (reflecting total emissions) and the sum of the ocean, land, and
atmosphere. All time series are in GtC yr_l. G at™m and SoCEAN
prior to 1959 are based on different methods. EFp is primarily from
Boden et al. (2017) with uncertainty of about £5 % (+10); ELyc
are from two bookkeeping models (Table 2) with uncertainties of
about £50 %; G aTMm prior to 1959 is from Joos and Spahni (2008)
with uncertainties equivalent to about £0.1-0.15 GtC yrfl, and
from Dlugokencky and Tans (2018) from 1959 with uncertainties
of about £0.2 GtC yr_l; SOCEAN prior to 1959 is averaged from
Khatiwala et al. (2013) and DeVries (2014) with uncertainty of
about +30 %, and from a multi-model mean (Table 4) from 1959
with uncertainties of about +0.5 GtC yr_1 ; SLAND is @ multi-model
mean (Table 4) with uncertainties of about £0.9 GtC yrfl. See the
text for more details of each component and their uncertainties.

change emissions have grown since 1959, with important in-
terannual variability in the growth rate in atmospheric CO;
concentration and in the land CO; sink (Fig. 4), as well as
some decadal variability in all terms (Table 6).

3.1.1 CO» emissions

Global CO; emissions from fossil fuels and industry have in-
creased every decade from an average of 3.1 £ 0.2 GtC yr~!
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Table 6. Decadal mean in the five components of the anthropogenic CO; budget for different periods and last year available. All values are
in GtC yr_l, and uncertainties are reported as ££1o0. Unlike previous versions of the global carbon budget, the terrestrial sink (S ANp) 1S now
estimated independently from the mean of DGVM models. Therefore, the table also shows the budget imbalance (Bpy), which provides a
measure of the discrepancies among the nearly independent estimates and has an uncertainty exceeding 1 GtC yr_l. A positive imbalance

means the emissions are overestimated and/or the sinks are too small.

Mean (GtC yrf1 )

1960-1969  1970-1979  1980-1989  1990-1999  2000-2009 2007-2016 \ 2016
Emissions ‘
Fossil fuels and industry (EFF) 3.1£0.2 47+0.2 55£03 6.3+0.3 7.8+0.4 94405 | 99405
Land-use change emissions (Ep yc) 1.4+0.7 1.1+0.7 1.2+£0.7 1.3+£0.7 1.2+0.7 1.3+£0.7 | 1.3£0.7
Partitioning ‘
Growth rate in atmospheric CO, 1.7£0.1 2.8+0.1 34+0.1 3.1+0.1 40+£0.1 47+£0.1 | 6.0£0.2
concentration (G ATM)
Ocean sink (SocEAN) 1.0+0.5 1.3+0.5 1.7+0.5 1.9+0.5 2.1£05 24405 | 26£05
Terrestrial sink (S_AND) 1.4+£0.7 24+£0.6 20+0.6 25+0.5 29+0.8 3008 | 2.7+1.0
Budget imbalance ‘
Bim = Err + ELuc — (Gatm+ 0.4) (=0.6) (0.4 0.1 0.09) 0.6) (=0.2)
SOCEAN + SLAND)

in the 1960s to an average of 9.4+0.5GtCyr~! during
2007-2016 (Table 6 and Fig. 5). The growth rate in these
emissions decreased between the 1960s and the 1990s, from
4.5%yr~! in the 1960s (1960—1969) to 2.8 % yr~! in the
1970s (1970-1979), 1.9 % yr~! in the 1980s (1980-1989),
and 1.1 % yr_l in the 1990s (1990-1999). After this period,
the growth rate began increasing again in the 2000s at an
average growth rate of 3.3 % yr~!, decreasing to 1.8 % yr~!
for the last decade (2007-2016) and to 4+0.4 % yr~' during
2014-2016.

In contrast, CO; emissions from land use, land-use
change, and forestry have remained relatively constant, at
around 1.3+0.7GtCyr~! over the past half-century, in
agreement with the DGVM ensemble of models. However,
there is no agreement on the trend over the full period, with
two bookkeeping models suggesting opposite trends and no
coherence among DGVMs (Fig. 6).

3.1.2 Partitioning among the atmosphere, ocean, and
land

The growth rate in atmospheric CO; level increased from
1.740.1 GtCyr~—! in the 1960s to 4.7 £ 0.1 GtC yr—! during
2007-2016 with important decadal variations (Table 6). Both
ocean and land CO; sinks increased roughly in line with the
atmospheric increase, but with significant decadal variability
on land (Table 6) and possibly in the ocean (Fig. 7).

The ocean CO, sink increased from 1.040.5 GtC yr~! in
the 1960s to 2.4 +0.5 GtC yr~! during 2007-2016, with in-
terannual variations of the order of a few tenths of GtC yr~!
generally showing an increased ocean sink during large El
Nifio events (i.e. 1997-1998) (Fig. 7; Rodenbeck et al.,
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2014). Note the lower ocean sink estimate compared to pre-
vious global carbon budget releases is due to the fact that
ocean models are no longer normalised to observations. Al-
though there is some coherence among the GOBMs and
pCOs-based flux products regarding the mean, there is poor
agreement for interannual variability and the ocean models
underestimate decadal variability (Sect. 2.4.3 and Fig. 7, also
see new data-based decadal estimate of DeVries et al., 2017).

The terrestrial CO, sink increased from
1.4+0.7GtCyr~" in the 1960s to 3.040.8 GtCyr~!
during 2007-2016, with important interannual variations of
up to 2GtCyr~! generally showing a decreased land sink
during El Nifio events, overcompensating for the increase
in ocean sink and responsible for the enhanced growth
rate in atmospheric CO, concentration during El Nifio
events (Fig. 6). The larger land CO; sink during 2007-2016
compared to the 1960s is reproduced by all the DGVMs in
response to the combined atmospheric CO; increase and
changes in climate and is consistent with constraints from
the other budget terms (Table 5).

The total CO, fluxes on land (S; anp — ELuc) constrained
by the atmospheric inversions show in general very good
agreement with the global budget estimate, as expected given
the strong constraints of G arm and the small relative uncer-
tainty assumed on Socgan and Efpp by inversions. The to-
tal land flux is of similar magnitude for the decadal average,
with estimates for 2007-2016 from the three inversions of
1.8, 1.4, and 2.3GtCyr~! compared to 1.7+ 0.7 GtC yr~!
from the DGVMs and 2.3 +0.7 GtC yr—! for the total flux
computed with the carbon budget constraints (Table 5).
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Figure 4. Components of the global carbon budget and their uncertainties as a function of time, presented individually for (a) emissions
from fossil fuels and industry (EfFR), (b) emissions from land-use change (Ey yc), (¢) the budget imbalance that is not accounted for by the
other terms, (d) the growth rate in atmospheric CO; concentration (G oTm ), and (e) the land CO; sink (Sp oND; positive indicates a flux from
the atmosphere to the land), (f) the ocean CO» sink (SocgaN; positive indicates a flux from the atmosphere to the ocean). All time series are
in GtC yr_1 with the uncertainty bounds representing +1o in shaded colour. Data sources are as in Fig. 3. The black dots in panel (a) show
values for 2015 and 2016 that originate from a different data set to the remainder of the data (see text). The dashed line in panel (b) identifies

the pre-satellite period before the inclusion of peatland burning.

3.1.3 Budget imbalance

The carbon budget imbalance (Byv; Eq. 1) quantifies the mis-
match between the estimated total emissions and the esti-
mated changes in the atmosphere, land, and ocean reservoirs.
The mean budget imbalance from 1959 to 2016 is very small
(0.07 GtC yr_l) and shows no trend over the full time series.
The process models (GOBMs and DGVMs) have been se-
lected to match observational constraints in the 1990s but no
further constraints have been applied to their representation
of trend and variability. Therefore, the near-zero mean and
trend in the budget imbalance are indirect evidence of a co-
herent community understanding of the emissions and their
partitioning on those timescales (Fig. 4). However, the bud-
get imbalance shows substantial variability of the order of
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+1GtCyr~!, particularly over semi-decadal timescales, al-
though most of the variability is within the uncertainty of
the estimates. The imbalance during the 1960s, early 1990s,
and in the last decade suggests that either the emissions were
overestimated or the sinks were underestimated during these
periods. The reverse is true for the 1970s and around 1995-
2000 (Fig. 3).

We cannot attribute the cause of the variability in the bud-
get imbalance with our analysis — we can only note that
the budget imbalance is unlikely to be explained by errors
or biases in the emissions alone because of its large semi-
decadal variability component, a variability that is untypi-
cal of emissions (Fig. 4). Errors in S anp and Socgan are
more likely to be the main cause for the budget imbalance.
For example, underestimation of the S anp by DGVMs has

Earth Syst. Sci. Data, 10, 405-448, 2018



426 C. Le Quére et al.: Global Carbon Budget 2017

12
(a)
10
8 Global
6 3
T (d) :
4 s 25 China
2 2 2
9 USA
01960 1970 1980 1990 2000 2010 2020 g 15
= EU28
@2 1
IS
~ 5 ®.05 India
e ) o
5‘ 4 Coal O 9
6 1960 1970 1980 1990 2000 2010 2020
> 3
2 Qil
Ke]
8 2
IS Gas
)
~ 1
o) (e)
3 Cement USA

0
1960 1970 1980 1990 2000 2010 2020

(c) EU28

N W A OO N

Global .
China India

-

Annex B

0
1960 1970 1980 1990 2000 2010 2020

Per capita emissions (tC person_1 yr_1)

N W A OO O N

Non-Annex B Time (yr)

Emissions transfers

1960 1970 1980 1990 2000 2010 2020

Time (yr)

Figure 5. CO; emissions from fossil fuels and industry for (a) the globe, including an uncertainty of +5 % (grey shading), the emissions
extrapolated using BP energy statistics (black dots), and the emissions projection for year 2017 based on GDP projection (red dot); (b) global
emissions by fuel type, including coal (salmon), oil (olive), gas (turquoise), and cement (purple), and excluding gas flaring which is small
(0.6 % in 2013); (c) territorial (solid line) and consumption (dashed line) emissions for the countries listed in Annex B of the Kyoto Protocol
(salmon lines; mostly advanced economies with emissions limitations) versus non-Annex B countries (green lines) — also shown are the
emissions transfer from non-Annex B to Annex B countries (light blue line); (d) territorial CO, emissions for the top three country emitters
(USA - olive; China — salmon; India — purple) and for the European Union (EU; turquoise for the 28 member states of the EU as of 2012),
and (e) per-capita emissions for the top three country emitters and the EU (all colours as in panel d) and the world (black). In panels (b—e);
the dots show the data that were extrapolated from BP energy statistics for 2014 and 2015. All time series are in GtC yr_1 except the per-
capita emissions (e), which are in tonnes of carbon per person per year (tC person_1 yr_l). Territorial emissions are primarily from Boden et
al. (2017) except national data for the USA and EU28 (the 28 member states of the EU) for 1990-2014, which are reported by the countries
to the UNFCCC as detailed in the text; consumption-based emissions are updated from Peters et al. (2011a). See Sect. 2.1.1 for details of the
calculations and data sources.

been reported following the eruption of Mount Pinatubo in flux products suggesting a smaller-than-expected ocean CO;
1991 possibly due to missing responses to changes in dif- sink in the 1990s and a larger-than-expected sink in the
fuse radiation (Mercado et al., 2009) or other yet unknown 2000s (Fig. 7), possibly caused by changes in ocean circula-
factors, and DGVMs are suspected to overestimate the land tion (DeVries et al., 2017) not captured in coarse-resolution

sink in response to the wet decade of the 1970s (Sitch GOBMs used here (Dufour et al., 2013).
et al., 2003). Decadal and semi-decadal variability in the
ocean sink has been also reported recently (DeVries et al.,
2017; Landschiitzer et al., 2015), with the pCO;-based ocean
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Figure 6. CO, exchanges between the atmosphere and the terres-
trial biosphere as used in the global carbon budget (black with £1o
uncertainty in grey shading) for (a) CO; emissions from land-use
change (Epyc). showing also individually the two bookkeeping
models (two blue lines) and the DGVM model results (green) and
their multi-model mean (olive). The dashed line identifies the pre-
satellite period before the inclusion of peatland burning, (b) land
CO; sink (Spanp) with individual DGVMs (green), and (c¢) total
land CO, fluxes (b minus a) with individual DGVMs (green) and
their multi-model mean (olive) and atmospheric inversions (CAMS
in purple, Jena CarboScope in pink, CTE in salmon; see details
in Table 4). In panel (c) the inversions were adjusted for the pre-
industrial land sink of CO; from river input, by removing a sink of
0.45GtC yr_1 (Jacobson et al., 2007), but not for the anthropogenic
contribution to river fluxes (see Sect. 2.7.2).
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Figure 7. Comparison of the anthropogenic atmosphere—ocean
CO; flux showing the budget values of Socgan (black; with 1o
uncertainty in grey shading), individual ocean models (blue), and
the two ocean pCO;-based flux products (Rodenbeck et al., 2014,
in salmon and Landschiitzer et al., 2015, in pink; see Table 4).
Both pCO;-based flux products were adjusted for the pre-industrial
ocean source of CO; from river input to the ocean, which is not
present in the ocean models, by adding a sink of 0.45 GtC yr_] (Ja-
cobson et al., 2007) to make them comparable to Socgan. This ad-
justment does not take into account the anthropogenic contribution
to river fluxes (see Sect. 2.7.2).

3.1.4 Regional distribution

Figure 8 shows the partitioning of the total surface fluxes ex-
cluding emissions from fossil fuels and industry (SLanD +
SoceaN — ErLuc) according to the multi-model average of
the process models in the ocean and on land (GOBMs and
DGVMs) and to the three atmospheric inversions. The to-
tal surface fluxes provide information on the regional dis-
tribution of those fluxes by latitude bands (Fig. 8). The
global mean CO» fluxes from process models for 2007-2016
is 4.1+ 1.0GtCyr~!. This is comparable to the fluxes of
4.6+ 0.5 GtC yr~! inferred from the remainder of the carbon
budget (Err — G atMm in Eq. 1; Table 6) within their respec-
tive uncertainties. The total CO, fluxes from the three inver-
sions range between 4.1 and 5.0GtCyr~', consistent with
the carbon budget as expected from the constraints on the
inversions.

In the south (south of 30°S), the atmospheric inversions
and process models all suggest a CO; sink for 2007-2016
around 1.3-1.4GtCyr~! (Fig. 8), although interannual to
decadal variability is not fully consistent across methods.
The interannual variability in the south is low because of the
dominance of ocean area with low variability compared to
land areas.

In the tropics (30°S-30°N), both the atmospheric in-
versions and process models suggest the carbon balance
in this region is close to neutral on average over the past

Earth Syst. Sci. Data, 10, 405448, 2018
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Figure 8. CO, fluxes between the atmosphere and the surface
(SoceAN + SLAND — ErLuc) by latitude bands for the (a) north
(north of 30° N), (b) tropics (30° S—-30° N), and (c) south (south of
30°S). Estimates from the combination of the process models for
the land and oceans are shown (turquoise) with 1o of the model
ensemble (in grey). Results from the three atmospheric inversions
are also shown (CAMS in purple, Jena CarboScope in pink, CTE
in salmon; references and version number in Table 4). Where avail-
able the uncertainty in the inversions are also shown. Positive values
indicate a flux from the atmosphere to the land and/or ocean.

decade, with fluxes for 2007-2016 ranging between —0.5
and +0.5 GtC yr—!. Both the process models and the inver-
sions consistently allocate more year-to-year variability of
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CO, fluxes to the tropics compared to the north (north of
30° N; Fig. 8), with this variability being dominated by land
fluxes.

In the north (north of 30° N), the inversions and process
models are not in agreement on the magnitude of the CO,
sink, with the ensemble mean of the process models sug-
gesting a total Northern Hemisphere sink for 2007-2016 of
2.3+0.6GtC yr‘l, below the estimates from the three in-
versions that estimate a sink of 2.7, 3.0, and 4.1 GtC ylr_l
(Fig. 8). The mean difference can only partly be explained by
the influence of river fluxes, which is seen by the inversions
but not included in the process models; this flux in the North-
ern Hemisphere would be less than 0.45 GtC yr~! because
only the anthropogenic contribution to river fluxes needs to
be accounted for. The CTE and Jena CarboScope inversions
are within the 1 standard deviation of the process models for
the mean sink during their overlap period, while the CAMS
inversion gives a higher sink in the north than the process
models and a correspondingly higher source in the tropics.

Differences between CTE, CAMS, and Jena CarboScope
may be related, for example, to differences in their interhemi-
spheric transport and other inversion settings (Table A3).
Separate analysis has shown that the influence of the chosen
prior land and ocean fluxes is minor compared to other as-
pects of each inversion. In comparison to the previous global
carbon budget publication, the fossil fuel inputs for Carbo-
Scope changed to lower emissions in the north compared to
CTE and CAMS, resulting in a smaller northern sink for Car-
boScope compared to the previous estimate. Differences be-
tween the mean fluxes of CAMS in the north and the en-
semble of process models cannot be simply explained. They
could either reflect a bias in this inversion or missing pro-
cesses or biases in the process models, such as the lack of ad-
equate parameterisations for forest management in the north
and for forest degradation emissions in the tropics for the
DGVMs. The estimated contribution of the north and its un-
certainty from process models is sensitive both to the ensem-
ble of process models used and to the specifics of each inver-
sion.

3.2 Gilobal carbon budget for the last decade
(2007-2016)

The global carbon budget averaged over the last decade
(2007-2016) is shown in Fig. 2. For this time period, 88 %
of the total emissions (Efg + ELyc) were from fossil fuels
and industry (Efp) and 12 % from land-use change (ELyc).
The total emissions were partitioned among the atmosphere
(44 %), ocean (22 %), and land (28 %), with a remaining
unattributed budget imbalance (5 %).

3.2.1 CO» emissions

Global CO; emissions from fossil fuels and industry grew
at a rate of 1.8%yr’] for the last decade (2007-2016),
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slowing down to +0.4 % yr—! during 2014-2016. China’s
emissions increased by +3.8% yr~! on average (increas-
ing by +1.7GtCyr~! during the 10-year period) dominat-
ing the global trends, followed by India’s emissions increase
by +5.8 % yr~! (increasing by +0.30 GtC yr—!), while emis-
sions decreased in EU28 by 2.2%yr~! (decreasing by
—0.23 GtCyr~!) and in the USA by 1.0 % yr~' (decreasing
by —0.19 GtC yr~1). In the past decade, emissions from fos-
sil fuels and industry decreased significantly (at the 95 %
level) in 26 countries. A total of 21 of these countries had
positive growth in GDP over the same time period, represent-
ing 21 % of global emissions (Croatia, Czech Republic, Den-
mark, France, Germany, Greece, Ireland, Jamaica, Latvia,
Luxembourg, Malta, Poland, Romania, Serbia, Slovakia,
Slovenia, Sweden, Switzerland, Ukraine, United Kingdom,
USA), while 5 countries had both declining GDP and emis-
sions (Andorra, Aruba, North Korea, Greenland, and Syria).

In contrast, there is no apparent trend in CO, emissions
from land-use change (Fig. 6), though the data are very un-
certain.

3.2.2 Partitioning among the atmosphere, ocean, and
land

The growth rate in atmospheric CO» concentration was ini-
tially constant and then increased during the later part of the
decade 2007-2016, reflecting a similar constant level fol-
lowed by a decrease in the land sink, albeit with large inter-
annual variability (Fig. 4). During the same period, the ocean
COs sink appears to have intensified, an effect which is par-
ticularly apparent in the pCO,-based flux products (Fig. 7)
and is thought to originate at least in part in the Southern
Ocean (Landschiitzer et al., 2015).

3.2.3 Budget imbalance

The budget imbalance was 0.6 GtCyr~! on average over
2007-2016. Although the uncertainties are large in each
term, the sustained imbalance over a decade suggests an
overestimation of the emissions and/or an underestimation
of the sinks. Such a large imbalance is unlikely to originate
from the emissions alone because it would indicate sustained
bias in emissions over a 10-year period that is as large as the
lo uncertainty. An origin in the land and/or ocean sink is
more likely, given the large variability of the land sink and
the suspected underestimation of decadal variability in the
ocean sink. More integrated use of observations in the global
carbon budget, either on their own or for further constraining
model results, should help resolve some of the budget imbal-
ance (Peters et al., 2017; Sect. 4).
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3.3 Gilobal carbon budget for year 2016
3.3.1 COs emissions

Preliminary estimates of global CO, emissions from fos-
sil fuels and industry based on BP energy statistics are for
emissions remaining nearly constant between 2015 and 2016
at 9.9+ 0.5GtC in 2016 (Fig. 5), distributed among coal
(40 %), oil (34 %), gas (19 %), cement (5.6 %), and gas flar-
ing (0.7 %). Compared to the previous year, emissions from
coal decreased by —1.7 %, while emissions from oil, gas,
and cement increased by 1.5, 1.5, and 1.0 %, respectively. All
growth rates presented are adjusted for the leap year, unless
stated otherwise.

Emissions in 2016 were 0.2 % higher than in 2015, con-
tinuing the low growth trends observed in 2014 and 2015.
This growth rate is as projected in Le Quéré et al. (2016)
based on national emissions projections for China and the
USA and projections of gross domestic product corrected for
Irr trends for the rest of the world. The specific projection
for 2016 for China made last year of —0.5 % (range of —3.8
to +1.3 %) is within the uncertainty of the realised growth
rate of —0.3 %. Similarly, the projected growth for the US
of —1.7 % (range of —4.0 to +0.6 %) is very close to the re-
alised growth rate of —2.1 %, and the projected growth for
the rest of the world of +1.0 % (range of —0.4 to 2.5 %)
matches the realised rate of 1.3 %.

In 2016, the largest absolute contributions to global CO,
emissions were from China (28 %), the USA (15 %), the
EU (28 member states; 10 %), and India (6.7 %). The per-
centages are the fraction of the global emissions including
bunker fuels (3.1 %). These four regions account for 59 %
of global CO, emissions. Growth rates for these countries
from 2015 to 2016 were —0.3 % (China), —2.1 % (USA),
—0.3% (EU28), and +4.5% (India). The per-capita CO>
emissions in 2016 were 1.1tC person~! yr~! for the globe
and were 4.5 (USA), 2.0 (China), 1.9 (EU28), and 0.5 (In-
dia) tC person—! yr~! for the four highest emitting countries
(Fig. 5e).

Territorial emissions in Annex B countries (developed
countries as per the Kyoto Protocol which initially had bind-
ing mitigation targets) decreased by —0.2% yr~! on aver-
age during 1990-2015. Trends observed for consumption
emissions were less monotonic, with 0.7 % yr—! growth over
1990-2007 and a —1.2% yr~! decrease over 2007-2015
(Fig. 5¢). In non-Annex B countries (emerging economies
and less developed countries as per the Kyoto Protocol with
no binding mitigation commitments) territorial emissions
grew at 4.6%yr~! during 19902015, while consumption
emissions grew at 4.5 % yr—!. In 1990, 65 % of global ter-
ritorial emissions were emitted in Annex B countries (32 %
in non-Annex B and 2 % in bunker fuels used for interna-
tional shipping and aviation), while in 2015 this had reduced
to 37 % (60 % in non-Annex B and 3 % in bunker fuels). For
consumption emissions, this split was 68 % in 1990 and 42 %
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in 2015 (32 to 58 % in non-Annex B). The difference be-
tween territorial and consumption emissions (the net emis-
sion transfer via international trade) from non-Annex B to
Annex B countries has increased from near zero in 1990
to 0.3GtCyr~! around 2005 and remained relatively sta-
ble afterwards until the last year available (2015; Fig. 5).
The increase in net emission transfers of 0.28 GtC yr~! be-
tween 1990 and 2015 compares with the emission reduction
of 0.5 GtC yr~! in Annex B countries. These results show the
importance of net emission transfer via international trade
from non-Annex B to Annex B countries, as well as the sta-
bilisation of emissions transfer when averaged over Annex B
countries during the past decade. In 2015, the biggest emit-
ters from a consumption perspective were China (23 % of the
global total), USA (16 %), EU28 (12 %), and India (6 %).

The global CO, emissions from land-use change are esti-
mated as 1.3+ 0.5GtC in 2016, as for the previous decade
but with low confidence in the annual change.

3.3.2 Partitioning among the atmosphere, ocean, and
land

The growth rate in atmospheric CO; concentration was
6.0£0.2GtC in 2016 (2.85+0.09ppm; Fig. 4; Dlugo-
kencky and Tans, 2018). This is well above the 2007-2016
average of 4.7+ 0.1 GtC yr~! and reflects the large interan-
nual variability in the growth rate of atmospheric CO; con-
centration associated with El Nifio and La Nifia events.

The estimated ocean CO, sink was 2.6 £0.5GtCyr~! in
2016, only marginally above 2015 according to the average
of the ocean models but with large differences among esti-
mates (Fig. 7).

The terrestrial CO, sink from the model ensemble was
2.7+ 1.0 GtC in 2016, near the decadal average (Fig. 4) and
consistent with constraints from the rest of the budget (Ta-
ble 5).

The budget imbalance was —0.2 GtC in 2016, indicating
a small overestimation of the emissions and/or underestima-
tion of the sink for that year, with large uncertainties.

3.4 Global carbon budget projection for year 2017
3.4.1 CO» emissions

Emissions from fossil fuels and industry (Egp) for 2017 are
projected to increase by +2.0 % (range of 0.8 to +3.0 %; Ta-
ble 7; Jackson et al., 2017; Peters et al., 2017). Our method
contains several assumptions that could influence the esti-
mate beyond the given range, and as such, it has an indica-
tive value only. Within the given assumptions, global emis-
sions would increase to 10.0 £ 0.5 GtC (36.8 £ 1.8 GtCO»,)
in 2017. (At the time of going to press, the growth in Erp for
2017 had been revised to 1.5 % (range of 0.7 to 2.4 %). A de-
tailed update will be provided in the Global Carbon Budget
2018.)
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For China, the expected change based on available data
as of 19 September 2017 (see Sect. 2.1.4) is for an increase
in emissions of +3.5 % (range of +0.7 to 4+5.4 %) in 2017
compared to 2016. This is based on estimated growth in coal
(43 %; the main fuel source in China), oil (+5.0 %), and nat-
ural gas (+11.7 %) consumption and a decline in cement pro-
duction (—0.5 %). The uncertainty range considers the spread
between different data sources and variances of typical re-
visions of Chinese data over time. The uncertainty in the
growth rate of coal consumption also reflects uncertainty in
the evolution of energy density and carbon content of coal.

For the USA, the EIA emissions projection for 2017 com-
bined with cement data from USGS gives a decrease of
—0.4 % (range of —2.7 to 4+1.9 %) compared to 2016.

For India, our projection for 2017 gives an increase of
+2.0 % (range of 0.2 to +3.8 %) over 2016.

For the rest of the world (including EU28), the expected
growth for 2017 is +1.6 % (range of 0.0 to +3.2 %). This
is computed using the GDP projection for the world exclud-
ing China, USA, and India of 2.4 % made by the IMF (IMF,
2017) and a decrease in Irg of —1.1 % yr_1 which is the aver-
age from 2007 to 2016. The uncertainty range is based on the
standard deviation of the interannual variability in Irr during
2007-2016 of 1.0 % yr~! and our estimate of uncertainty
in the IMF’s GDP forecast of +0.5 %. Applying the method
to the EU28 individually would give a projection of —0.2 %
(range of —2.0 to +1.6 %) for EU28 and +2.3 % (range of
+0.5 to +4.0 %) for the remaining countries, though the un-
certainties grow with the level of disaggregation.

Emissions from land-use change (ELyc) for 2017 are pro-
jected to remain in line with or slightly lower than their 2016
level of 1.3 GtC, based on active fire detections by October.

3.4.2 Partitioning among the atmosphere, ocean, and
land

The 2017 growth in atmospheric CO, concentration (G atm)
is projected to be 5.3 GtC with uncertainty around +1 GtC
(2.5 £ 0.5 ppm). Combining projected Erg, ELuc, and G ATm
suggests a combined land and ocean sink (S_AND + SOCEAN)
of about 6 GtC for 2017. Although each term has large uncer-
tainty, the oceanic sink Socgan has generally low interannual
variability and is likely to remain close to its 2016 value of
around 2.6 GtC, leaving a rough estimated land sink SpAND
of around 3.4 GtC, near its decadal average (Table 5). This
behaviour of the sink is expected due to the El Nifio neutral
conditions that prevailed during 2017, in stark contrast to the
strong El Nifio conditions in 2015 and 2016 that reduced the
land sink. (At the time of going to press, the G arm for 2017
number had been revised to 2.38 £ 0.1 ppm with preliminary
data to the end of 2017.)
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Table 7. Comparison of the projection with realised emissions from fossil fuels and industry (Egg). The “Actual” values are first estimate
available using actual data, and the “Projected” values refer to the estimate made before the end of the year for each publication. Projections
based on a different method from that described here during 2008-2014 are available in Le Quéré et al. (2016). All values are adjusted for

leap years.
World | China | USA | India | Rest of world

Projected Actual ‘ Projected Actual ‘ Projected Actual ‘ Projected Actual ‘ Projected Actual

20152 —0.6% 0.06 % -39% —07% | —1.5% —25% | — - 1.2% 1.2%
(=1.61t00.5) (—4.6t0 —1.1) (=5.5100.3) (—=0.2t02.6)

2016  —0.2% +0.18% | —0.5% —03% | —1.7% —21% | — - +1.0% 1.3%
(—1.0to +1.8) (—3.8t0 +1.3) (—4.0 to +0.6) (—0.4 to 42.5)

2017 +2.0% - +3.5% - —0.4 % - +2.0% - +1.6 % -
(+0.8 to +3.0) (+0.7 to +5.4) (—2.7to +1.0) (4+0.2 to +3.8) (0.0 to +3.2)

a Jackson et al. (2016) and Le Quéré et al. (2015a). bye Quéré et al. (2016). € This study.

Table 8. Cumulative CO, for different time periods in gigatonnes of carbon (GtC). All uncertainties are reported as =10 . E1 yc and SocEaN
have been revised to incorporate multiple estimates (Sect. 3.5), and, unlike previous versions of the global carbon budget, the terrestrial sink
(SLAND) is now estimated independently from the mean of the DGVM. Therefore, the table also shows the budget imbalance, which provides
a measure of the discrepancies among the nearly independent estimates. Its uncertainty exceeds +60 GtC. The method used here does not
capture the loss of additional sink capacity from reduced forest cover, which is about 15 GtC and would exacerbate the budget imbalance
(see Sect. 2.7.3). All values are rounded to the nearest 5 GtC and therefore columns do not necessarily add to zero.

Units of GtC 1750-2016  1850-2005 1959-2016 1870-2016  1870-20172
Emissions

Fossil fuels and industry (EFg) 420£20 320+ 15 345+ 15 420420 430420
Land-use change emissions (Ep yc) 225+75 180 £ 60 75£40 180 £ 60 180 £ 60
Total emissions 645 £ 80 500 £+ 60 415+45 600 £+ 65 610+ 65
Partitioning

Growth rate in atmospheric CO, 270£5 200£5 185+5 245+5 2505
concentration (G ATMm P

Ocean sink (SocgaN) 160420 145 £20 95+20 145420 150 £20
Terrestrial sink (S AND)C 205+55 155+45 135£35 190 £ 55 190 £ 55
Budget imbalance

Bim = EFF + ELuc — (Gatm+ (15) ) ) (20) (20

SOCEAN + SLAND)

4 Using projections for year 2017 (Sect. 3.3).

b A small change was introduced from Le Quéré et al. (2016) to be consistent with the annual analysis, whereby the growth in atmospheric CO»
concentration is calculated from the difference between concentrations at the end of the year (deseasonalised), rather than averaged over the year.
¢ Assuming Sy AND increases proportionally to G aryp prior to 1860 when the DGVM estimates start.

3.5 Cumulative sources and sinks

Cumulative historical sources and sinks have been revised
compared to the previous global carbon budgets. This ver-
sion of the global carbon budget uses two updated bookkeep-
ing models instead of one bookkeeping model only, uses two
ocean sink data products instead of one data product only,
and uses multiple DGVMs for the land sink instead of deriv-
ing the land sink from the residual of the other terms. As a
result of these methodological changes, the cumulative emis-
sions and their partitioning are significantly larger (by about
50GtC) than our previous estimates. This large difference

www.earth-syst-sci-data.net/10/405/2018/

highlights the uncertainty in reconstructing historical emis-
sion sources and sinks, and this is noted through the large
uncertainty associated with each term.

Cumulative fossil fuel and industry emissions for 1870—
2016 were 420 + 20 GtC for Erg and, with the revised book-
keeping models, 180 £ 60 GtC for E1yc (Table 8), for a total
of 600 £ 65 GtC. The cumulative emissions from Epyc are
particularly uncertain, with a large spread among individual
estimates of 135 GtC (Houghton) and 225 GtC (BLUE) for
the two bookkeeping models and a range of 70 to 230 GtC
for the 12 DGVMs. These estimates are consistent with indi-
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rect constraints from biomass observations (Li et al., 2017),
but given the large spread a best estimate is difficult to ascer-
tain.

With the revised methodology, emissions were partitioned
among the atmosphere (245 % 5 GtC), ocean (145 £ 20 GtC),
and the land (190 & 55 GtC). The use of nearly independent
estimates for the individual terms shows a cumulative bud-
get imbalance of 20 GtC during 1870-2016, which, if cor-
rect, suggests emissions are too high by the same proportion
or the land or ocean sinks are underestimated. The imbal-
ance originates largely from the large Epyc during the mid-
1920s and the mid-1960s which is unmatched by a growth
in atmospheric CO, concentration as recorded in ice cores
(Fig. 3). The known loss of additional sink capacity of about
15 GtC due to reduced forest cover has not been accounted
for in our method and further exacerbates the budget imbal-
ance (Sect. 2.7.3).

Cumulative emissions through to year 2017 increase to
610 £ 65 GtC (2235 £ 240 GtCO,), with about 70 % contri-
bution from Epp and about 30 % contribution from Ejyc.
Cumulative emissions and their partitioning for different pe-
riods are provided in Table 8.

Given the large revision in cumulative emissions, and
its persistent uncertainties, we suggest extreme caution is
needed if using cumulative emission estimate to determine
the remaining carbon budget to stay below the given temper-
ature limit (Rogel;j et al., 2016). We suggest estimating the
remaining carbon budget by integrating scenario data from
the current time to some time in the future as proposed re-
cently (Millar et al., 2017).

4 Discussion

Each year when the global carbon budget is published, each
component for all previous years is updated to take into
account corrections that are the result of further scrutiny
and verification of the underlying data in the primary input
data sets. The updates have generally been relatively small
(Fig. 9). However, this year, we introduced a major method-
ological change to assess both Socpan and Spanp directly
using multiple process models constrained by observations
and to keep track of the budget imbalance separately. We also
use multiple bookkeeping estimates for Ey yc. Therefore, the
update compared to previous years has led to more substan-
tial revisions, particularly concerning the mean Socgan, the
variability of S aAND, and the trends in Ep yc (Fig. 9).

The budget imbalance provides a measure of the limita-
tions in observations, in understanding or full representation
of processes in models, and/or in the integration of the carbon
budget components. The mismatch between the total emis-
sions (red line in Fig. 3) and the total sinks (including the
atmosphere) illustrates the need to explicitly identify imbal-
ances separately rather than assigning residuals to the land
sink as was done in the past. The mean global budget imbal-
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ance is close to zero and there is no trend over the entire time
period (Fig. 4). However, the budget imbalance reaches as
much as +2 GtC yr~! in individual years and 0.6 GtC yr~!
in individual decades (Table 6). Such large budget imbalance
limits our ability to verify reported emissions and limits our
confidence in the underlying processes regulating the carbon
cycle feedbacks with climate change (Peters et al., 2017).

Another semi-independent way to evaluate the carbon
budget results is provided through the use of atmospheric
and oceanic CO; data in data products (atmospheric inver-
sions and pCO,-based ocean flux products). The comparison
shows a first-order consistency between pCO;-based data
products and process models but with substantial discrepan-
cies, particularly for the allocation of the mean surface fluxes
between the tropics and the Northern Hemisphere and for
highlighting underestimated decadal variability in Socgan-
Understanding the causes of these discrepancies and further
analysis of regional carbon budgets would provide additional
information to quantify and improve our estimates, as has
been shown by the project REgional Carbon Cycle Assess-
ment and Processes (RECCAP; Canadell et al., 2012).

To help improve the global carbon budget components,
we provide a list of the major known uncertainties for each
component, defined as those uncertainties that have been a
demonstrated effect of at least 0.3 GtCyr~! (Table 9). We
identified multiple sources of uncertainties for Ey yc, includ-
ing in the land-cover and land-use change statistics, repre-
sentation of management processes, and methodologies (e.g.
Arneth et al., 2017). There are also multiple sources of un-
certainties in Spanp and Socean. When assessing SpAND
using DGVMs, uncertainties mostly related to the under-
standing and representation of processes as evidenced by the
large model spread presented here. Similarly, when assess-
ing SoceaNn With GOBMs, multiple studies based on obser-
vations have shown variability in the ocean CO; sink larger
than estimated by the models presented here, particularly re-
lated to representing the effects of variable ocean circula-
tion in models (e.g. DeVries et al., 2017; Landschiitzer et al.,
2015; Keeling and Manning, 2014). Finally, the quality of the
energy statistics and of the emissions factors is the largest
source of uncertainties for Erg. There are no demonstrated
uncertainties in G oty larger than 0.3 GtC yr~!, although the
conversion of the growth rate into a global annual flux as-
suming instantaneous mixing throughout the atmosphere in-
troduces additional errors that have not yet been quantified.
Multiple other sources of uncertainties have been identified
(i.e. in cement emissions) that could add up to significant
contributions but are unlikely to be the main sources of the
budget imbalance.

Although multiple processes have been identified here,
some will increase variability (e.g. land management pro-
cesses, ocean circulation) while others might decrease it (e.g.
better energy statistics, response to rainfall variability), and
processes would not be all acting simultaneously. It is also
possible that further yet unknown processes are not taken
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Figure 9. Comparison of global carbon budget components released annually by GCP since 2006. CO, emissions from (a) fossil fuels and
industry (Egg) and (b) land-use change (Ep yc), as well as their partitioning among (c) the atmosphere (G arm), (d) the land (S AnD), and
(e) the ocean (SocgaN)- See legend for the corresponding years, and Table 3 for references. The budget year corresponds to the year when
the budget was first released. All values are in GtC yr_l. Grey shading shows the uncertainty bounds representing 1o of the current global

carbon budget.

into account. Better understanding the source of the carbon
imbalance and how to resolve it is critical to progress further
in the understanding of the contemporary carbon budget.
Although we have presented six components of the global
carbon budget individually, different aggregations of terms
are possible. In particular Sy ANp, ELuc, and By could be
aggregated into land fluxes and total uncertainty, as tradition-
ally done, which would result in generally lower uncertainty
compared to each term individually (see Table 5). This infor-
mation is limited in usefulness, however, as it mixes direct
and indirect processes and bring in errors from other com-
ponents and hence the signal becomes difficult to interpret.
However, providing a realistic assessment of uncertainties
for Stanp and Epyc is also difficult. Here we have used
the model spread as a measure of uncertainty, which may
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be, on the one hand, underestimated because it includes only
partly uncertainty in the underlying observations and, on the
other hand, overestimated as it includes artificial spread from
different boundary limits among models. Therefore, further
work is needed not only to better quantify the fluxes but also
to better describe and quantify the uncertainty and reduce
them where possible.

There are many more uncertainties affecting the annual
estimates compared to the mean and trend, some of which
could be improved with better data. Of the various terms in
the global budget, only the emissions from fossil fuels and in-
dustry and the growth rate in atmospheric CO, concentration
are based primarily on empirical inputs supporting annual es-
timates in this carbon budget. pCO»-based flux products for
the ocean CO; sink and atmospheric inversions based on ob-
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Table 9. Major known sources of uncertainties in each component of the global carbon budget, defined as input data or processes that have

a demonstrated effect of at least 0.3 GtC yr_l .

Source of uncertainty Timescale (years) Location Status Evidence

Emissions from fossil fuels and industry (Egg; Sect. 2.1)

energy statistics annual to decadal mainly China see Sect. 2.1 Korsbakken et al. (2016)

carbon content of coal decadal mainly China see Sect. 2.1 Liu et al. (2015)

Emissions from land-use change (Ey yc; Sect. 2.2)

land-cover and land-use continuous global, in particular  see Sect. 2.2 Houghton et al. (2012)

change statistics tropics

sub-grid-scale transitions annual to decadal global see Table 4 Wilkenskjeld et al. (2014)

vegetation biomass annual to decadal global, in particular  see Table 4 Houghton et al. (2012)
tropics

wood and crop harvest annual to decadal global; SE Asia see Table 4 Arneth et al. (2017)

peat burning? multi-decadal trend  global see Table 4 van der Werf et al. (2010)

loss of additional sink multi-decadal trend  global not included; Gitz and Ciais (2003)

capacity Sect. 2.7.3

Atmospheric growth rate (G oTv) — no demonstrated uncertainties larger than £0.3 GtC yr—

1,b

Ocean sink (SoCcEAN)

semi-decadal to
decadal

variability in oceanic
circulation®

global, in particular
Southern Ocean

see Sect. 2.4.2 DeVries et al. (2017)

anthropogenic changes in multi-decadal trend  global not included Duce et al. (2008)
nutrient supply

Land sink (S AND)

strength of CO; multi-decadal trend  global see Sect. 2.5 Wenzel et al. (2016)
fertilisation

response to variability in annual to decadal global, in particular  see Sect. 2.5 Cox et al. (2013)
temperature and rainfall tropics

nutrient limitation and multi-decadal trend  global see Sect. 2.5 Zaehle et al. (2011)
supply

response to diffuse annual global see Sect. 2.5 Mercado et al. (2009)
radiation

@ As result of interactions between land use and climate.

b The uncertainties in G ATM have been estimated as £0.2 GtC yr_1 , although the conversion of the growth rate into a global annual flux assuming instantaneous
mixing throughout the atmosphere introduces additional errors that have not yet been quantified.

¢ Could in part be due to uncertainties in atmospheric forcing (Swart et al., 2014).

served atmospheric CO; concentrations provide new ways to
evaluate the model results, but there are still large discrepan-
cies among estimates. Given the growing reliance on process
models and pCO»-based flux products in our global carbon
budget, it is critical that data-based metrics are developed and
used to inform the selection of models and the improvement
of their process representation in the long term.

5 Data availability

The data presented here are made available in the belief that
their wide dissemination will lead to greater understanding
and new scientific insights of how the carbon cycle works,
how humans are altering it, and how we can mitigate the re-
sulting human-driven climate change. The free availability of
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these data does not constitute permission for publication of
the data. For research projects, if the data are essential to the
work, or if an important result or conclusion depends on the
data, co-authorship may need to be considered. Full contact
details and information on how to cite the data included in
the GCP (2017) release are given at the top of each page in
the accompanying database and summarised in Table 2.

The accompanying database includes two Excel files or-
ganised in the following spreadsheets (accessible with the
free viewer at http://www.microsoft.com/en-us/download/
details.aspx?id=10).

File Global_Carbon_Budget_2017v1.0.xlsx includes the
following:

1. Summary

www.earth-syst-sci-data.net/10/405/2018/
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2. The global carbon budget (1959-2016)

3. Global CO; emissions from fossil fuels and cement
production by fuel type, and the per-capita emissions
(1959-2016)

4. CO; emissions from land-use change from the individ-
ual methods and models (1959-2016)

5. Ocean CO; sink from the individual ocean models and
pCO;-based products (1959-2016)

6. Terrestrial CO; sink from the DGVMs (1959-2016)

7. Additional information on the carbon balance prior to
1959 (1750-2016)

File National_Carbon_Emissions_2017v1.0.xIsx includes
the following:

1. Summary

2. Territorial country CO; emissions from fossil fuels and
industry (1959-2016) from CDIAC, extended to 2016
using BP data

3. Territorial country CO; emissions from fossil fuels and
industry (1959-2016) from CDIAC with UNFCCC data
overwritten where available, extended to 2016 using BP
data

4. Consumption country CO, emissions from fossil fuels
and industry and emissions transfer from the interna-
tional trade of goods and services (1990-2015) using
CDIAC/UNFCCC data (worksheet 3 above) as refer-
ence

5. Emissions transfers (consumption minus territorial
emissions; 1990-2015)

6. Country definitions
7. Details of disaggregated countries
8. Details of aggregated countries

National emissions data are also available from the Global
Carbon Atlas (http://globalcarbonatlas.org).
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6 Conclusions

The estimation of global CO; emissions and sinks is a major
effort by the carbon cycle research community that requires
a combination of measurements and compilation of statis-
tical estimates and results from models. The delivery of an
annual carbon budget serves two purposes. First, there is a
large demand for up-to-date information on the state of the
anthropogenic perturbation of the climate system and its un-
derpinning causes. A broad stakeholder community relies on
the data sets associated with the annual carbon budget includ-
ing scientists, policy makers, businesses, journalists, and the
broader society increasingly engaged in adapting to and mit-
igating human-driven climate change. Second, over the last
decade we have seen unprecedented changes in the human
and biophysical environments (e.g. changes in the growth
of fossil fuel emissions, ocean temperatures, and strength of
the sink), which call for frequent assessments of the state
of the planet and, by implication, a better understanding of
the future evolution of the carbon cycle. Both the ocean and
the land surface presently remove a large fraction of anthro-
pogenic emissions. Any significant change in the function of
carbon sinks is of great importance to climate policymak-
ing, as they affect the excess CO; remaining in the atmo-
sphere and therefore the compatible emissions for any cli-
mate stabilisation target. Better constraints of carbon cycle
models against contemporary data sets raise the capacity for
the models to become more accurate at future projections.
This all requires more frequent, robust, and transparent data
sets and methods that can be scrutinised and replicated. This
paper via “living data” will help to keep track of new budget
updates.

Earth Syst. Sci. Data, 10, 405448, 2018
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Appendix A
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Table A1. Comparison of the processes included (Y) or not (N) in the bookkeeping and dynamic global vegetation models for their estimates
of Er yc and Sp AND- See Table 4 for model references. All models include deforestation and forest regrowth after abandonment of agriculture

(or from afforestation activities on agricultural land).

(a) Bookkeeping models ‘ DGVMs
3
3 8 2 o 2
= 5 2 = % = 2 4
5 s |92 %3 s_3g23 & _ 2 g 2 2
5 =) B < = M E =85 2 - x z 8 8 0 3
= < Jd a4 4 %5 8 5 /&M & & L o x ¥ A £
o= m J 0 oA ¥gr 33 3 O 0 O » >
Processes relevant for Ey yc
Wood harvest and forest Y Y Y N Y Y Y N N N Y Y N N
degradation®
Shifting cultivation/ NP Y Y N Y N N N N N N N N N
subgrid scale transitions
Cropland harvest Y Y N L N Y Y N Y Y Y Y Y Y
Peat fires Y Y N N Y N N N N N N N N N
Fire as a management Y Y N N N N N N N N N N N N
tool
N fertilisation Y! Y! N N N Y Y N N Y Y N N N
Tillage Y! Y N YT N N N N N N N Y yh N
Irrigation Y Y N N N Y Y N N N N N N N
Wetland drainage Y! Y! N N N N N N N N N N N N
Erosion Y! Y! N N N N N N N N N N N N
Southeast Asia peat Y Y N N N N N N N N N N N N
drainage
Grazing and mowing Y! Y! N N N N Y N Y N N N N N
harvest
Processes relevant also for S AND
Fire simulation US only N N Y Y Y N Y N Y Y Y N N Y Y Y
Climate and variability N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
CO, fertilisation NE NE Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Carbon-nitrogen inter- Ni Ni Y N Y Y Y N N Y N Y Y N N Y N

actions, including N
deposition

4 Refers to the routine harvest of established managed forests rather than pools of harvested products.

b No back and forth transitions between vegetation types at the country level, but if forest loss based on FRA exceeded agricultural expansion based on FAO, then this amount of

area.

¢ Limited. Nitrogen uptake is simulated as a function of soil C, and Vcmax is an empirical function of canopy N. Does not consider N deposition.

d Available but not active for comparability between the two LU forcings.

¢ Although C-N cycle interactions are not represented, the model includes a parameterisation of down-regulation of photosynthesis as CO, increases to emulate nutrient

constraints (Arora et al., 2009).

f Tillage is represented over croplands by increased soil carbon decomposition rate and reduced humification of litter to soil carbon.
& Bookkeeping models include effect of CO, fertilisation as captured by observed carbon densities, but not as an effect transient in time.
F‘ 20 % reduction of active soil organic carbon (SOC) pool turnover time for C3 crop and 40 % reduction for C4 crops.

! Process captured implicitly by use of observed carbon densities.

J Three DGVMs were excluded from the Ey yc estimate due to an initial peak of Ey yc emissions caused by a cold start of shifting cultivation in 1860.
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Table A2. Comparison of the processes included in the global ocean biogeochemistry models for their estimates of Socgan- See Table 4 for
model references.

CCSM-BEC CSIRO NorESM-0OC MITgecm-REcoM2  MPIOM- NEMO-PISCES NEMO- NEMO-
HAMOCC (CNRM) PISCES (IPSL)  PlankTOMS
Atmospheric ~ NCEP JRA-55 CORE-I (spin JRA-55 ERA-20C NCEP NCEP NCEP
forcing up)/NCEP with
CORE-II correc-
tions
Initialisation =~ GLODAP GLODAP + spin GLODAP vI + GLODAP, then from previous spin up 3000 years ~ GLODAP GLODAP +
of carbon up 1000+ years spin up 1000 years  spin up 116 years model runs with offline + 300 years  from 1948 spin up
chemistry (2 cycles JRA-55)  >1000 years online onwards 30 years
spin-up
Physical POP Version MOMS5 MICOM MITgem 65n MPIOM NEMOV2.4- NEMOV3.2- NEMOV2.3-
ocean model  1.4.3 ORCAI1L42 ORCA2L31 ORCA2
Resolution 3.6° long, 0.8  1° x 1° with 1° long, 0.17 to 2° long, 0.38-2° 1.5% 2° long, 0.3 to 1° 2° long, 0.3 to 2° long, 0.3
to 1.8° lat enhanced resolution 0.25 lat; 51 isopyc- lat; 30 levels 40 levels lat; 1.5° lat; to 1.5° lat;
at the tropics and nic layers + 2 bulk 42 levels, 5m at 31 levels 31 levels

high-lat S. Ocean;
50 levels

mixed layer

surface

Table A3. Comparison of the inversion setup and input fields for the atmospheric inversions. Atmospheric inversions see the full CO, fluxes,
including the anthropogenic and pre-industrial fluxes. Hence, they need to be adjusted for the pre-industrial flux of CO; from the land to the
ocean that is part of the natural carbon cycle before they can be compared with Socpan and Sp anp from process models. See Table 4 for

references.
CarbonTracker Europe (CTE) Jena CarboScope CAMS
Version number CTE2017-FT s850c_v4.1s vlérl
Observations
Atmospheric Hourly resolution (well- Flasks and hourly (outliers Daily averages of well-mixed con-
observations mixed conditions) ObsPack removed by 20 criterion) ditions — ObsPack GLOBALVIEW-

GLOBALVIEWplus v2.1 and
NRTVv3.32

plus v2.1 and NRT v3.2.3, WD-
CGG, RAMCES, and ICOS ATC

Prior fluxes

Biosphere and fires

SiBCASA-GFED4s?

Zero

ORCHIDEE (climatological),
GFEDv4 and GFAS

Ocean

Ocean inversion by Jacobson et
al. (2007)

pCO,-based ocean flux product
oc_vl.5 (update of Rodenbeck
et al., 2014)

Landschiitzer et al. (2015)

Fossil fuels EDGAR and IER, scaled to CDIAC (extended after 2013 EDGAR scaled to CDIAC
CDIAC with GCP totals)

Transport and optimisation

Transport model TMS T™M3 LMDZ v5A

Weather forcing ECMWF NCEP ECMWF

Resolution (degrees)

Global: 3° x 2°, Europe:
1° x 1°, North America:
1°x1°

Global: 4° x 5°

Global: 3.75° x 1.875°

Optimisation

Ensemble Kalman filter

Conjugate gradient
(re-orthonormalisation)

Variational

& CarbonTracker Team (2017), GLOBALVIEW (2016). b van der Velde et al. (2014).
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Table A4. Attribution of fCO; measurements for the year 2016 included in SOCAT v5 (Bakker et al., 2016) to inform ocean pCO;-based

C. Le Quére et al.: Global Carbon Budget 2017

flux products.
Platform (vessel or Regions No. of  Principal investigators Number of
time-series station) samples data sets
Allure of the Seas North Atlantic, Tropical Atlantic 71744  Wanninkhof, R.; Pierrot, D. 36
Atlantic Cartier North Atlantic 44302  Steinhoff, T.; Kortzinger, A.; Becker, M.; 12
Wallace, D.
Aurora Australis Southern Ocean 43885  Tilbrook, B. 2
Benguela Stream North Atlantic, Tropical Atlantic 137902  Schuster, U.; Watson, A. J. 21
Cap Blanche North Pacific, Tropical Pacific 17913  Cosca, C.; Alin, S.; Feely, R.; Herndon, J. 3
Cap San Lorenzo North Atlantic, Tropical Atlantic 9126  Lefevre, N. 3
Colibri North Atlantic, Tropical Atlantic 27780 Lefevre, N. 6
Equinox North Atlantic, Tropical Atlantic 97106  Wanninkhof, R.; Pierrot, D. 35
E.G. Walton Smith North Atlantic, Tropical Atlantic 43222  Millero, F.; Wanninkhof, R. 16
Finnmaid North Atlantic 34303 Rehder, G.; Glockzin, M. 3
G.O. Sars Arctic, North Atlantic 109125  Skjelvan, 1. 13
GAKOA_149W_60N North Pacific 488  Cross, J.; Mathis, J.; Monacci, N.; 1
Musielewicz, S.; Maenner, S.; Osborne, J.
Gordon Gunter North Atlantic, Tropical Atlantic 59310 Wanninkhof, R.; Pierrot, D. 13
Henry B. Bigelow North Atlantic 61021 Wanninkhof, R. 13
Investigator Southern Ocean, Tropical Pacific 108721  Tilbrook, B. 3
Laurence M. Gould Southern Ocean 26 150  Sweeney, C.; Takahashi, T.; Newberger, T.; 5
Sutherland, S. C.; Munro, D.
Marion Dufresne Southern Ocean 3214  Metzl, N.; Lo Monaco, C. 1
New Century 2 North Atlantic, North Pacific, 25222  Nakaoka, S. 15
Tropical Pacific
Nuka Arctica North Atlantic 47392  Becker, M.; Olsen, A.; Omar, A.; 12
Johannessen, T.
Polarstern Arctic, North Atlantic, Southern 164407  van Heuven, S.; Hoppema, M. 5
Ocean, Tropical Atlantic
Roger Revelle Indian Ocean, Southern Ocean, 93689  Wanninkhof, R.; Pierrot, D. 8
Tropical Pacific
Ronald H. Brown North Pacific, Tropical Pacific 52267 Wanninkhof, R.; Pierrot, D. 8
S.A. Agulhas 11 Southern Ocean 27851 Monteiro, P. M. S.; Joubert, W. R.
Sarmiento de Gamboa  North Atlantic, Southern Ocean, 16122  Padin, X. A. 2
Tropical Atlantic
Savannah North Atlantic 2803 Cai, W.-J.; Reimer, J. J. 1
SEAK North Pacific 271  Cross, J.; Mathis, J.; Monacci, N.; 1
Musielewicz, S.; Maenner, S.; Osborne, J.
Skogafoss North Atlantic 22541  Wanninkhof, R.; Pierrot, D. 4
Tangaroa Southern Ocean 118997  Currie, K. 7
Thomas G. Thompson  North Pacific, Tropical Pacific 14656  Alin, S.; Cosca, C.; Herndon, J.; Feely, R. 1
Trans Future 5 North Pacific, Tropical Pacific, 23087 Nakaoka, S.; Nojiri, Y. 21
Southern Ocean
UNH Gulf Challenger ~ North Atlantic 2984 Hunt, C. W. 3
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Table A5. Funding supporting the production of the various components of the global carbon budget in addition to the authors’ supporting
institutions (see also acknowledgements).

Funder and grant number (where relevant) Author initials
Australia, Integrated Marine Observing System (IMOS) BT

Australian National Environment Science Program (NESP) JGC, VH

EC H2020 European Research Council (ERC) (QUINCY; grant no. 647204). SZ

EC H2020 ERC Synergy grant IMBALANCE-P; grant no. ERC-2013-SyG-610028) DZ

EC H2020 project CRESCENDO (grant no. 641816) PF, RS

EC H2020-MSCA-IF-2015 ERC (FIBER; grant no. 701329) BDS

EC FP7 project HELIX (grant no. 603864) PF, RAB, SS
EU FP7 project LUC4C (grant no. 603542) PF, MK, SS
French Institut National des Sciences de 1’Univers (INSU) and Institut Paul Emile Victor (IPEV), NM

Sorbonne Universités (UPMC, Univ Paris 06)

German Federal Ministry for Education and Research (BMBF) GR, AK, SVH
German Federal Ministry of Transport and Digital Infrastructure (BMVI) AK, SVH
German Research Foundation’s Emmy Noether Programme (grant no. PO1751/1-1) JEMSN, JP
IRD, Integrated Carbon Observation System (ICOS) RI NL

Japan National Institute for Environmental Studies (NIES), Ministry of Environment (MOE) SK, YN
NASA LCLUC programme (grant no. NASA NNX14AD9%4G) Al
Netherlands Organisation for Scientific Research (NWO) Veni grant (016.Veni.171.095) IvdLL
Netherlands Organisation for Scientific Research (NWO) Veni grant (016.Veni.158.021) KKG

New Zealand National Institute of Water and Atmospheric Research (NIWA) Core Funding KC
Norwegian Research Council, Norwegian Environmental Agency IS

Norwegian Research Council (ICOS 245927) BP, MB
Norwegian Research Council (grant no. 229771) JS

Norwegian Research Council (grant no. 209701) RMA, JIK, GPP
RI Integrated Carbon Observation System (ICOS) AW, GR, AK, SVH, IS, BP, MB
South Africa Council for Scientific and Industrial Research, Department of Science PMSM

and Technology (DST)

Swiss National Science Foundation (grant n0.200020_172476) SL

The Copernicus Atmosphere Monitoring Service, implemented by the European Centre for FC
Medium-Range Weather Forecasts (ECMWF) on behalf of the European Commission

UK BEIS/Defra Met Office Hadley Centre Climate Programme (grant no. GA01101) RAB

UK Natural Environment Research Council (SONATA: grant no. NE/P021417/1) CLQ, OA

UK NERC, EU FP7, EU Horizon2020 AW

USA Department of Energy, Office of Science and BER programme (grant no. DE-SC000 0016323)  ATJ

USA National Oceanographic and Atmospheric Administration (NOAA) Ocean Acidification CWH
Program (OAP) NA16NOS0120023

USA National Science Foundation (grant no. OPP 1543457) DRM

USA National Science Foundation (grant no. AGS 12-43071) AKJ

Computing resources

Grand Equipement National de Calcul Intensif (allocation x2016016328), France NV

HPC resources of TGCC under allocation 2017-A0010102201 made by GENCI FC
Meétéo-France/DSI supercomputing centre RS
Netherlands Organisation for Scientific Research (NWO) (SH-312-14) IvdLL
UEA High Performance Computing Cluster, UK ODA, CLQ
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