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Abstract   

Locally relevant scenarios of daily weather variables that represent the best knowledge of 

the present climate and projections of future climate change are needed by planners and 

managers to inform management and adaptation decision making.  Information of this kind 

for the future is only readily available for a few developed country regions of the world. For 

many less-developed regions, it is often difficult to find series of observed daily weather 

data to assist in planning decisions. This study applies a previously developed single-site 

Weather Generator (WG) to the Caribbean, using examples from Belize in the west to 

Barbados in the east. The purpose of this development is to provide users in the region with 

generated sequences of possible future daily weather that they can use in a number of 

impact sectors. The WG is first calibrated for a number of sites across the region and the 

goodness of fit of the WG against the daily station observations assessed. Particular 

attention is focussed on the ability of the precipitation component of the WG to generate 

realistic extreme values for the calibration or control period. The WG is then modified using 

Change Factors (CFs) derived from Regional Climate Model (RCM) projections (control and 

future) to simulate future 30-year scenarios centred on the 2020s, 2050s and 2080s. 

Changes between the control period and the three futures are illustrated not just by 

changes in average temperatures and precipitation amounts, but also by a number of well-

used measures of extremes (very warm days/nights, the heaviest 5-day precipitation total in 

a month, counts of the number of precipitation events above specific thresholds and the 

number of consecutive dry days).  

 

1. Introduction 

Assessments of the influence of weather variability on an impact sector (e.g. agriculture and 

water resources etc.) require observational weather data and an impact model that relates 

this variability to the impact sector (e.g. crop growth, rainfall/runoff models etc.). For the 

future, researchers in these impact sectors want to continue to use similar impact models to 

assess how a changed future climate might affect their sector. There are three major 

sources of uncertainties that need to be addressed in these studies (see e.g. Parry et al., 

2007): uncertainties in the impacts models, in the future climate projections (from General 
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Circulation Models, GCMs and RCMs) and finally in the way the latter are further 

‘downscaled’ to the relevant space and time scales for the sector. This paper does not 

consider the first uncertainty, which will be both sector and region specific (Parry et al., 

2007). The relative importance of the three uncertainties generally depends on the 

researcher’s perspective, but from a climatic perspective the second should be considered 

the most important particularly for more distant futures. This paper addresses the third of 

these uncertainties but it is necessary to consider this in conjunction with the second and in 

many respects it is difficult to separate the third from the second type of uncertainty.  

 

Due to differences in spatial scales, limitations to process modelling and biases in GCMs and 

RCMs, some form of downscaling (both in the temporal as well as the spatial domain) is 

necessary for many impact assessments (Jenkins et al., 2014).  Accordingly, researchers have 

employed a variety of approaches to provide what is the basic requirement: future 

sequences of weather for a particular time horizon and emissions scenario.  Two basic 

approaches to downscaling have been recognized: statistical and dynamical. Dynamical 

downscaling concerns the nested simulation of an RCM conditioned by a GCM, whilst 

statistical downscaling uses empirical relationships between local and larger spatial scales to 

downscale climate model projections (see Schmidli et al., 2007 for a brief review and an 

intercomparison of both approaches; Christensen et al., 2007, 2013 for a focus on dynamic 

downscaling and Maraun et al., 2010 and Wong et al., 2014 for downscaling of 

precipitation). Traditionally there was a clear distinction between the two approaches. This 

distinction, however, has become blurred in recent years with the recognition that RCM 

output should generally not be used directly so that even high-resolution RCM output (at 

say the 25km resolution and daily timescale) is not sufficiently detailed or still contains 

biases for direct application to some impact sectors. Thus methods applying statistical 

downscaling to RCM outputs combining the benefits of both approaches have been 

developed (e.g. Burton et al., 2010).  

 

A popular type of statistical downscaling methodology concerns the use of a stochastic 

weather generator (WG) to simulate scenarios of weather that match important statistical 

properties of known observations. WGs have a long history, extending back to Richardson 

(1981) when they were first developed for the daily timescale. This WG (WGEN, see also 
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Richardson and Wright, 1984) developed daily series of precipitation amounts, mean 

temperature and solar radiation. The original aim was to use the generated sequences to 

drive a crop-climate model and this is still the use to which most WG outputs around the 

world are put (Semenov and Barrow, 1997, Zhang, 2005). Improved types of WGs have been 

developed since the early 1980s (e.g. LARS-WG, Racsko et al., 1991 and CLIGEN, Nicks et al, 

1995, see discussion in Chen et al., 2012) and more recently (e.g. EARWIG, Kilsby et al., 

2007). The first attempts to modify the output of WGs for their use in studies of future 

climate impacts were undertaken by Wilks (1992) and also by Katz (1996). Wilks and Wilby 

(1999) and Wilks (2010, 2012) provide comprehensive reviews of WGs and WG use. The 

references in these latter two papers show how the use of WGs has extended from crop-

climate modelling to other sectors (e.g. rainfall/runoff modelling and building design) and 

also towards the more direct use of the output in estimating changes in extremes at single 

sites. It will be this latter direct use that we will illustrate in this paper. 

 

Robock et al. (1993) was one of the first papers to discuss how climate scenarios should be 

developed from various possibilities (past warm periods, spatial analogues, modifying 

historic series to GCM output). Their recommendation was to use GCMs as they were the 

only approach that could produce consistency across multiple climate variables, but there 

was a mismatch in scales between point observations and the large grid-box sizes of GCMs. 

WGs provide a relatively simple way to bridge these differences in spatial scales. There are 

two recognized approaches to modifying WG parameters (Wilks, 2010). The first uses day-

to-day changes in parameters according to daily variations in the atmospheric circulation 

(e.g. Wilby et al. 2002). The second, and much more common approach, has been to modify 

WG parameters using calculations from GCMs or more recently RCMs (see possible 

formulations in Wilks, 2010). Initial modification of WG parameters used monthly means 

and variances of precipitation and temperature, with different values for days that were wet 

or dry. The use of changes projected by climate models instead of absolute projected 

climate properties has begun to be referred to as the Change Factor (CF) approach (see 

Kilsby et al., 2007; Chen et al., 2012). For example, the traditional perturbation approach 

(e.g. Prudhomme et al., 2002) may concern the application of change factors to adjust the 

mean rainfall properties of observed rainfall records to yield a future rainfall scenario.  As 

daily precipitation generation has become much more complex than the Markov-Chain 
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approach of Richardson and Wright (1984), CFs encompassing the proportion of dry days, 

skewness and autocorrelative properties of precipitation have been additionally estimated 

from GCM, and increasingly RCM, output for application to WGs (e.g. Burton et al., 2010).  

 

Kilsby et al. (2007) illustrate how RCM projections of change (using CFs) can be applied to 

present day weather statistics (derived from daily observations from a single series) to 

provide an estimate of the important characteristics of a downscaled future scenario. 

Subsequently both present day and future scenarios are simulated using the weather 

generator for a specific location. This approach was updated and further developed to 

provide future climate scenarios for 5km grid squares across the UK for emulated 

projections from a perturbed physics ensemble for the UKCP09 national scenarios (Jones et 

al., 2010).  Within UKCP09, one hundred 30-year sequences of daily weather are generated 

for both the control and future climate. Each of these sequences should be run through the 

climate-impact model in the sector of interest, or all assessed directly (e.g. for extremes), 

providing ranges of uncertainty (which encompass the uncertainty of both the WG, the CFs 

and where used, the impact model). This type of application will be illustrated in this paper 

for the Caribbean by assessing changes in daily precipitation and temperature extremes at 

single sites across the region.  

 

The Caribbean region contains more than 20 autonomous states at various stages of 

economic development. However, regional institutions and national infrastructure planners 

and resource managers face common practical and political challenges concerning the 

evaluation of present and future weather-derived resources and hazards. These include the 

limited availability of observed meteorological datasets and the requirement for locally 

relevant unbiased downscaled future climate scenarios of weather. Whilst detailed RCM-

based downscaling studies have been carried out (e.g. Centella-Artola et al., 2015) and 

downscaled GCM scenarios are available based on broad brush global scale approaches 

(Mitchell et al., 2004), a regionally relevant approach taking advantage of both stochastic 

WG and deterministic dynamical downscaling methodologies is not yet available for this 

region.  
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In this paper the need for present and future locally-relevant and unbiased scenarios of 

weather for  locations in the Caribbean is addressed by adapting and evaluating the Kilsby et 

al. (2007) and UKCP09 (Jones et al, 2010) CF+WG approaches for the region. In particular, 

care is taken to make the best use of available observed datasets. The WG is fitted to 

observed daily station data and perturbed using the CF approach applied to recent RCM 

projections of control and future scenarios for the region. Perturbing the WG in this way 

provides future weather sequences, which can be used with sector-specific impact models. 

The approach is assessed by comparing daily control scenarios with available observations. 

Future climate change is evaluated in terms of changes to both climatology and extreme 

weather occurrences.  Uncertainty due to weather variability is modelled by the multiple 

simulations of the WG for the current and the chosen future.  

 

The paper is structured as follows. Section 2 discusses the availability of the needed daily 

climate series across the Caribbean for WG calibration. This section includes some necessary 

pre-processing and analysis steps as some variables do not appear to be measured in the 

region, as well as the estimation of important additional variables calculated from the 

measured weather variables [Potential Evapotranspiration, (PET) and Direct and Diffuse 

Radiation]. Section 3 introduces the daily version of the WG and illustrates the results of 

fitting the WG to these data series, together with projections for the future, which is the 

main aim of this paper. This section additionally discusses the results in the context of 

extremes in the generated weather sequences. Section 4 concludes. To keep the text 

relatively short, daily station data availability, the mathematical detail of the WG and the 

perturbation procedure have all been removed to Appendices.  

 

2. The Caribbean Region and available data  

2.1 The climatology of the Caribbean region 

The Caribbean Sea is located between 10° and 24°N and exhibits a humid and maritime 

tropical climate. The Inter-Tropical Convergence Zone (ITCZ) reaches its furthest northward 

extent in western parts in July and lies across northern South America in December.   In the 

southern parts of the Caribbean region this results in two wet seasons separated by two dry 

seasons, but centrally and further north there is only a single wet season. The oceanic 
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setting of the islands in the region results in relatively stable year round temperatures, with 

average daily temperature range exceeding the magnitude of the seasonal cycle. Across the 

region the dry seasons are not totally dry, and might be better expressed as being less wet. 

The basic climatology of the region has been described in detail by Taylor and Alfaro (2005). 

Many studies discuss the regional climatology in the context of the hurricanes which 

periodically cross the region during the June to November season (see the recent paper by 

Jones et al., 2015). Despite the hurricane season, many studies separate the year into three 

seasons: May to July, August to October and November to April, although the seasonal 

breakdown varies across the large region.  The irregular occurrence of hurricanes potentially 

distorts climate statistics, and the effects of this will be discussed later. 

2.2 Observed meteorological data  

The Jones et al (2010) daily WG requires the following six observed daily meteorological 

variables in order to be fully calibrated:  Precipitation; Temperature minimum; Temperature 

maximum; Sunshine hours; Vapour pressure (VP); and Wind speed.  Although VP is 

measured directly using a wet-bulb thermometer, it is generally reported as a Relative 

Humidity (RH) measurement.  This is the case for the Caribbean, so it has been necessary to 

use RH and temperature to recalculate the VP value, as VP is the preferred humidity variable 

within the WG and is required for the subsequent PET calculation. At some sites across the 

Caribbean, RH and occasionally sunshine and wind speed are not measured at some of the 

sites. As these are required for full use of the WG, possible solutions to this problem are 

discussed in section 2.3.  

WG calibration requires at least 20 years of data within a 30-year base period for each 

month and each year must contain at least 66% of data for that month. Traditionally a 1961-

1990 baseline period was used in Europe, however, to maximize the utility of available 

station datasets, three candidate baselines were evaluated for their coverage of the 

Caribbean region: 1961-1990; 1971-2000; 1981-2010. Data sparsity in the first period led to 

it being rejected. The latter two periods were considered, therefore, to be most relevant for 

the region in terms of historic data completeness and to provide a regional coverage that 

accepts recently installed observation sites. Figure 1 maps the sites across the Caribbean 

and Appendix 1 provides a brief regional overview of the 42 most suitable datasets available 
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for this study together with details of any pre-processing and percentage completeness for 

each variable. For all Caribbean sites, extreme precipitation values were checked using the 

HURDAT dataset of hurricane tracks (Knapp et al., 2010) and also reports of extreme rainfall 

events on Wikipedia.  

2.3 Evaluation of / Alternative methods of evaluating VP  

The WG was developed for the UK where the length and coverage of daily weather data is 

more widespread than in the Caribbean. In the rest of this section we discuss and develop 

the compromises required to enable the WG to be run in a similar way as for the UK.  

Estimating daily PET requires data for five of the six meteorological variables (temperature 

mean (average of max and min), sunshine, wind speed and vapour pressure).  However, only 

three Caribbean stations (Philip Goldson International Airport in Belize; Melville Hall, 

Dominica; and Grantley Adams International Airport, Barbados) to which we have access 

have an adequate record of daily RH measurements, from which VP may be calculated. All 

other stations do not appear to measure RH: at least in the archives we are aware of in the 

region (see Appendix 1 which includes the sources of the observational data).  

 

For two of these sites, we have used RH to calculate VP required by the Penman-Monteith 

approach for the calculation of PET (see Ekström et al., 2007 for details of this FAO 

recommended method).  This is a simple direct calculation which additionally uses the 

saturation vapour pressure of the air at the average daily temperature (estimated from the 

mean of maximum and minimum daily temperature). Alternatively, VP can be estimated 

from minimum temperature measurements which are available at all sites listed in 

Appendix 1. The relevant formula is given by Harris et al. (2014, their Equation A7) and also 

New et al. (1999), where daily minimum temperature is used as a surrogate estimate of dew 

point temperature.  This is an approximation, so here, we use this relationship for two of the 

sites with vapour pressure measurements and compare the direct and approximated vapour 

pressure measurements as well as the resulting estimates of PET. 

 

Figure 2 shows the results for the Philip Goldson Airport site in Belize (B5) and Figure 3 for 

the site in Dominica at Melville Hall (W2). Greater emphasis should be placed on the Belize 

results as these are based on almost complete daily observations for all variables for the 
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1981-2010 period.  For the site in Dominica, the completeness of the record is poorer. 

Estimating vapour pressure from minimum temperature has very little effect on monthly 

PET estimation at the site in Belize. For the site in Dominica, the vapour pressure estimation 

results in higher values than those measured. For the PET calculation this results in lower 

estimates than those for PET using the measured vapour pressure values.  At both sites the 

annual cycle of vapour pressure and PET is well produced when comparing the estimates of 

PET with the direct measurements of VP and those using the formula with minimum 

temperature.  We thus use this relationship between Tn and VP across the region to derive 

daily VP values where VP or RH are not directly measured. 

 

A few of the Caribbean sites listed in Appendix 1 are additionally missing either sunshine or 

wind speed measurements or both.  For such cases the Penman-Monteith PET calculation 

cannot be used, so a much simpler approach to PET calculation, developed by Thornthwaite 

(1948) based solely on temperature measurements, has been used. This development took 

place over the eastern United States in a region that can be considered a humid climate, 

somewhat similar to that experienced over much of the Caribbean.  A number of papers 

have compared various PET approaches (including Penman-Monteith and Thornthwaite) in 

different parts of the world (e.g. Xu and Singh, 2001 and Lu et al., 2005) using 

measurements made by evaporation pans as the truth. In general, Thornthwaite 

overestimates PET compared to both the pans and Penman-Monteith in humid climates and 

underestimates in arid climates (see Pereira and Camargo, 1989), and so adjustment factors 

have been devised to correct for this (Bautista et al., 2009).  We have evaluated the 

Thornthwaite PET estimate compared to the Penman-Monteith PET (not shown) but 

although the approach appears reasonable it does not produce the annual cycle of PET 

shown in Figures 2 and 3.  The Thornthwaite approach leads to a slight peak in July, instead 

of the slightly bimodal distribution evident in Figures 2 and 3. This comes about from the 

peak in temperatures in July and the Thornthwaite approach being solely based on 

temperature. Higher humidity values result in slightly lower PET estimates in the high 

summer months as in the example for Dominica. 

 

Appendix 1 contains a list of the data completeness for each site, including sites where VP 

has been estimated from Tn. At one of the sites on Barbados, sunshine measurements have 
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been used from a nearby site to produce a more complete record. Full details of this are also 

given in Appendix 1.  Users wanting access to the raw station need to contact the 

appropriate Meteorological Service. 

 

2.4 Available Climate model projections  

Relatively high resolution, 25km, Caribbean region future climate scenario projections were 

available for use in this study over the projection time-domain 1961-2100 for the A1B SRES 

emissions scenario (Taylor et al., 2007; Centella-Artola et al., 2007; Campbell et al., 2010;  

Karmalkar et al., 2013; Centella et al., 2014). These projections were produced by the 

dynamic downscaling of the HadCM3Q0 and ECHAM5 GCMs to 25km resolution using the 

PRECIS RCM (for model details see Centella-Artola et al., 2015).  Projections for the 2020s 

(2011-40), the 2050s (2041-70) and the 2080s (2071-2100) were used in this study together 

with the RCM run for the control-run period of 1981-2010.  The projections developed in 

this study, therefore, are based on just two GCM/RCM combinations, so will not fully sample 

the uncertainty range. To undertake such an exercise, users would need to apply similar or 

different methodologies to the WG but with an extended range of GCM/RCM combinations 

which are becoming available within the CORDEX initiative (see for example for the North 

American Domain in Martynov et al., 2013) This study does also not assess how well 

hurricanes are simulated by the RCMs, but it discusses how hurricanes might distort the 

precipitation series. 

Many more GCM simulations are available for this region and are discussed in the latest 

Intergovernmental Panel on Climate Change (IPCC) Report by Christensen et al. (2013, see 

also the Atlas Annex available at https://www.ipcc/report/ar5/wg1). Here 39 GCMs are 

averaged in the Coupled Model Intercomparison Project 5 (CMIP5) across the Caribbean and 

Central America in their Figure 14.19 [for the median Representative Concentration 

Pathway (RCP) 4.5] and compared with 24 GCMs from CMIP3 (from the previous IPCC 

Report in Christensen et al., 2007).  For precipitation, the CMIP5 model average indicates a 

drying for 2081-2100 with respect to 1986-2005 for the June to September season, with 

little change evident for the December to March season.  For periods nearer the present (we 

chose 2046-65 for comparison with our 2050s) the average drying for June to August (JJA) is 

6% across the 39 GCMs (see Table 14.1 of Christensen et al., 2013). Temperature increases 
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within the CMIP5 average for this region, also for RCP4.5, are 0.8°C for both December to 

February (DJF) and JJA. Our two GCMs (HadCM3Q0 and ECHAM5) are consistent with 

the CMIP5 ensemble average.  Later (in section 3.4 and the conclusions), we will bear 

these average projections in mind when discussing our results for the 2050s.  

3. Methodology and application  

3.1  The Weather Generator (WG) 

WGs have a long history of use in hydrology, climatology and agriculture (e.g. Semenov, 

2008; Kilsby et al., 2007; Wilks, 2010, 2012). The WG used here is a development of the 

EARWIG (Kilsby et al., 2007) and UKCP09 (Jones et al., 2010) WGs for the CARIWIG project 

http://www.cariwig.org/). The WG was designed to provide unconditional simulations, in 

the sense that they are independent of external forcing (e.g. by large-scale circulation), for a 

single location of internally consistent daily time series of meteorological variables: 

precipitation, temperature (min and max), vapour pressure, wind speed and sunshine. 

Fitting the CARIWIG-WG requires at least 20 years of data (within one of the 30-year 

baseline time periods) with simultaneous measurements of all the variables (the 

completeness of the available data was discussed in section 2.2). The parameterised WG can 

then generate series at a daily time resolution using two stochastic models in series. First, a 

model generates precipitation which is subsequently used to condition a second model, 

which generates the other variables dependent on precipitation. Table 1 details the units 

and notation for the six generated weather variables and the order in which their simulation 

is carried out.  If observations of a meteorological variable of suitable length are not 

available, then this variable will be omitted from the fitting and simulation steps of the 

model. However, the omission of a secondary variable can prevent the simulation of tertiary 

variables, and the omission of rainfall will prevent the simulation of all variables. Complete 

details about the structure of the WG used here are provided in Appendix 2. This WG has 

had usage outside the UK and a summary of applications in Europe is provided by Forsythe 

et al. (2014) who apply a variant of the WG to the Upper Indus Basin in Pakistan, where 

there is a climate quite different from the Caribbean.  

As shown in Table 1, a number of useful additional meteorological variables may be 

calculated from the six generated variables: Relative humidity; Potential Evapotranspiration 
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(PET) (according to the formula given in Ekström et al., 2007); and Diffuse and Direct 

Radiation (according to the formula given in Muneer, 2004), which for example are 

particularly important for building design. Provision of these calculated variables supports 

the impacts community and provides consistency across different impact sectors.  If users 

required PET or the radiation terms for their software application, then self-calculated 

formulae might be differently produced between sectors.  To ensure that users have access 

to exactly the same data, the derived variables are provided as part of the WG output.  

3.2 WG Simulation and Validation of the baseline climate 

To fit the CARIWIG WG five statistics of daily rainfall were used to characterise baseline 

climate: the mean, proportion of dry days (defined as a day with less than 1.0mm of 

rainfall), variance, skewness and the lag-1 autocorrelation (see Burton et al. 2008 for 

definition of these terms). The lag–1 autocorrelation helps in the fitting of persistent events 

such as long dry spells.  The fitting of the rainfall model and the conditional autoregressive 

model of the other five meteorological variables are described in Appendix 2.  

Preliminary testing of the WG was applied to four of the Caribbean sites: B2 and B5 in Belize 

and W6 and W7 in Barbados as these had immediate interest from stakeholders. Illustrative 

examples are shown of analysis of the WG simulations for sites W6 (Husbands in Barbados) 

and B5 (Philip Goldson Airport in Belize).   

Figures 4 and 5 show the fits for the two sites. These plots compare monthly averages for 

three precipitation variables [PDRY (the dry day proportion), mean daily intensity and the 

interannual variability of the monthly totals] and maximum and minimum temperature 

(Figures 4a and 5a) with the other variables (sunshine, wind speed, vapour pressure and 

PET) shown in Figures 4b and 5b.  The calculation of the values for each five panels is 

straightforward (see also Jones et al., 2011). The interannual variability of monthly 

precipitation is the standard deviation of the 30 values for each month. In each panel, the 

value for the observed data (shown in blue) is compared with the range of 100 30-year 

simulated sequences from the WG (shown in black, with the range showing ± 2 standard 

deviations of the 30-year averages).   

The first aspect of Figures 4 and 5 to compare is that the blue observational plus sign should 

usually be encompassed by the ±2 standard deviation range of average values from the 100 
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30-year WG simulations for the same period. This is the case for maximum and minimum 

temperature and the other non-precipitation variables.  For the precipitation variables, the 

ranges from the WG simulations do not always include the observational value. This occurs 

very occasionally for PDRY, particularly in November and occasionally in May for Husbands 

(Figure 4a) and for October and June for the Belize site (Figure 5a).  

The issue here appears related to one exceptional daily precipitation event in the observed 

series in that month – a value much larger than the second and third highest daily 

precipitation totals. This value may be the result of an exceptional event or it may still be an 

error in the observed data. If this value is removed the fit is much more acceptable, but we 

have retained the value when fitting the WG as described in Appendix 2.  Extreme observed 

values in October and November might be related to the passage of a hurricane near the 

site producing a very high daily precipitation value. As stated, we checked the extreme 

precipitation values for all Caribbean sites against a dataset of hurricane tracks (Knapp et al., 

2010) and also reports of extreme rainfall events on Wikipedia.  Extreme daily precipitation 

values occasionally occur outside of the hurricane season, often in the spring season 

(particularly April and May) resulting from the passage of cold fronts coming from the 

northwest (see Taylor and Alfaro, 2005, for a discussion of the climatology of the region).  

When the WG is fit to the observed data, the assumption is made that all values come from 

the same distribution. The effect of a hurricane could be considered as something different, 

more so if only one event occurs during the 1981-2010 period for individual months.  

3.3 Estimating Downscaled Future Climate Projections  

Projections of downscaled future climate scenarios were estimated using the Kilsby et al. 

(2007) and Jones et al (2010) CF approach. This approach makes the assumption that the 

relative change projected to occur in the average properties of RCM simulated 

meteorological variables is reliable. This assumption is made in almost all applications of 

GCM and RCM output and is often referred to as the delta approach. Here the future 

climate is the current climate plus the climate change component (which is the difference 

between the future and control climate of the RCM or sometimes even the GCM).  

Implementation of this approach requires the derivation of change factors (CFs) for each 

meteorological variable or statistic, as summarized in Table 1 and detailed in Appendix 3. 
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First, RCM projections downscaled from different driving GCMs were selected, one for each 

country: HadCM3Q0 for Barbados and ECHAM5 for Belize. Climatologically averaged 

meteorological variables or statistics were calculated from the PRECIS RCM output for the 

control period (1981-2010) and for the future scenarios: 2020s (2011-2040) for the 

Barbados locations and 2050s (2041-2070) for the Belize locations. Typically and in brief, 

each CF was calculated as the ratio [difference] of the climatologically averaged future 

scenario variable to the control; then future scenario properties estimated as the product 

[sum] of the CF with the climatologically averaged control period observation of that 

variable. Details of the derivation of the CFs is provided in Appendix 3. The choices made 

here in Figures 4 onwards are just for illustrative purposes. The WG has been run for all 

three scenario futures, for both driving GCMs and for all 42 sites 

(http://caribbeanclimateblog.com/2015/02/10/the-caribbean-weather-impact-group-

cariwig-project-supports-risk-based-decision-making/ with the generated sequences 

available on the CARIWIG web site (http://www.cariwig.org/). 

3.4 Evaluation of Future climate scenarios  

To parameterize the WG for each estimated downscaled future scenario, the precipitation 

change factors were first applied to the baseline rainfall properties to estimate those of the 

future scenarios for the two locations that are illustrated in this paper. The rainfall model 

was then fitted for each scenario and site, and 100 daily simulations of 30-years were 

simulated. For the remaining variables, the standardisation parameters of the conditioned 

autoregressive model were perturbed according to the CFs. Finally each rainfall dataset was 

used to condition the auto-regressive simulation of the remaining variables. Thus for each 

site and scenario (control and the selected future), a set of 100 30-year long daily timeseries 

of the six consistent meteorological variables were generated. For further details of the 

parameterisation of the CARIWIG-WG for the future scenarios see Appendix 3, for details of 

the fitting of the WG and its simulation, see Appendix 2.  

Figures 4a and 5a additionally include the WG simulations for the future precipitation 

scenarios so these can be compared to both the observations and the WG simulations for 

the control period. For the Husbands site for the 2020s, PDRY increases in all months except 

October and precipitation intensities increase between September and December, but 
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decrease slightly or barely change in the other eight months (Figure 4a). The situation is 

similar for the Belize site for the 2050s. Here PDRY tends to increase for all months except 

for October and November (Figure 5a). Precipitation increases occur in October and 

November, and decrease from April to September. Both results are similar (not shown) if 

the other forcing GCM is used. Looking further into the future (2080s, not shown) a similar 

pattern of precipitation change occurs. When compared to other GCM simulations (see the 

final paragraph of Section 2.4), our two GCMs agree on the drying for the June to August 

season discussed in Christensen et al. (2013) and also on little change in the overall 

December to February total. Precipitation increases in October and November are not 

discussed in Christensen et al. (2013), nor in the Atlas Annex mentioned in Section 2.4. 

Related to the earlier discussion about hurricanes, the CF approach used here assumes that 

the GCMs/RCMs simulate such events regularly and in a similar way and with a similar 

frequency for both the control and future scenarios as has happened and may happen in the 

real world. However, the use of two relatively short periods in the calculation of the CFs 

could give rise to some erratic statistical estimates should outlier events occur in the 

observational record, or in the RCM control or future scenario. The effect is likely to result in 

the WG not fitting affected projections well, resulting in greater variability in the different 

WG sequences. This issue is a potential explanation for the increased variability of WG 

sequences for some months of the year at the two locations illustrated in this paper.  

For temperatures and vapour pressure, all the projections produce increases in the future 

(Figures 4b and 5b), but by greater amounts for each successive future period (2050s 

warmer than the 2020s and 2080s warmer than the 2050s, not shown). The temperature 

increases agree with Christensen et al. (2013) with greater increases for more distant 

futures (the latter gives 2.8°C for DJF and 3.0°C for JJA by the 2080s). Little change takes 

place in both locations for sunshine and wind speed, but the latter is not surprising as the 

changes for wind speed can only occur as a result of changes in precipitation and 

temperature as no specific CF was calculated for wind speed (as there was little confidence 

in the wind speed projections for the UK, see Jones et al., 2010). These results are similar for 

both forcing GCMs used and both locations. 

3.5 Evaluation of extremes  
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Extremes in the observations and WG simulations were characterised in two different ways. 

The first was to identify days from the 30-year period when precipitation exceeded three 

fixed thresholds (50, 80 and 150mm) then to partition and count these by calendar month. 

The results of this are shown in Figures 6 and 7 (as days per month per 30-year period) with 

the plots structured in a similar way as in Figures 4 and 5: each shows a different site, future 

period and driving GCM. For the WG simulations, averages and variability are presented 

(two standard deviations of the 30-year estimates), while for the observations there is just 

one value calculated from the 1981-2010 baseline. For both sites for the control period, the 

observational total is within the distribution of the 100 synthetic 30-year sequences. For the 

Husbands site on Barbados (Figure 6) more heavy precipitation events occur for the 2020s 

during September to December for the HadCM3Q0 driving GCM. For the 2050s and 2080s 

(not shown), this increase reduces to just October and November. Results are similar for the 

ECHAM5-forced sequences (not shown) with the increased counts of precipitation occurring 

from October to December. For the Belize site (Figure 7), a similar situation occurs with 

increases in heavy precipitation counts confined to October to November. For the 

HadCM3Q0-forced sequences (not shown) increases occur for October to December. For 

the Belize site, the number of extremes exceeds the control period between these months, 

but the increases reduce from the 2050s to the 2080s. 

The second characterisation concerns the use of five extreme indices (see Table 2) chosen 

from those calculated by software available from the Expert Team on Climate Change 

Detection and Indices (ETCCDI). This software is available from the ETCCDI website 

(http://etccdi.pacificclimate.org/software.shtml) and is discussed in Zhang et al. (2011) and 

used in the Caribbean by Stephenson et al. (2014).   These five indices were calculated from 

the observed station data and compared to the same calculations applied to each of the 100 

30-year baseline simulations of the WG. The indices calculated for the simulations were 

summarized as means and two-standard deviation ranges. Three of the indices (TX90p, 

TN90p and Rx5day) are calculated for each month of the year, but CDD and R95p are only 

available as an annual value as their calculation needs to cross monthly and seasonal 

boundaries. For each set of future scenarios, the 100 future simulations were evaluated as 

for the baseline simulations, except that the necessary percentile-based thresholds were 

taken from a control scenario rather than the future scenarios. This choice of threshold 
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allowed the projected change in extremes to be illustrated against a fixed threshold to 

assess changes. It was therefore necessary to choose one of the 100 control sequences to 

provide the basis for the percentile-based thresholds for the future, accordingly this was 

chosen by proximity to the median annual precipitation total from all 100 30-year 

simulations.  

The results of these analyses for the same GCM/RCM configurations for the Husbands and 

Philip Goldson site are given in Figures 8 and 9. As expected the number of warm days and 

nights dramatically increases for the future periods. By definition the value for the observed 

and the control runs of the WG average to about 10 days in each month over the 30-year 

period. By the 2080s (not shown) counts above the same monthly thresholds increase to 60-

100 days – with the highest values in the late spring and early summer months. The 

precipitation indices generally decrease slightly in the future, but increase for October to 

December and also annually as they did with the threshold extremes in Figures 6 and 7. At 

both sites the number of consecutive dry days also increases slightly in the future periods. 

For both precipitation extremes (RX5day and R95p), these increases are relatively small 

compared to the dramatic increases evident for temperatures. 

4. Conclusions 

The principal aim of this study has been to provide locally-relevant scenarios of daily 

weather variables in order for impact studies to be undertaken across the Caribbean. The 

WG sequences are only available at the 42 sites, but further work could enable these to be 

extended to more sites across the region. The main limiting factor in doing this is the 

availability, length and completeness of the observational data across the region. If this 

could be co-ordinated centrally, then much more could have been achieved.  A second, but 

less limiting factor, is that only a limited number of RCM simulations are available for this 

region, although more are becoming available through the CORDEX project. Some CORDEX 

simulations are at a coarser resolution (50km) and their scenarios are based on 

Representative Concentration Pathways as opposed to the emission scenario we have 

available here. Far more RCM simulations are available for more developed regions like 

North America and Europe. The more that can be used (in an ensemble type mode as with 

UKCP09) reduces the risk of the projections leading to poor decisions when based on only a 
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couple of RCM simulations.  The results of this project should be considered with this in 

mind. Enhancements will come with higher-resolution modelling, but there needs to be 

better co-ordination of data bases across the region. 

In this study we have assessed 42 daily Caribbean weather series that are relatively 

complete and suitable for providing the basis for impacts studies in the region. Not all the 

series are complete enough for some of the variables and for most of the sites we have had 

to estimate Vapour Pressure from minimum temperature across the region. This was 

necessary to estimate a number of derived variables (such as PET), an essential variable for 

looking at hydrological impacts in the region. Estimating daily PET requires data for 

temperature mean (average of max and min), sunshine, wind speed and VP, where the 

latter is typically estimated from relative humidity measurements. Estimating VP based on 

minimum temperature was found to lead to a good estimate of Penman-Monteith PET 

where relative humidity data is unavailable.  At some sites, however, sunshine and wind 

speed measurements are unavailable. For these sites, the Thornthwaite (1948) estimate of 

PET may provide a reasonable estimate, however, it should be used with caution and 

correction to this scheme (e.g. Bautista et al., 2009) should be considered.  

One aspect of data quality that deserves additional attention is some potentially erroneous 

daily precipitation totals. The highest precipitation totals for the 42 sites were checked by 

looking at hurricane tracks and also reports of extreme events on Wikipedia. Related to this, 

the study has made no specific assessment of possible changes in hurricanes nor does it 

separate out hurricane-related precipitation from the daily precipitation series. The study 

has also not assessed how well hurricanes are simulated by the RCMs. 

The main outputs of this study are the daily WG sequences for the sites across the region, 

which can be accessed from the CARIWIG web site, along with guidance and examples of 

the use of the WG information in specific regional case studies across the Caribbean 

(publication of these studies is expected in the relevant and sector-specific literature). For 

each site, there are 100 30-year sequences of weather data for the site’s baseline (see 

Appendix 1) and 100 30-year sequences for each of the three 30-year futures (2020s, 2050s 

and 2080s) and for two different GCM drivers of the same RCM. For the future simulations, 

all sites show increases in temperature which become greater for the more distant futures. 
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This is in agreement with the assessments for the region in Christensen et al. (2013). For 

precipitation, PDRY increases and precipitation amounts reduce for much of the year, but 

precipitation intensities increase for the October to November period.  Reduced 

precipitation amounts for June to August are noted in Christensen et al. (2013), but they do 

not specifically consider October and November. In terms of extremes, warm days and 

warm nights (temperatures above the current 90th percentiles) increase from 10 per year 

(by definition) for the control period (1981-2010) to 60-100 per year by the 2080s. Extreme 

precipitation measures decrease slightly for most months in the future, but increase in 

October and November suggesting an overall annual increase. Also the number of very wet 

days are projected to increase. At both sites the number of consecutive dry days also 

increases in the future periods. For both precipitation extremes, however, the increases are 

relatively small compared to the dramatic increases evident for temperatures.   
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Appendix 1:  Completeness of daily data series for sites across the Caribbean for two baseline periods (1971-2000 and 

1981-2010) 

Rainfall extremes >200mm were checked against the HURDAT2 hurricane database (maintained by the National Oceanic and Atmospheric Administration’s 

(NOAA’s) National Hurricane Center) to establish if they were genuine.  

If maximum temperature was less than minimum temperature then both were set to missing. Wind was converted from knots to m/s. 

Relative humidity was multiplied by saturation vapour pressure (calculated from temperature using standard formulae) to give vapour pressure.  

There were a few instances in the Cuban data where whole years of rainfall were found to be zero, these were set to missing. To estimate sunshine hours, 

cloud cover was converted to a decimal fraction, subtracted from one and then multiplied by the day length. 

The analysis for Grantley Adams in Barbados made use of sunshine hours recorded at Husbands to enable all the variables to be output. 

The Caribbean Institute of Meteorology and Hydrology (CIMH) data contained a few stations which duplicated those provided directly by some National 

Meteorological Services, so these were removed.  A small quantity of temperatures were measured in Fahrenheit which were converted to Celsius.  There 

were also some sunshine hour entries which appeared to be out by a factor of ten, and this was assumed to be the case. 

Wind speed and relative humidity data were received (from a few National Meteorological Services in the region) and added to the CIMH data which didn’t 

have any records for these variables. 

 

 

            1971-2000 1981-2010 

  Station name Country 
Lat 
(°N) 

Long 
(°W) 

Elev 
(m) 

% 
SS 

% 
TN 

% 
TX 

% 
VP 

% 
WN 

% 
RN 

% 
SS 

% 
TN 

% 
TX 

% 
VP 

% 
WN 

% 
RN 

B1 Belmopan Belize 17.3 -88.8 90 65 73 68 0 37 80 64 88 83 0 62 94 

B2 Central Farm Belize 17.2 -89.0 90 74 92 92 1 87 96 70 98 97 0 99 99 

B3 Cooma Cairn Belize 17.0 -88.9 952 0 66 66 0 0 73             
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B4 Melinda Forest Station Belize 17.0 -88.3 30 22 83 70 0 49 92 36 93 81 0 72 99 

B5 Philip Goldson Intl' Belize 17.5 -88.3 5 89 96 96 60 82 100 98 98 98 87 98 100 

C1 
Cabo San Antonio,  Pinar Del 
Rio Cuba 21.9 -85.0 8 86 86 86 0 86 80 89 89 89 0 89 90 

C2 Pinar Del Rio Cuba 22.4 -83.7 37 80 79 79 0 80 80 96 95 95 0 96 96 

C3 Bahia Honda, Pinar Del Rio Cuba 22.9 -83.2 3 96 96 96 0 96 83 100 100 100 0 100 100 

C4 Batabano, La Habana Cuba 22.7 -82.3 7 70 60 60 0 63 66 93 84 84 0 87 90 

C5 
Punta Del Este,  Isla De La 
Juventud Cuba 21.6 -82.5 10 93 93 93 0 93 93 100 98 99 0 100 100 

C6 Casa Blanca,  La Habana Cuba 23.2 -82.4 50             87 87 87 0 87 87 

C7 Playa Giron, Matanzas Cuba 22.1 -81.0 5 93 93 93 0 93 83 100 90 97 0 100 99 

C8 Cantarrana,  Cienfuegos Cuba 21.9 -80.2 42 89 88 88 0 89 89 100 95 94 0 100 100 

C9 Jucaro, Ciego De Avila Cuba 21.6 -78.9 1 96 93 94 0 96 96 100 94 95 0 100 100 

C10 Caibarien, Villa Clara Cuba 22.5 -79.5 6 99 99 99 0 99 99 100 100 100 0 100 100 

C11 Sancti Spiritus,  Sancti Spiritus Cuba 21.9 -79.5 97 86 86 86 0 86 83 100 100 100 0 100 100 

C12 Santa Cruz Del Sur,  Camaguey Cuba 20.7 -78.0 2 84 82 84 0 84 84 87 86 85 0 87 87 

C13 Nuevitas, Camaguey Cuba 21.5 -77.3 4 96 96 96 0 96 96 99 99 99 0 99 99 

C14 Camaguey Cuba 21.4 -77.9 122 100 100 100 0 100 100 100 100 99 0 100 100 

C15 Puerto Padre,  Las Tunas Cuba 21.2 -76.6 13 96 92 92 0 96 96 100 96 97 0 100 100 

C16 Cabo Cruz, Granma Cuba 19.9 -77.2 10 100 99 99 0 100 100 100 99 100 0 100 100 

C17 
Contramaestre,  Santiago De 
Cuba Cuba 20.3 -76.3 100 81 78 78 0 67 61 100 100 100 0 100 83 

C18 Punta Lucrecia,  Holguin Cuba 21.1 -75.6 4 98 96 96 0 98 98 99 99 99 0 99 99 

C19 Punta De Maisi,  Guantanamo Cuba 20.3 -74.2 10 72 71 71 0 72 72 100 98 99 0 100 100 

J1 Worthy Park Jamaica 18.2 -77.2 550 0 85 81 0 0 74 0 90 87 0 0 82 

A1 Vc Bird Intl' Airport Antigua 17.1 -61.8 14 0 91 91 86 98 98             

W1 Nat. Agric. Station St. Kitts 17.3 -62.2 0             0 84 84 0 0 85 

W2 Melville-Hall Dominica 15.6 -61.3 43 63 62 62 37 67 85 83 91 91 37 67 96 

W3 Canefield Dominica 15.3 -61.4 4             0 67 67 0 0 67 



22 
 

W4 Roseau St. Lucia 13.9 -61.0 0 67 68 67 0 0 68             

W5 Hewannorra St. Lucia 13.8 -61.0 21 32 72 72 0 0 81 35 87 87 0 0 96 

W6 Husbands Barbados 13.2 -59.6 112 98 99 98 0 0 100 98 99 99 58 60 100 

W7 Adams Barbados 13.1 -59.5 35             0 98 98 98 98 100 

W8 ET Joshua Airport SVG 13.1 -61.2 13             0 80 80 46 45 80 

W9 Point Salines Grenada 12.2 -61.8 0             0 79 78 0 0 79 

W10 Crown Point Tobago 11.2 -60.8 3 94 91 91 0 0 92 84 81 81 0 0 81 

W11 Piarco Trinidad 10.6 -61.4 41 96 93 93 0 0 93 92 89 89 0 0 89 

W12 St. Augustine Trinidad 10.6 -61.4 16 95 95 95 0 0 95 100 99 99 0 0 99 

W13 Georgetown Bot. Gardens Guyana 6.8 -58.1 0 86 99 99 0 0 100 96 99 98 0 0 100 

W14 Timehri Airport E.B.D Guyana 6.5 -58.3 3 15 74 75 0 0 100 33 71 71 0 0 98 

W15 New Amsterdam Tecn Ins Guyana 6.2 -57.5 0             54 74 71 0 0 90 

W16 Ebini Livestock Station Guyana 5.6 -57.8 0 15 72 66 0 0 76 39 73 69 0 0 79 

 

Dataset sources are indicated as follows: Bi from the Belize National Meteorological Service ; Ci from the Cuban Instituto de Meteorologia; Ji from the 

Jamaican Meteorological Service; Ai from the Antigua and Barbuda Meteorological Service ; and Wi from CIMH. Please see Acknowledgements for further 

details.  
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Appendix 2: The CARIWIG Weather Generator (WG) 

Most weather generators generally take rainfall to be the primary variable (Wilks and Wilby, 

1999; Wilks, 2010), so that other weather variables are conditioned by 

mathematical/statistical relationships with rainfall and the values of the variables on the 

current and previous day. The CARIWIG-WG also maintains the autocorrelation properties 

of each variable as well as the cross-correlations between the different variables, producing 

sequences that look like and statistically resemble measured data. Collectively these auto- 

and cross-correlation relationships are referred to as the inter-variable relationships (or 

IVRs). Apart from the daily autocorrelation of precipitation, none of these IVRs are 

perturbed for future scenario simulations of the WG as they are not considered well 

simulated by RCMs.  

A2.1 The rainfall model 

Rainfall is modelled according to a Neyman-Scott Rectangular Pulses (NSRP) stochastic 

process (e.g. see Cowpertwait et al. 1996; Burton et al., 2008), one of a family of long-

established point process models (see Velghe et al. 1994 and Onof et al. 2000 for 

overviews). This process models the timing and intensity of rainfall as rain-bearing raincells 

which are clustered into storms. Here a variant of the NSRP model is used in which the 

intensity of the raincells is modelled with a Gamma distribution, considered particularly 

suitable for modelling extremes which in the Caribbean climate may include tropical storm 

events.  

The model structure and its six parameters may be summarized as follows: 

1. storm origins arrive in a Poisson process with rate parameter λ (h-1);  

2. each storm origin generates a random number [Poisson distribution with parameter ν (-, 

i.e. dimensionless)] of raincells each following the storm origin after a time interval 

(exponentially distributed with parameter β (h-1));   

3. the duration of each raincell is exponentially distributed with parameter η (h-1);  

4. the intensity of each raincell has a Gamma distribution (with shape parameter K (-) and 

scale parameter θ (mm/h)); 
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5. the rainfall intensity is equal to the sum of the intensities of all the active cells at that 

point.  

Aggregation of the intensity process over regular time steps, here daily, yields (daily) 

accumulation time series. The model parameters may differ for each month of the year to 

provide seasonality, and accordingly model fitting proceeds on a monthly basis. Analytical 

expressions have been derived for expected values of various rainfall statistics (e.g. mean 

rainfall rate, proportion of dry days) in terms of these model parameters, and these are 

used to numerically fit sets of parameter values by minimizing a measure of the expected 

and observed values of a set of rainfall statistics. Robust and accurate fits to the lower order 

moments (mean, variance) are generally obtained, and much development has been carried 

out to improve the model performance for rainfall occurrence, and extremes using the 

skewness in fitting. Note that although the raincell intensity in Step 4 follows a Gamma 

distribution, the daily accumulations may arise from multiple overlapping raincells in a 

cluster. 

A2.2 Secondary and tertiary weather variables  

Once the precipitation sequence has been simulated, the secondary and tertiary daily 

meteorological variables (Table 1) are modelled using a conditional multivariate 

autoregressive approach.  This maintains the IVRs and their conditioning by both the 

seasonal cycle and the simulated rainfall. The precipitation model is developed separately 

for each month of the year, with the secondary and tertiary variables also developed for 

each month of the year. Both models are based on the same calibration period (which is 

discussed for each site in the region in Appendix 1).  

The model structure for daily temperature considers a transformed pair of daily quantities 

to generate the secondary variables: the mean temperature defined as T = (Tn + Tx)/2; and 

the diurnal temperature range defined as R = Tx - Tn . Note that the secondary variables 

may be recovered by the inverse transformations: Tx = T + R/2 and Tn = T - R/2.  Within each 

calendar-month partition, the transformed multi-variate dataset is further partitioned by 

wet (W) and dry (D) daily rainfall transition states [where five rainfall transitions DD, DDD, 

WW, DW and WD are considered, in each case the final letter indicating the current day’s 

state and preceding letter(s) indicating antecedent state(s)]. Rather than directly modelling 
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the seasonally changing meteorological variables, the variables T and R, are first 

standardised by subtracting the mean and dividing by the daily standard deviation of each 

variable within each calendar month and rainfall transition partition. VP and sunshine 

duration (S) were treated similarly, but the means and standard deviations were calculated 

overall and not for each rainfall transition. For S, however, the Kilsby et al. (2007) 

standardisation procedure was modified here, as this variable is often not normally 

distributed as is required for an auto-regressive approach. Instead, a latent Gaussian 

variable technique (Durban and Glasbey, 2001) was applied to each month where the input 

variable is transformed to the upper part of a Gaussian distribution, the lower part (i.e. 

below a threshold) of the same distribution is considered to correspond to zero sun days.  

For both daily mean temperature and range, the residual time series are modelled as first-

order autoregressive processes, the IVRs, which are assumed not to change in the future. A 

different model structure being used for each rainfall transition state as follows (note that 

all terms are standardised here): 

Transition state DD, i.e. current day dry, previous day dry:  

 Ti = a1 Ti-1 + a2 Si-1 + b1 + ε1 ;  Ri = a3 Ri-1 + a4 Si-1 + b2 + ε2 ;  

Transition state DDD, i.e. current day dry, previous two days dry:  

 Ti = a5 Ti-1 + a6 Si-1 + b3 + ε3 ;  Ri = a7 Ri-1 + a8 Si-1 + b4 + ε4 ; 

Wet Periods (WW current day wet, previous day wet):  

 Ti = a9 Ti-1 + b5 + ε5 ;  Ri = a10 Ri-1 + b6 +  ε6 ; 

Dry/Wet Transition (DW current day wet, previous day dry)  

 Ti = a11 Ti-1 + a12 Pi + b7 + ε7 ;  Ri = a13 Ri-1 + a14 Pi + b8 + ε8 ;  

Wet/Dry Transition (WD current day dry, previous day wet)  

 Ti = a15 Ti-1 + a16 Pi-1 + b9 + ε9 ;  Ri = a17 Ri-1 + a18 Pi-1 + b10 + ε10 .  

The coefficients {a1, ..., a18, b1, ..., b10} may be fitted using multiple linear regression analysis 

of standardised observed data, the suffix i and i -1 indicating the current day and previous 
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day respectively, and the  error terms, ε1 ... ε10, are independent standard normal (Gaussian) 

variables to  model the unexplained variance of each regression. In simulation, i.e. weather 

generation mode, these auto-regressive processes are realized by sampling the error terms. 

To help improve modelling accuracy of dry day sequences, the antecedent sunshine-hours 

term was included in the temperature models for the DD and DDD partitions. DDD was 

incorporated into the most recent update of UKCP09 (Jones et al., 2010).  

The tertiary variables are modelled using a conditional first order auto-regressive process of 

the form:  

 Xj,i = cj + dj Pi + ej Ti + fj Ri + gj Xj,i-1 + ε10+j  

where: j = 1,2 indicates vapour pressure and sunshine duration: coefficients c,d,e,f and g are 

fitted for each month and an error term, ε, is also required in each case. Correlations 

between the tertiary variables and precipitation, temperature and temperature range 

(which are generally quite high) will also be correctly simulated, and correlations between 

vapour pressure, sunshine and wind speed will arise naturally through common 

dependencies on Pi, Ti and Ri. Fitting of the tertiary models is achieved by multi-variate 

regression. The fully fitted non-rainfall part of the WG results in many thousands of 

parameters, which include: the means and standard deviations for each half month for each 

transition for T and R; and the regression coefficients and magnitude of the random error 

components in the conditioned autoregression equations.   

Simulation of the secondary and tertiary variables starts with a conditioning rainfall series, 

then proceeds by simulating the variables one day at a time using the autoregressive 

relationships as selected by the current month and rainfall transition partitions, antecedent 

variables, conditioning variables and random sampling of the random error term. Finally all 

the variables are transformed back from their standardised representations. Projections 

produced using RCMs for wind were not considered reliable in the UK (Jones et al., 2010, 

2011). Any changes in future wind are determined from the IVRs between wind and the 

other climate variables. Wind was not changed by any CFs for the Caribbean. 
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Appendix 3:  Calculation of Change Factors and their application  

For a baseline climate, the parameters within the WG are fitted using daily measurements 

of the weather from a meteorological station in the Caribbean. This allows stochastic 

simulation of the present day climate. In order to simulate for future scenarios, model 

parameters are altered through the application of Change Factors (CFs) derived from RCM 

simulations available for the region with a 25km resolution (see Section 2.4, Available 

Climate Model Projections). The calculation of each of these CFs from RCM simulations is 

detailed here. 

In summary, the rainfall statistics and standardisation parameters of secondary and tertiary 

variables are altered according to the change (proportional or difference) between the same 

property calculated from the 30-year future and the 30-year control simulations of an RCM. 

Here the control period is chosen to be 1971-2000 or 1981-2010 with three futures: the 

2020s (2011-40), 2050s (2041-2070) and the 2080s (2071-2100).  

A3.1 Change Factors for Precipitation Data 

First, daily precipitation accumulations less than 1mm from an RCM grid box are set to zero. 

Five precipitation statistics are then estimated for the adjusted time series for each calendar 

month:  

P_Mean, Mean daily rainfall (mm);  

P_Var, sample variance of daily rainfall (mm2);  

PDRY, proportion of days with < 1.0 mm rainfall;  

P_Skew, skewness coefficient of daily rainfall 

 i.e. ( ) ( ) 2/3

1

3 1 P_varnP_MeaniP
n

i

−−∑
=  , a non-dimensional quantity, (e.g. Metcalfe, 1994, p56);  

and P_AC, is the daily lag-one autocorrelation. These five statistics are calculated for each 

calendar month for both the climate model’s control, Ctrl, and future, fut, scenarios. 

Following Burton et al. (2010) the CF for mean daily rainfall is calculated as a ratio, αP_Mean = 

P_Meanfut / P_MeanCtrl , for each calendar month. The CFs for P_Var and P_Skew  are 

similarly calculated as ratios. However, when calculating the monthly CFs for PDRY a 
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transform is first applied to the control and future scenario estimates, ( )PDRYPDRYtPD −= 1  , 

before the ratio is calculated as usual, i.e.  αPD = tPDfut / tPDCtrl . The CF for P_AC is similarly 

calculated as the ratio of the transformed RCM estimates using the transform 

( ) ( )ACPACPtAC _1_1 −+=  . 

A3.2 Change Factors for Secondary and Tertiary variables  

Similarly as for the precipitation statistics, estimates of the standardisation properties of 

each of the secondary and tertiary variables are determined from the 30-year RCM scenario 

for a specific 25km grid box. These include mean values of T, R, S and VP for each month 

(and transition where necessary), where T and R are calculated from Tx and Tn as usual and 

VP is calculated from the daily Relative Humidity variable by estimating the Saturation 

Vapour Pressure appropriate for the given T. Additionally, variances of T and R are 

calculated.  As for precipitation these six statistics are calculated for each calendar month 

for both the climate model’s control, Ctrl, and future, fut, scenarios.  

In contrast to the CF for mean precipitation, the CF for T is calculated as a difference, i.e.  

αT = Tfut - TCtrl .  Similarly, the CFs for R, S and VP are also calculated as differences. However, 

the CFs for the variance of both T and R are calculated as ratios. The CFs for primary, 

secondary and tertiary variables are summarized in Table 1.   

A3.3 Application of Change Factors to parameterize the WG for future climate 

scenarios  

To estimate the properties of rainfall in the downscaled future scenario (dfs), CFs are 

applied to the four observed meteorological properties used here in the rainfall model 

parameterization to represent the observed baseline climate (see §3.3). For the three ratio-

type CFs (see Table 1), the future scenario estimate is calculated, e.g. for the mean, as 

P_Meandfs = αP_Mean x P_Meanbaseline . For the two transformed variables, the baseline 

estimate is first transformed as for each RCM estimate, then the CF applied to determine a 

transformed downscaled future scenario estimate, e.g. tACdfs . Finally the estimate may be 

obtained using the appropriate back-transformation, i.e. ( )dfsdfsdfs tPDRYtPDRYPDRY += 1  or 

( ) ( )11 _ +−= dfsdfsdfs tACtACACP  . Once the five monthly properties of the downscaled future 
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scenario are estimated, the rainfall model is fitted to this scenario as usual, as described in 

Appendix A2.1.   

For the secondary and tertiary variables, the CFs are applied directly to the parameters used 

to describe the standardisation of the conditioned autoregressive model on a monthly basis. 

Thus the two temperature related ratio type CFs (see Table 1) are multiplied by the fitted 

baseline variance statistics to calculate the equivalent downscaled future scenario 

standardisation statistics, as for the P_Mean statistic. The difference type change factors 

(see Table 1) for T, R, VP and S are applied by adding each CF to the standardisation-mean 

parameter, to estimate that parameter’s value for the downscaled future scenario. There is 

a correction step described in Jones et al. (2011) which is also applied to T and also to R, to 

ensure that the correct change factor is prescribed. This accounts for changes in T (and then 

subsequently in R) that occur as a result of changes in Precipitation. If, for example, less 

precipitation is projected in the future, it will likely become warmer. This aspect is 

accounted for so the projected changes will average to the CFs given for the non-

precipitation variables by the RCM simulation. These types of correction factors are referred 

to second-order adjustments by Wilks (2012). Even though the issue was recognized earlier 

by Katz (1996) it does not appear to be applied for most WGs with CFs.    

As stated in the main text, the numerous inter-variable relationships are not considered well 

reproduced by the RCMs and so are assumed to remain unchanged in the future. Thus the 

standard deviations of the tertiary variables and the coefficients of the IVRs (a, b, c, d, e, f 

and g) remain unchanged for the future scenario. Change factors are not used for wind. For 

similar work in the UK, the projections were not considered reliable (Jones et al., 2010, 

2011). 
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Tables  

Table 1: Summary of daily weather variables related to the WG and their perturbation for 

future climate scenarios. The full set of six generated WG variables is provided with primary, 

secondary and tertiary labels indicating the order in which sets of variables are calculated, 

each dependant on the previous sets. Subsequently, a further set of calculated variables 

may be estimated using empirical relationships external to the structure of the WG. A list of 

change factors and their type, as used to characterise the RCM projections of future climate 

change, are provided and associated with each set of variables.   

Variable Change factors and sequence of application 

Primary generated variable: 

Precipitation, P, (mm) 

 

Mean wet day amount (ratio) 

Precipitation daily variance (ratio) 

Precipitation probability dry (transform) 

Precipitation skewness (ratio) 

Precipitation lag-1 autocorrelation (transform) 

Secondary generated variables: 

Minimum temperature, Tn, (degrees C) 

Maximum temperature, Tx, (degrees C) 

 

Temperature diurnal mean (difference)* 

Variance of diurnal mean temperature (ratio)* 

Diurnal temperature range (difference)* 

Variance of diurnal temperature range (ratio)* 

Tertiary  generated variables: 

Vapour pressure, VP, (hPa)  

Sunshine duration, S, (hours) 

Wind speed, W,  (ms-1) 

 

Vapour pressure daily average (difference) 

Sunshine daily average (difference) 

 

Calculated variables: 

Relative humidity, RH,  (%) 

Diffuse radiation (kWhm-2)   (Muneer, 2004) 

Direct radiation (kWhm-2)    (Muneer, 2004) 

Reference potential evapotranspiration (mm) 
(Ekström et al., 2007) 

 

*Adjusted for changes earlier in the perturbation sequence    
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Table 2: The five ETCCDI indices of extremes used, the acronyms are as defined by ETCCDI.  

Description of indices Formal Definition 

Daily precipitation amount during intense 

events (R95p) 

Maximum 5-day precipitation (RX5day) 

Maximum number of consecutive dry days 

(CDD) 

Number of “Hot days” (TX90p)                      

                                        

Number of “Warm nights” (TN90p) 

Precipitation amount exceeded only 5% of 

the time 

Maximum 5-day precipitation total 

Maximum number of consecutive dry days   

                     

% of days when maximum temperature is 

greater than the 90th percentile value 

% of days when minimum temperature is 

greater than the 90th percentile value  
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Figure Captions 

Figure 1: Locations of the 42 sites across the Caribbean with sufficient available daily data for WG 

calibration. The stations are listed within Appendix 1. 

Figure 2: Comparison of PET calculations (for Philip Goldson International Airport in Belize) for the 

observed data (green - O) with the same data, but with vapour pressure replaced by the calculation 

from Tn (yellow - N). The boxplots are standard, with the notch being plotted at the median value 

(50th percentile) and the upper and lower end of the box at the 75th and 25th percentiles. The 

whiskers are plotted up to 1.5 times the Interquartile Range (IQR) below and above the 25th and 

75th percentiles. Values outside the whiskers are plotted as circles. 

Figure 3:  As Figure 1, but for the Melville Hall site on Dominica.  

Figure 4a:  Observational average (blue, shown as a plus sign), WG range for the control period 

(1981-2010 as black dots and error bars) and WG-based projections for the 2020s (2011-40) as red 

dots and error bars) for each month for the RCM grid cell that encloses Husbands, Barbados for 

precipitation and temperature variables. The simulated values are the means of 100 30-year 

weather generator runs. The lines and bars show the variability of the 100 runs (plotted as 

plus/minus two standard deviations around the mean). Other climate variables are shown in Figure 

6b. The driving GCM here was HadCM3Q0 forcing the PRECIS RCM. 

Figure 4b:  Observational average (blue, shown as a plus sign), WG range for the control period 

(1981-2010 as black dots and error bars) and WG-based projections for the 2020s (2011-40 as red 

dots and error bars) for each month for the RCM grid cell that encloses Husbands, Barbados for the 

other climate variables. The simulated values are the means of 100 30-year weather generator runs. 

The lines and bars show the variability of the 100 runs (plotted as plus/minus two standard 

deviations around the mean). Precipitation and Temperature variables are shown in Figure 6a. The 

driving GCM here was HadCM3Q0 forcing the PRECIS RCM. 

Figure 5a:  Observational average (blue, shown as a plus sign), WG range for the control period 

(1981-2010 as black dots and error bars) and WG-based projections for the 2050s (2041-2070 as red 

dots and error bars) for each month for the RCM grid cell that encloses Philip Goldson Airport, Belize 

for precipitation and temperature variables. The simulated values are the means of 100 30-year 

weather generator runs. The lines and bars show the variability of the 100 runs (plotted as 

plus/minus two standard deviations around the mean). Other climate variables are shown in Figure 

7b. The driving GCM here was ECHAM5 forcing the PRECIS RCM. 

Figure 5b:  Observational average (blue, shown as a plus sign), WG range for the control period 

(1981-2010 as black dots and error bars) and WG-based projections for the 2050s (2041-70 as red 

dots and error bars) for each month for the RCM grid cell that encloses Philip Goldson Airport, 

Barbados for the other climate variables. The simulated values are the means of 100 30-year 

weather generator runs. The lines and bars show the variability of the 100 runs (plotted as 
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plus/minus two standard deviations around the mean). Precipitation and Temperature variables are 

shown in Figure 7a. The driving GCM here was ECHAM5 forcing the PRECIS RCM. 

Figure 6: Format as Figures 4a and 4b for the Husbands site in Barbados, but showing the frequency 

of the number of days each month with daily precipitation amounts exceeding 50, 80 and 150mm. 

The driving GCM here was HadCM3Q0 forcing the PRECIS RCM. The frequency count is the total over 

the 30-year period. 

Figure 7: Format as Figures 5a and 5b for Philip Goldson Airport in Belize, but showing the frequency 

of the number of days each month with daily precipitation amounts exceeding 50, 80 and 150mm. 

The driving GCM here was ECHAM5 forcing the PRECIS RCM. The frequency count is the total over 

the 30-year period. 

Figure 8: Format as Figures 6 and 7 for Husbands, Barbados for 2020s, but extremes calculated from 

the ETCCDI CLIMDEX software. Three extremes are calculated monthly (the number of days and 

nights above the 90th percentile of Tx and Tn respectively and the maximum 5-day rainfall total in 

each month) and two annually (the number of consecutive dry days and the rainfall amount 

exceeded only 5% of the time). The driving GCM here was HadCM3Q0Q0 forcing the PRECIS RCM. 

Figure 9: Format as Figures 6 and 7 for Philip Goldson Airport, Belize for the 2050s, but extremes 

calculated from the ETCCDI CLIMDEX software. Three extremes are calculated monthly (the number 

of days and nights above the 90th percentile of Tx and Tn respectively and the maximum 5-day 

rainfall total in each month) and two annually (the number of consecutive dry days and the rainfall 

amount exceeded only 5% of the time). The driving GCM here was ECHAM5 forcing the PRECIS RCM. 
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Figures  

 

 

Figure 1: Locations of the 42 sites across the Caribbean with sufficient available daily data for WG 

calibration. The stations are listed within Appendix 1. 
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Figure 2: Comparison of PET calculations (for Philip Goldson International Airport in Belize) for the 

observed data (green - O) with the same data, but with vapour pressure replaced by the calculation 

from Tn (yellow – N). The boxplots are standard, with the notch being plotted at the median value 

(50th percentile) and the upper and lower end of the box at the 75th and 25th percentiles. The 

whiskers are plotted up to 1.5 times Interquartile Range (IQR) below and above the 25th and 75th 

percentiles. Values outside the whiskers are plotted as circles. 
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Figure 3:  As Figure 2, but for the Melville Hall site on Dominica.  
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Figure 4a:  Observational average (blue, shown as a plus sign), WG range for the control period 

(1981-2010 as black dots and error bars) and WG-based projections for the 2020s (2011-2040 as red 

dots and error bars) for each month for the RCM grid cell that encloses Husbands, Barbados for 

precipitation and temperature variables. The simulated values are the means of 100 30-year 

weather generator runs. The lines and bars show the variability of the 100 runs (plotted as 

plus/minus two standard deviations around the mean). Other climate variables are shown in Figure 

6b. The driving GCM here was HadCM3Q0 forcing the PRECIS RCM. 
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Figure 4b:  Observational average (blue, shown as a plus sign), WG range for the control period 

(1981-2010 as black dots and error bars) and WG-based projections for the 2020s (2011-2040 as red 

dots and error bars) for each month for the RCM grid cell that encloses Husbands, Barbados for the 

other climate variables. The simulated values are the means of 100 30-year weather generator runs. 

The lines and bars show the variability of the 100 runs (plotted as plus/minus two standard 

deviations around the mean). Precipitation and Temperature variables are shown in Figure 6a. The 

driving GCM here was HadCM3Q0 forcing the PRECIS RCM. 
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Figure 5a:  Observational average (blue, shown as a plus sign), WG range for the control period 

(1981-2010 as black dots and error bars) and WG-based projections for the 2050s (2041-2070 as red 

dots and error bars) for each month for the RCM grid cell that encloses Philip Goldson Airport, Belize 

for precipitation and temperature variables. The simulated values are the means of 100 30-year 

weather generator runs. The lines and bars show the variability of the 100 runs (plotted as 

plus/minus two standard deviations around the mean). Other climate variables are shown in Figure 

7b. The driving GCM here was ECHAM5 forcing the PRECIS RCM. 
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Figure 5b:  Observational average (blue, shown as a plus sign), WG range for the control period 

(1981-2010 as black dots and error bars) and WG-based projections for the 2050s (2041-2070 as red 

dots and error bars) for each month for the RCM grid cell that encloses Philip Goldson Airport, 

Barbados for the other climate variables. The simulated values are the means of 100 30-year 

weather generator runs. The lines and bars show the variability of the 100 runs (plotted as 

plus/minus two standard deviations around the mean). Precipitation and Temperature variables are 

shown in Figure 7a. The driving GCM here was ECHAM5 forcing the PRECIS RCM. 
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Figure 6: Format as Figures 4a and 4b for the Husbands site in Barbados, but showing the frequency 

of the number of days each month with daily precipitation amounts exceeding 50, 80 and 150mm. 

The driving GCM here was HadCM3Q0 forcing the PRECIS RCM. The count is the total over the 30-

year period. 
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Figure 7: Format as Figures 5a and 5b for Philip Goldson Airport in Belize, but showing the frequency 

of the number of days each month with daily precipitation amounts exceeding 50, 80 and 150mm. 

The driving GCM here was ECHAM5 forcing the PRECIS RCM. The frequency count is the total over 

the 30-year period. 
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Figure 8: Format as Figures 6 and 7 for Husbands, Barbados for 2020s, but extremes calculated from 

the ETCCDI CLIMDEX software. Three extremes are calculated monthly (the number of days and 

nights above the 90th percentile of Tx and Tn respectively and the maximum 5-day rainfall total in 

each month) and two annually (the number of consecutive dry days and the rainfall amount 

exceeded only 5% of the time). The driving GCM here was HadCM3Q0Q0 forcing the PRECIS RCM. 
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Figure 9: Format as Figures 6 and 7 for Philip Goldson Airport, Belize for the 2050s, but extremes 

calculated from the ETCCDI CLIMDEX software. Three extremes are calculated monthly (the number 

of days and nights above the 90th percentile of Tx and Tn respectively and the maximum 5-day 

rainfall total in each month) and two annually (the number of consecutive dry days and the rainfall 

amount exceeded only 5% of the time). The driving GCM here was ECHAM5 forcing the PRECIS RCM. 


