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Conserving widely distributed wildlife species in an African savanna:  

parks, cattle-grazing and community-managed areas 

 

Abstract 

Growing evidence suggests many widely distributed low-density tropical species are 

declining, but whether protected areas and the increasingly promoted multi-use 

community-managed wildlife areas mitigate causal threats is poorly studied. Lack of 

monitoring data and poorly understood species ecology limit knowledge of patterns, 

causal mechanisms and degree of abundance or range declines. Working in an African 

savanna, where bushmeat hunting and cattle-grazing are considered the greatest threats 

to wildlife, this thesis combined three approaches to study the conservation ecology of 

widely distributed wildlife at three spatial scales (continent-wide; landscape; home 

range). The continent-wide conservation status of Kori Bustard Ardeotis kori was 

assessed by reviewing occurrence records (1863–2009) across its range (14 countries). 

Range contraction was quantified by examining the proportion of historical records 

(pre-1970) falling within the area delineated by recent records (1970–2009), finding 8% 

(southern) and 21% (East Africa) declines in 146 years. In contrast, qualitative evidence 

from historical published accounts and contemporary expert assessments suggested 

widespread declines in abundance; thus numbers have declined considerably but 

without commensurate range contraction. Examination of seasonal home range use 

using satellite telemetry showed that female Kori are sedentary in central Botswana, 

with strong site-fidelity to dry-season home ranges associated with resource-rich pan 

habitats; the species appears sensitive to localised habitat conditions and resource 

availability. However, an assessment of the differential response of Kori and 20 other 

large-bodied vertebrates to protected areas, wildlife management areas and unprotected 

areas showed most species’ abundance was driven by proximity to human settlement, 

interpreted as sensitivity to unregulated hunting, with no effect of differential cattle 

stocking densities. Furthermore, the study demonstrates that cattle can affect habitat 

structure, but their effects on Kalahari wildlife were not perceptible, suggesting that 

conservationists’ preoccupation in African savannas with cattle and their perceived 

impacts rather than unregulated hunting may be misplaced. 
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Introduction  

 

Savannas: areal extent, description and determinants 

 

Much of the world, particularly in the tropics, is currently experiencing rapid 

biodiversity loss largely due to anthropogenic threats (Millennium Ecosystem 

Assessment, 2005) and mainly as a result of land-use change (Sala et al., 2000). 

Savanna ecosystems constitute 20% of the world’s (Shorrocks, 2007) and 50% of 

Africa’s land surface area (Du Toit & Cumming, 1999, Fig. 1.1), and of the 14 

terrestrial biomes recognised in the Millennium Ecosystem Assessment, these 

ecosystems had the second highest wildlife species richness (amphibians, birds, 

mammals and reptiles, pooled) after tropical forests (Millennium Ecosystem 

Assessment, 2005). At the same time, savannas support more than a fifth of the world’s 

human population, and given the significant role of humans in driving biodiversity loss, 

savannas therefore represent a global conservation priority; however, presently only 

15% of this biome is under some form of protected area designation (Chape et al., 

2003).  

Savannas are defined by their grass:tree ratio (Scholes & Archer, 1997) and have 

been characterised as ‘a discontinuous tree canopy in a continuous grass layer’ (Ratnam 

et al., 2011). Mechanisms maintaining tree and grass co-existence, and preventing the 

development of woodland cover, remain debated (Sankaran et al., 2004). It is widely 

acknowledged that the grass–tree balance is largely driven by a combination of 

precipitation, herbivory, soil nutrient and fire (Scholes & Archer, 1997; Roques et al., 

2001; van de Langevelde et al., 2003; Sankaran et al., 2005, 2008; Staver et al., 2009). 

At continent-wide scales mean precipitation is the most important driver of both total 

woody vegetation cover (Sankaran et al., 2005) and site-specific woody cover 

(Sankaran et al., 2008) in African savannas. However, recent studies increasingly 

support the conclusion that disturbance-mediated (fire and herbivory) factors are more 

important than competition for resources (water and nutrients) as the main determinants 

of site-specific grass–tree balance (Roques et al., 2001; van de Langevelde et al., 2003; 

Staver et al., 2009). Humans and their concomitant socio-economic activities affect fire 

regimes (for example by deliberately starting fires) and herbivore stocking rates (such as 

through the number and type of livestock kept), and consequently, because these are the 
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main savanna determinants, humans can be expected to exert a strong influence on 

savanna vegetation structure and functioning (Scholes & Archer, 1997), with cascading 

effects on wildlife. Additionally, populations of some wildlife species are directly 

affected by humans through unregulated bushmeat offtake (Milner-Gulland & Bennett, 

2003) or deliberate killing due to human–wildlife conflict (Ogutu et al., 2005). The 

conservation of African savannas is therefore inextricably linked to humans, and 

safeguarding these landscapes requires strategies that address both direct and indirect 

anthropogenic pressures. 

 

 

 

 

Figure 1.1. Areal extent of savannas in Africa (following Shorrocks, 2007). 
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Challenges to conserving African savanna ecosystems and wildlife 

 

Studies investigating the role of humans in driving biodiversity loss in African savannas 

have focused principally on livestock-rearing (e.g. Du Toit & Cumming, 1999; 

Homewood et al., 2001, Ogutu et al., 2005). Livestock-rearing, primarily of cattle, is 

the principal economic activity in African savannas (Prins, 1992), and is suggested to 

affect savanna habitats and wildlife through two main mechanisms: bush encroachment, 

and livestock outcompeting wildlife for water or forage (Du Toit & Cumming, 1999). 

 

Livestock-rearing, bush encroachment and biodiversity conservation 

 

Robust evidence exists at localised scales that high stocking densities can result in bush 

encroachment (e.g. Oba et al., 2000; Roques et al., 2001), the increased density and 

canopy cover of indigenous woody vegetation and concomitant reduction in grass cover 

over time (Asner et al., 2004). Much of the evidence is based on exclosure experiments 

(e.g. Skarpe, 1990), fence-line contrasts of sites with different stocking rates (e.g. 

Roques et al., 2001) or measures of vegetation condition at varying distances from 

livestock-watering points (e.g. Perkins, 1996). But, owing to the small spatial scales at 

which existing work has been undertaken, some conceptual and practical issues remain 

debatable.  

 First, it has often been assumed that bush encroachment negatively affects wildlife 

conservation (Herremans, 1998; Du Toit & Cumming, 1999), possibly because range 

degradation has negative effects on livestock productivity (Abel & Blaikie, 1989). 

However, empirical evidence of pervasive negative impacts on wildlife owing to bush 

encroachment is lacking; moreover, recent reviews (Asner et al., 2004; Eldridge et al., 

2011) show that bush encroachment does not universally result in decreased landscape 

productivity, contrary to the frequent supposition that bush encroachment equates to 

range degradation (e.g. Illius & O'Connor, 1999). Even then, at localised scales and 

based mostly on single-species assessment, some evidence exists for the consequences 

of bush encroachment for wildlife; while some authors (e.g. Spottiswoode et al., 2009) 

report negative effects as widely expected, others report positive responses (e.g. 

Muntifering et al., 2006). In the latter study, the paradoxically positive response by 

cheetah Acinonyx jubatus (which chases prey in open terrain rather than pouncing on 
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them from a hidden position) possibly reflected positive association with increased prey 

density in bush-encroached areas, highlighting the need to infer directionality of 

impacts on empirical data rather than anecdotes.  

 Second, despite robust evidence that high cattle grazing pressure can result in 

increased site-specific woody vegetation cover (Roques et al., 2001), it remains 

debatable whether cattle account for pervasive bush encroachment observed in some 

landscapes (Ward, 2005; Wigley et al., 2010). A recent continent-wide examination of 

determinants of site-specific woody cover (Sankaran et al., 2008) considered only 

parks, most of which exclude cattle; thus the role of cattle in driving large-scale bush 

encroachment remains unstudied. This thesis aims to improve understanding on the 

aforementioned two issues. 

 

Wildlife hunting and challenges in controlling bushmeat offtake  

 

Unregulated hunting is considered a threat to most medium- and large-bodied 

mammals, both inside and outside parks (Milner-Gulland & Bennett, 2003). While 

much of the hunting is for subsistence use (e.g. Child, 1996), in many savanna 

landscapes there is evidence of commercially driven unregulated hunting, primarily of 

mega-herbivores such as elephant Loxodonta africana (Taylor, 2009) and black 

rhinoceros Diceros bicornis (Lewis et al., 1990). The extent of unregulated hunting, the 

species taken and the population impacts of such offtake are unknown in many 

countries, particularly in unprotected areas. Notwithstanding, in some unprotected areas, 

attempts to curb commercially-driven hunting impacts have involved the employment 

of community-based wildlife wardens, paid from the proceeds of elephant trophy 

hunting managed by the state (e.g. Lewis et al., 1990). This reduced elephant poaching 

by both residents and outsiders (Lewis et al., 1990). However, such an approach may be 

more effective at conserving high-value species threatened by economic poaching, but 

less so for species threatened by subsistence hunting. Notwithstanding, trophy hunting 

has been promoted as a tool to entice local communities to stop unregulated hunting 

(Du Toit, 2002), with recommendations that hunting should be in designated rather than 

undesignated landscapes. It has not been assessed whether unregulated hunting varies 

for different-sized vertebrates and whether this is mediated by possible source-sink 

(Pulliam, 1988) dynamics between protected and unprotected areas. 
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Attempted solutions to threats posed by livestock-rearing and hunting 

 

Protected areas in Africa  

 

When most African states were colonised in the late 19
th

 Century, management of 

natural resources was still largely under the authority of traditional and customary 

leadership. Following colonisation, international trade with European countries in 

wildlife products increased drastically, aided in part by the acquisition of guns by 

natives, which enabled the efficient killing of many animals relative to traditional 

hunting techniques. Because large numbers of animals were also killed during sport-

hunting by European settlers, as well as by American, Asian and European explorers 

(e.g. Campbell, 1997), it was important to have state-managed hunting regulation rather 

than subnational control that was in most cases inapplicable to non-natives. Thus for 

example, in response to the need for regulated wildlife trade in southern Africa, the 

British colonial government instigated the Cape of Good Hope’s Game Law Act in 

1886. Although adopted by some colonies such as Zimbabwe and Botswana (Mutwira, 

1989; Campbell, 1997), this law applied only to foreigners while locals could continue 

exploiting the wildlife, guided by their customs and traditional law. However, the 

prospects of greater economic income meant many locals did not abide by traditional 

customs or proclamations by village chiefs, but instead resorted to commercial 

exploitation to meet the demands for wild game and trophies by European traders 

(Campbell, 1997). To ensure long-term wildlife conservation, and especially to protect 

wildlife from pervasive trade and unregulated use by natives, recommendations from 

the London Convention of 1933 were adopted across much of southern Africa in the 

1930s and 1940s (Child & Barnes, 2010). Key measures in this convention were: the 

centralisation of wildlife management in the state, the creation of protected areas (PAs), 

and the curbing of commercial wildlife exploitation.  

Consequently, throughout southern Africa and the rest of the continent, state-

managed PAs constitute the principal means of conserving large wild vertebrates. 

However, the relative importance of PAs and of unregulated hunting and habitat 

modification remain poorly known for most of Africa’s large vertebrates. Most of the 

PAs were designated from the 1940s to the 1970s (Myers, 1972). Although initial 

designations tended to involve strict PAs that prohibited all offtake of biological 
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resources (Myers, 1972), presently the largest proportion (by area) of southern and East 

African PAs are managed to meet the dual goals of biodiversity conservation whilst 

permitting nearby communities to extract natural products from the reserves (IUCN PA 

management category VI, Chape et al., 2003; Table 1.1).  

 

Table 1.1. Area (km
2
), number and percentage distribution of parks per IUCN Protected 

Area management categories in southern and East Africa, adapted from Chape et al., 

2003
a
.  

 

 Category Definition Index considered 

  No. of 

PAs 

% of 

total 

number 

 Area % of 

total 

area 

S
tr

ic
tl

y
 p

ro
te

ct
ed

 P
A

s 

Ia Strict Nature Reserve: managed 

mainly for science 

13 0.3  2,550 0.13 

Ib Wilderness Area: managed mainly 

for wilderness protection 

7 0.1  1,251 0.06 

II National Park: managed mainly for 

ecosystem protection and recreation 

217 4.5  504,692 25.65 

III Natural Monument: managed mainly 

for conservation of specific natural 

features 

24 0.5  150 0.01 

I–III Sub-total 261 5.4  508,643 25.86 

 IV Habitat/Species Management Area: 

managed mainly for conservation 

through management intervention 

463 9.5  261,122 13.27 

M
u

lt
i-

u
se

 

w
il

d
li

fe
 a

re
as

 V Protected Landscape/Seascape: 

managed mainly for landscape/ 

seascape conservation and recreation 

30 0.6  12,548 0.64 

VI Managed Resource Protected Area: 

managed mainly for the sustainable 

use of natural ecosystems 

223 4.6  556,418 28.28 

 V+VI Sub-total 253 5.2  568,966 28.92 

 Unclassified Some level of protection by states, 

but IUCN PA management category 

not assigned 

3,875 79.9  628,512 31.95 

  Total area protected 4,852 -  1,967,242 100 

 

a 
Countries included are Botswana, Eritrea, Ethiopia, Kenya, Lesotho, 

Madagascar, Malawi, Mayotte, Mozambique, Namibia, Réunion, Seychelles, 

Somalia, South Africa, Sudan, Swaziland, Uganda, Tanzania, Zambia, 

Zimbabwe. 

 

Based on global trends (Naughton-Treves et al., 2005; Gaston et al., 2008), future PA 

network expansion in southern and East Africa is likely to be in the management 

categories that allow consumptive use. The conservation effectiveness of the different 
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PA management categories has not been examined systematically; but, notably in East 

Africa, several studies have compared wildlife abundance in strict PAs to those from 

neighbouring consumptive reserves (Ogutu et al., 2005, Magige et al., 2009) or 

unprotected areas (Caro, 2001; Homewood et al., 2001; Rannestad et al., 2006). These 

studies focused primarily on large vertebrates, and for most species reported greater 

abundance in PAs relative to consumptive reserves and unprotected areas. However, 

none explicitly quantified the relative importance of mechanisms that may explain the 

wildlife species response, and importantly they also assumed PAs were largely 

undisturbed. This supposition may mask the understanding of processes that underlie 

observed patterns, particularly if the extent of human disturbance across the strict PAs, 

consumptive reserves and unprotected areas is taxon-specific. Taxon-specific 

disturbance may occur for example if people prefer to hunt some species but not others, 

as happened in the Serengeti where, of the two largest-bodied birds, Maasai hunted 

Ostrich Struthio camelus but not Kori Bustard Ardeotis kori (Magige et al., 2009). 

Recent studies (e.g. Craigie et al., 2010; Fynn & Bonyongo, 2010) suggest some 

African PAs may be ineffective at conserving wildlife, but it is unclear what the main 

cause is. For example, while Craigie et al. (2010) postulate the possibility of 

unregulated hunting as the main threat, Fynn & Bonyongo (2010) down-played the role 

of bushmeat offtake and instead argued that wildlife numbers (especially of migratory 

species) have declined because PAs are not large enough to provide all forage resources 

that the species require throughout the year, with human settlement and fencing 

preventing long-distance movements to exploit dry-season grazing areas. Key threats to 

African PAs and constituent wildlife may be site-specific or vary geographically across 

the continent, and consequently, conservation solutions need to be tailored to the 

demands of the site-specific contexts. Case studies such as this thesis are therefore 

important to assess the efficacy of conservation areas, including PAs, under particular 

circumstances.  

 

Community-based conservation 

 

The designation of African PAs in most cases resulted in the eviction and displacement 

of local communities (Myers, 1972), and subsequently restricted exploitation of 

previously accessible wildlife and other natural resources. However, neighbouring 
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communities continue to incur costs from wildlife through, for example, crop damage 

and livestock depredation (e.g. Taylor, 2009). In realising that antagonistic relationships 

existed between many PAs and neighbouring communities, Integrated Conservation and 

Development Projects (ICDPs) were promoted in areas abutting PAs in Africa, and 

other developing countries globally, in the 1980s (Barrett & Arcese,1995). For example 

in the buffer areas of UNESCO’s Biosphere Reserves a variety of community 

development projects were instigated (Bridgewater, 2002). However, such substitute 

and compensatory economic activities associated with these buffer-zone projects 

provided only an indirect link between development or livelihood benefits and 

conservation goals (Salafsky & Wollenberg, 2000). Such an indirect linkage may not be 

perceived by communities, provides little incentive to cease damaging forms of wildlife 

exploitation (Salafsky & Wollenberg, 2000) and generally delivers few conservation 

benefits (e.g. Licona et al., 2010).  

Largely due to the social movement against injustice resulting from PA 

designation and debates on whether communities could continue extracting resources 

from PAs in Latin America (e.g. Peres & Zimmerman, 2001), Asia (e.g. Guha, 1997) 

and Africa (e.g. Adams & Hulme, 2001; for global review see Brockington & Igoe, 

2006), ‘people-based-conservation’ has been widely promoted by development agencies 

and states particularly following the 4
th

 World Parks Congress held in Caracas, 

(Venezuela) in 1993. This approach emphasises integrated planning, co-operative 

management, and direct involvement of local residents and resource users. The Caracas 

Action Plan had four broad objectives: (a) integrating PAs into wider planning 

frameworks; (b) expanding the support for PAs by involving local communities and 

other non-traditional interest groups; (c) strengthening the capacity to manage PAs; and 

(d) expanding international cooperation for the financing, development and 

management of PAs (IUCN, 1992). To realise these four objectives, extractive reserves 

have been set up in forested ecosystems such as in Latin America, Asia and central 

Africa, while community-managed Wildlife Management Areas (WMAs) have been 

adopted in the savannas of southern and East Africa. The overall aims of WMAs are to 

engage local communities more fully in biodiversity conservation outside PAs through 

directly linking livelihoods to biological resources (Salafsky & Wollenberg, 2000), 

largely through trophy hunting and wildlife-based tourism (Du Toit, 2002; Child & 

Barnes, 2010; Naidoo et al., 2011). 
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Wildlife Management Areas: experiences from southern Africa  

 

Wildlife conservation through WMAs has been attempted in Botswana, Namibia, 

Zambia and Zimbabwe (Table 1.2). Although there are some community-based 

conservation projects in South Africa, Malawi and Mozambique, these are not 

considered in this review because they involve game ranching within fenced reserves 

(for South Africa see, e.g., Du Toit, 2002), or are primarily based on non-timber forest 

products, with no wildlife component (for Malawi and Mozambique see, e.g., Blaikie, 

2006). The ecological outcomes of WMAs in Namibia, Zambia and Zimbabwe have 

never been assessed, but experiences from these countries suggest at least four key 

conditions that WMAs must meet to have any chance of delivering on their 

conservation aims.  

First, WMA management, user rights and benefits need to be genuinely 

devolved to communities, which would increase transparency in benefit-sharing and 

ownership; for instance 100% of the revenue in Namibian WMAs is retained by the 

community groups (Arntzen et al., 2007) in contrast to Zimbabwe where WMA 

management has been devolved by government to district councils who only pay 50% 

of the trophy hunting proceeds to communities (Child & Barnes, 2010). Because the 

district councils financially benefit from the scheme but do not incur any direct 

livelihood costs, they would probably be biased towards economically rather than 

ecologically based quotas, and maximising short-term profit to the detriment of wildlife 

conservation.  

Second, strong institutional and legal frameworks are crucial. At site-level these 

would for example enable ordinary community members to resist the scheme being 

monopolised by village elites (as successfully resisted in Zimbabwe: Child, 1996). At 

national level, such civic empowerment was achieved, for example, through the 

Namibian Association of Community Based Natural Resource Management (CBNRM) 

Support Organizations, which enabled considerable participation by NGOs and also 

afforded greater coordinated organisation of WMA community groups. In contrast, the 

collapse of the scheme in Zambia was partly attributable to the lack of strong 

community-driven institutions (Lewis et al., 1990; Child & Barnes, 2010).  

Third, WMAs need to serve the interest of the community, thus for example 

direct payments to traditional leaders, and not to community-managed institutions 
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(Lewis et al., 1990), probably led to the lack of continuity in the Zambian scheme 

following the departure of direct project financiers.  

Lastly, wildlife offtake needs to be based on sound biological assessment, with 

the income paid to participating partners commensurate with the sustainability of the 

biological resources and with the livelihood costs that project partners incur, to improve 

links between the resources and livelihoods. In Zambia project success was short-lived 

because, following the departure of initial key project personnel, the percentage of 

revenue paid to district councils and the government’s wildlife department increased 

from 20% to more than 70% (Child & Barnes, 2010), providing little incentive for 

continued community participation. Importantly, throughout southern Africa, 

mechanisms for assessing the ecological and financial viability of trophy hunting, and 

for ensuring such legal hunting is within agreed quotas, are either nonexistent or 

undocumented. It is assumed, but untested, that species on community-managed hunting 

quotas will be preferentially conserved (e.g. Du Toit, 2002; Taylor, 2009), since 

communities derive a direct economic income from them. It is also assumed that as long 

as communities earn sufficient income from trophy hunting, they will cease unregulated 

hunting of non-quota species, even if they do not directly benefit from the non-quota 

species (e.g. Lewis et al., 1990). These supposed natural resource–livelihoods linkages 

are critical to test and understand if savanna wildlife is to be conserved in the long term.  

 

Wildlife Management Areas in Botswana 

 

An accurate assessment of the conservation efficacy of WMAs needs to consider the 

socio-economic context within which they were conceived. Botswana became a British 

Protectorate in 1885. Subsequently, in 1933, a watershed pre-independence philosophy 

that significantly affected wildlife conservation was an assessment by a commission 

appointed ‘to enquire into the position of the country from the financial and economic 

points of view’ (Campbell, 1997). This report suggested cattle should be the highest 

priority economic activity, with wildlife not considered an asset worth investing in. 

Until independence in 1966, state investment in wildlife conservation was minimal, 

with initial wildlife wardens recruited in 1956, but an official wildlife department not 

established until 1966. Following the creation of the Department of Wildlife and 

National Parks (DWNP), at least five PAs were created during 1966–1972, and all four 
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pre-1966 PAs expanded (Campbell, 1973). Outside PAs, a significant post-

independence land-use designation and policy was the 1975 Tribal Grazing Lands 

Policy (TGLP); this set aside land for commercial cattle ranching, primarily in efforts to 

curb perceived range degradation in communal grazing areas (Cooke, 1985). The TGLP 

introduced, for the first time, a stipulation on fencing cattle grazing areas, in what were 

previously communal areas in which cattle-owners and non-cattle-owners cohabitated. 

In some areas, in a few instances, people were relocated from the ranched areas after 

having previously been relocated from PAs (e.g. Twyman, 2001), a double injustice.  

There were discussions on creating WMAs, to serve the dual purpose of wildlife 

conservation outside PAs and rural economic diversification, from as early as 1983 

(Cooke, 1985). However, WMAs were officially mentioned for the first time as an 

alternative land-use type in the 1986 Fauna Conservation Act (Twyman, 2001). The 

WMAs were mentioned again in the 1992 Wildlife Conservation and National Parks 

Act (an update of the Fauna Conservation Act). Although it is unclear when they were 

actually designated, or what guided their location, at least when WMAs were first 

conceived in the early 1980s the primary government departments involved in the 

process were DWNP and the Department of Animal Health and Production, who 

coordinate livestock production (Cooke, 1985). It appears that areas prioritised as 

WMAs were the low human density regions in the Kalahari Desert, and the Okavango 

and Chobe districts (Rozemeijer, 2009). National implementation of WMAs started in 

1999, with USAID financial support to DWNP, and the initial funding was towards 

policy and legislation development (e.g. drafting WMA implementation guidelines: 

Rozemeijer, 2009); this followed and was largely based on results from a pilot USAID-

funded project near the Chobe National Park, where in 1993 a WMA was devolved to a 

community group. 
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Table 1.2 Examples and characteristics of Wildlife Management Areas (WMAs) in Namibia, Zambia and Zimbabwe. 

Country Programme Established Conservation approach Key biodiversity conservation achievement References 

Namibia Conservancy program 1996 WMA boundaries proposed by communities applying 

to join the scheme, and each community keeps 100% 

of the revenue generated.  

WMAs with high-value species (e.g. black 

rhinoceros) are profitable; at least for this species, the 

scheme has resulted in positive conservation 

outcomes notably through increased anti-poaching 

patrols. The extent to which co-occurring species and 

habitats are conserved is unclear. 

Child & 

Barnes, 2010; 

Naidoo et al., 

2011  

Zambia Administrative 

Management Design 

(ADMADE) and 

Luangwa Integrated 

Rural Development 

Project (LIRDP) 

1980s Promoted community-government partnerships for 

wildlife conservation and management, focused on 

four results: (a) rate of unregulated wildlife offtake 

(primarily of elephants), (b) sustainability of 

economic incentives for communities to support 

sustained-yield management; (c) attitudes and 

perceptions to wildlife, (d) level of manpower and 

leadership derived from the community for 

conservation. WMA localities pre-determined by 

government, but no systematic programming or 

formalisation of national or district-level governance 

structures. Lack of civic organisation (of the 

communities involved in the scheme) exacerbated by 

minimal NGO participation, because the schemes 

were largely driven by direct partnerships between 

government and local communities, principally on a 

project-by-project basis. Communities (household-

level), paid dividends from elephants sale (80%); 

20% to district councils and traditional leaders. 

A few locals employed as wildlife wardens, and the 

increased law enforcement decreased elephant 

poaching. Because funds were paid to households 

rather than village-level governance structures, no 

investment was made on community-managed 

enterprise development, thus the schemes have left 

little economic legacies, and although 

undocumented, the initial ecological gains have 

probably also been lost. From the early 1990s, the 

schemes were effectively non-operational, and were 

formally closed down by the wildlife department in 

2002. 

Lewis et al., 

1990; Arntzen 

et al., 2007; 

Child & 

Barnes, 2010 

Zimbabwe Communal Areas 

Management 

Programme For 

Indigenous Resources 

(CAMPFIRE) 

1989 

(conceived 

in late 

1970s)  

Management of WMAs devolved to district councils 

(Rural Development Councils, RDCs), who pay at 

least 50% of revenues to participating communities. 

RDCs comprise elected ordinary-villager 

representatives, councillors, and wildlife department 

staff. Participating districts also formed a political 

producer organization (CAMPFIRE Association), 

which represented their collective bargaining 

positions at each RDC, and in national forums. 

However, the scheme performed poorly in some 

districts, mostly due to historical mistrust between 

communities and government. 

During the 1990s, rural communities’ financial stake 

from WMA wildlife-based income, and political, 

democratic and social organisation, were greatly 

improved, notably through lobbying by the 

CAMPFIRE Association. CAMPFIRE also 

influenced global debates, successfully lobbying 

CITES for continued elephant hunting, because these 

were their primary revenue-earner. Some positive 

conservation outcomes were realised, as judged by 

increased elephant numbers in CAMPFIRE districts; 

however, the impacts of the schemes on other 

wildlife, and habitats, is unknown. 

Child, 1996; 

Alexander & 

McGregor, 

2000;Child & 

Barnes, 2010 
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When they were set up, most WMAs were inhabited by human communities; 

however, most of them were relocated from areas designated as wildlife zones to WMA 

villages (Twyman, 2000), and no WMA has had new settlements established within its 

boundaries. The WMAs primarily make their income from trophy hunting, and Chapter 

3 provides a list of the huntable species, details of zoning within WMAs (to create 

separate wildlife and livestock-rearing zones) and an account of how quotas are set.  

A significant difference from the Namibia, Zimbabwe and Zambia WMA schemes 

is that in Botswana the majority of the revenue is invested in community projects rather 

than paid to households (Arntzen et al., 2007). In principle, this should enhance the 

ability of the scheme to deliver community-level enterprise development. However, 

most WMAs, especially in the drier Kalahari, have not been profitable owing to their 

remoteness from markets, poorly developed infrastructure, and lack of high-value 

species (such as elephants) that are included in quotas for WMAs in the more mesic 

parts of the country (Rozemeijer, 2009). Thus, for example, in 2001 a Kalahari-based 

WMA made approximately £18,000 from its wildlife quota, while a more species-rich 

but three times smaller WMA near the Okavango Delta that supported about the same 

number of inhabitants, had 12 elephants on its quota and made at least £1.4 million 

(Rozemeijer, 2009).  

There is some evidence that WMA designation was top-down and some 

communities were coerced into joining the scheme (Twyman, 2000). However, where 

WMAs have been profitable, there has been less confrontation between communities 

and government over WMA boundaries and land-use restrictions, and in some instances 

communities have used WMAs to lobby for social rights (e.g. Taylor, 2006). More 

generally, because the civic association of WMA producer communities is weak (Child 

& Barnes, 2010), and there is weak institutional support from NGOs and government 

(Rozemeijer, 2009), most communities in WMAs often fail to meet expected 

obligations for continued issuance of hunting quotas (such as annually audited financial 

accounts), and, as a result of perceived or real financial mismanagement, quotas are 

sometimes withheld by DWNP, which is responsible for the annual issuance of WMA-

specific quotas (Child & Barnes, 2010). Because revenue sources are undiversified, and 

primarily reliant on hunting quotas, this has restricted the ability of most WMAs to meet 

their objective of providing sustainable income opportunities (Arntzen et al., 2007).  

As with the rest of southern Africa, the ecological effectiveness of WMAs in 

Botswana has never been assessed. The objectives of this scheme were primarily 
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wildlife conservation and, secondarily, creating economic opportunities for the rural 

populace (Rozemeijer, 2009). However, during WMA implementation (e.g. Rozemeijer, 

2009), when researching WMA outcomes and challenges (e.g. Twyman 2000, 2001; 

Blaikie, 2006), and when lobbying government (e.g. Taylor, 2006; Child & Barnes, 

2010), the motives of WMAs seem to be reversed, because much of the effort is 

targeted at socio-economic processes and outcomes (such as land rights or extent of 

community participation), and not implications of designation for wildlife conservation.  

 

Priorities of conservation programmes for Africa’s wildlife  

 

Focus on large charismatic vertebrates and globally threatened taxa  

 

While the designation of PAs and WMAs gives the impression of considerable use of 

landscape-scale conservation approaches, in practice wildlife research and conservation 

programmes in Africa have primarily targeted large-bodied vertebrates, mostly on a 

single-species basis. Actions have focused on conservation status assessment within 

single parks (e.g. Harrington et al., 1999) and only rarely in multiple PAs (e.g. Gros, 

2002), often with emphasis on translocations (particularly in small PAs, e.g. Hayward et 

al., 2007) to supplement populations. To a large extent, this has led to increased 

financial and research investment in single PAs or species, and less so to an 

understanding and mitigation of landscape-scale threats. This single-species and single 

PA approach persists despite the increasing recognition that the conservation of most of 

the large vertebrates requires consideration of landscape-scale threats, particularly the 

subtle impacts of human encroachment (Homewood et al., 2001; Fynn & Bonyongo, 

2010), which have been less studied than direct anthropogenic impacts such as hunting 

(e.g. Magige et al., 2009) or habitat conversion (e.g. Thiollay, 2006).  

While there has been some positive and desirable trend away from single-

species focus towards conserving threatened species more broadly, this has still been 

largely restricted to PAs and other conservation sites such as Important Bird Areas 

(IBAs: Fishpool & Evans, 2001) or Key Biodiversity Areas (KBAs: Eken et al., 2004). 

This approach is valuable and practical, but it is nevertheless inadequate, because it fails 

to provide for a certain class of species. Thus IBAs are defined as such because they 

hold: (a) significant numbers of globally threatened species (as per the IUCN Red List); 
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(b) at least two restricted-range species (world distribution <50,000 km
2
); (c) a 

significant component of the group of species whose distributions are largely or wholly 

confined to one biome; or (d) more than 1% or 20,000 pairs of waterbirds (Fishpool & 

Evans, 2001). This, however, means that widespread low-density species, and 

particularly those that do not congregate for breeding, will have low numbers in any 

IBA/KBA. Furthermore, the threshold for which a species can qualify as threatened 

under the geographic range criteria of IUCN Red List is ≤20,000 km
2
 (criterion B), or if 

it is to meet the other criteria, evidence that its geographic range has declined by at least 

30% in 10 years or three generations (IUCN, 2001). Owing to their large geographic 

range, widespread low-density species have therefore not been a conservation priority 

(e.g. Gaston & Fuller, 2008), possibly because of the assumption that their extensive 

geographic ranges guarantee that they occur in large enough numbers somewhere else. 

Consequently, there has notably been much less research, monitoring and understanding 

of their population trends. However, there is increasing evidence that some low-density 

widespread species have undergone significant and rapid population declines (e.g. 

Thiollay, 2006; Ogada & Buij, 2011; Senyatso et al., in review, Chapter 2). 

 

Challenges to conserving low-density, widespread species 

 

Decision-making in wildlife management and conservation increasingly demands 

quantitative rather than qualitative data and evidence. Therefore, while there have often 

been suggestions that some widespread low-density species have declined (e.g. Africa’s 

Ardeotis bustards: Collar, 1996; Thiollay, 2006), if declines cannot be quantified, such 

species are unlikely to attract the conservation attention they deserve, unless declines 

are unusually rapid as occurred with Indian vultures (Pain et al., 2008). While much has 

been achieved in developing field methodologies (e.g. Bibby et al., 1993) and software 

for sophisticated analysis of population trend data, some with capacity to work with 

uncertainties in parameter estimates (e.g. RAMAS
® 

Red List: Akçakaya & Ferson, 

2001), gaps still exist in methodologies to evaluate range-wide trends in population 

numbers or geographic range extent. In much of Africa, the most comprehensive data 

available for most bird species are presence-only distributional records, some of which 

have been summarised in atlases (e.g. Harrison et al., 1997) and others scattered in 

published and unpublished literature. These distributional data, most of which are one-
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off sighting records, offer the best opportunity to assess range-wide conservation status 

of widespread bird species. There is therefore a need to develop and test robust yet cost-

effective methods that can quantify long-term range-wide population trends of 

widespread species based on these data; this study presents one possibility. 

 

Kori Bustard as a case study of a low-density widespread species  

 

This thesis uses Kori Bustard as a case study to highlight the challenges over, and test a 

possible methodological solution to, the assessment of conservation status for low-

density widespread species in Africa. This species has a large geographic range 

spanning 14 countries in southern and East Africa, mostly in savanna landscapes. In 

common with most other African birds, Kori habitat use and preference, diet, breeding 

and socialisation, movement patterns, and key threats are poorly understood, or only 

documented from small parts of the geographic range; but geographic variations in 

abundance and habitat occupancy make range-wide extrapolation from localised 

observational data close to guesswork.  

 Koris are thought to prefer grasslands, shrubland or fairly open and unmodified 

savanna habitats, based on opportunistic sight records; although they are occasionally 

reported in more wooded areas including Mopane Colophospermum mopane, Miombo 

Brachystegia and Teak Baikiaea woodlands (Collar, 1996; Harrison et al., 1997; Allan 

& Osborne, 2005). While initial data from coordinated bi-annual road counts in South 

Africa (Young et al., 2003) suggest avoidance of crop fields, Kori do use crops and 

other anthropogenic areas such as fallow lands, airstrips and fire-breaks (Harrison et al., 

1997). Kori display behaviour has been widely documented (e.g. Allen & Clifton, 1972; 

Hellmich, 1988), but breeding and non-breeding habitat requirements have not been 

studied. Observational data (e.g. Osborne & Osborne, 1999) suggest that there are 

routinely used areas (‘leks’) in the breeding season, mostly in open areas where 

displaying males can see or hear each other; for example, in Kruger National Park, 

display areas were ‘notoriously open, the grass short, and the small stunted trees widely 

scattered’ (Astley-Maberly, 1937, p. 11).  

Kori diet includes invertebrates (such as beetles, grasshoppers and termites), plant 

matter (berries, grass, flowers and tree gum) and small vertebrates (lizards, small-bodied 

rodents, other birds’ eggs and nestlings, and snakes) (Allan & Osborne, 2005). The 
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relative importance of plant versus animal matter is unknown, but the presence of a 

muscular ventriculus and prominent cecum, required for processing complex foods 

(Maloiy et al., 1987), suggest plant matter and insects are probably more important than 

vertebrate meat. Animal matter is often obtained opportunistically by eating road kills, 

following wild-fires and feeding off burnt wildlife, or tracking erupting locusts and 

other invertebrates (Allan & Osborne, 2005); the latter two factors suggest a mobile 

lifestyle to exploit opportunistic food resources. Thus Kori has been thought to 

undertake systematic long-distance movements, based on apparent seasonal variation in 

the bird’s abundance (e.g. Snow, 1978; Britton, 1980; Nikolaus, 1987), yet no empirical 

evidence exists (Chapter 5). In Namibia, however, Osborne & Osborne (1999) found 

that birds undertake post-breeding movements. These authors employed radio-telemetry 

and provided the first objective evidence of movement patterns, but findings were 

possibly biased owing to the difficulty (in spite of their occasional use of aeroplanes) of 

relocating birds. Thus, unbiased evidence for movements, as may be obtained from 

satellite telemetry, could be expected to reveal even wider ranging movement patterns 

than were found in Namibia.  

The often cited threats to Kori include collision with powerlines, predation and 

human exploitation (Allan & Osborne, 2005), but their relative importance in unknown. 

Significant international trade in Kori, mainly between three African states (Somalia, 

Kenya and Tanzania) and Arab Gulf countries, increased drastically post-1980 (Goriup, 

1987). Live trade in wild-caught Kori continues, with a total of 25 live birds y
-1

 ± 24 SD 

legally traded and registered on the CITES trade database (UNEP WCMC CITES, 

2009) between 1990 and 2008, with most birds from Tanzania. The challenges relating 

to poor ecological knowledge and understanding of whether offtake quotas are 

sustainable have made it difficult to coordinate global, regional and country-level 

agreements and legal frameworks used to protect Kori (Table 1.3). Similar difficulties 

are expected for other low-density widespread species in African savannas.  
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Table 1.3. National, subregional (East and southern Africa), African-wide and global legal frameworks protecting Ardeotis kori. 

 
Jurisdiction Legislation Main highlights Legislative gaps 

Angola Decree no. 43/77 Legislation for creation of national parks. Legal framework for Kori conservation outside 

parks. 

Botswana Wildlife Conservation and 

National Parks Act (1992)
 
 

Kori Bustard explicitly a protected species. Hunting 

or capture prohibited. 

None. 

Ethiopia Forest & Wildlife Conservation 

& Development Proclamation 

(1980) 

Creation of parks and regulation of hunting  Kori not included in list of legally huntable game 

birds thus has de facto protection. 

Kenya Wildlife (Conservation and 

Amendment) Act (1989) 

Wildlife conservation and management, and park 

establishment  

Kori not included in list of legally huntable game 

birds thus has de facto protection. 

Mozambique Law on Forestry & Wildlife 

10/99 (1999); Annex 2 of 

Regulations of Law No. 10/99. 

Outlines principles for conservation and sustainable 

use of forest and wildlife resources. Kori explicitly 

included in list (Annex 2) of species whose hunting 

is prohibited  

None 

Namibia National Conservation 

Ordinance (1975)  

All species of birds except huntable game birds are 

implicitly protected game. A. kori protected game.  

Status quo suffices; could be strengthened by 

adding bustards to the list of protected game. 

Somalia Law on Fauna (Hunting) and 

Forest Conservation (1969)  

Legislation for creation of national parks. No explicit protection for A. kori, but wildlife 

hunting banned in 1977 (Law No. 65). 

South Africa National Environmental 

Management: Biodiversity and 

Protected Area Acts (2009) 

Separate Acts for biodiversity conservation (species 

and ecosystems requiring conservation action, 

including trade regulation) and protected area  

Kori not in list of huntable game birds but live 

trade permitted. Trade should be banned until 

evidence of non-detrimental trade produced 

Sudan Wildlife Conservation and 

National Parks Act (2003) 

Legislation for creation of national parks. All 

bustards ‘completely protected’, with hunting or 

capture prohibited. 

None 
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Jurisdiction Legislation Main highlights Legislative gaps 

Swaziland National Trust Commission Act 

(1972) 

Legislation for creation of national parks.  Not relevant for Kori Bustard because it is locally 

extinct. 

Tanzania Wildlife Conservation Act 

(1974) 

Kori hunting prohibited. Act excludes kori in list of 

huntable species, but live trade allowed.  

Commercial trade should be prohibited. 

Uganda Uganda Wildlife Act (2000) Trade regulation and protected area management Species probably extinct, thus not a priority 

Zambia Fauna Conservation Ordinance 

(1956)  

Hunting of all bustards prohibited. None. 

Zimbabwe Parks and Wild life Act (1975) Bustards are ‘specially protected’ game, off-take 

prohibited. 

None.  

Subregional    

East Africa 

Community 

None specific to biodiversity 

conservation 

Most relevant are policies on agriculture and rural 

development, though biodiversity seems peripheral. 

Cooperation promoted for wetlands; equivalent 

protocol for terrestrial habitats missing. 

Southern African 

Development 

Community  

Protocol on Wildlife 

Conservation and Law 

Enforcement, 1999 

Promotes common approaches to wildlife 

conservation and sustainable use, nothing specific to 

birds. 

Implementation weak; mechanisms through which 

common positions reached (e.g. on wildlife trade) 

required 

Range-wide    

CITES Convention on International 

Trade in Endangered Species of 

Wild Fauna and Flora (1973) 

In 1987 Kori listed in Appendix II. Source countries 

required to issue export permit and in-transit 

countries to issue re-export certificates, but import 

permits are not a requirement. 

An important proviso is that permit-issuing 

authorities need to be satisfied that trade is not 

detrimental to wild birds. Such evidence not 

provided because it is unavailable. 

African Convention African Convention on the 

Conservation of Nature and 

Natural Resources (1968) 

General policy document advocating for better 

environmental conservation, plus harmonization and 

coordination of conservation policies across Africa.  

All range states signatories. Convention has no 

provision for species-focused programmes. 
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Study area  

 

Botswana is a semi-arid country at the hub of southern Africa, with a surface area of 

581,730 km
2
. The country supports significant biodiversity and, based on its mammals, 

birds, amphibians, reptiles, butterflies and angiosperms, is among the 50 most species-

rich countries in the world (World Conservation Monitoring Centre, 1994), despite 80% 

of the land area being characterised by sandy soils and sporadic summer (October–

March) rainfall (ranging from 250 mm y
-1

 in the south-west to 650 mm y
-1

 in the north-

east: Nicholson & Farrar, 1994). Although rainfall stations across the country and 

within the study site are limited, data from the 11 stations with long-term datasets (two 

of which are within the study area) suggest coefficient of variation in mean annual 

rainfall that ranges 0.28–0.43, based on rainfall measures over the period 1961–2003 

(Parida & Moalafhi, 2008). Slight vegetation changes follow the south-west to north-

east rainfall gradient with much of the south-west consisting of the more drought-

resistant Acacia scrub while the mesic north-east has increased total plant diversity and 

greater woody plant density, with predominantly tree savanna and isolated stands of 

Mopane woodlands (Weare & Yalala, 1971; Fig. 1.2).  

 The country is an in situ conservation pioneer, having established an impressive 

PA estate, which is the primary locus for biodiversity conservation. The PA system 

incorporates some 17% of Botswana’s total land area, comprising about 7% in national 

parks and 10% in game reserves, while a further 22% of the country is designated as 

WMAs (Government of Botswana, 2001). Priority study areas examined in this thesis 

are the eight PAs, their neighbouring WMAs, and intervening unprotected areas in 

central Botswana (see Fig. 1.2). 

Human population density is low across the sampling area. Based on the latest 

census data (from 2001), only about 10 large villages and towns in the area enclosed by 

the dotted square in Figure 1.2 have a human population greater than 10,000 

(Government of Botswana, 2001); for the remainder of the villages (i.e. only settlements 

with less than 10,000 inhabitants), and based on the dataset used in this study (which 

utilises census data only for settlements with more than 200 people as these could be 

reliably mapped, see Chapter 3 for justification and data sources), the mean human 

population number per settlement was 1184 people ± 1498 SD (n = 138 settlements). 

Pooled across WMA livestock-rearing buffers (human settled areas of the WMA, see 
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Chapter 3) and unprotected areas, this translates into a mean human density of 0.092 

people km
-2

 ± 0.258 SD and 0.998 people km
-2

 ± 2.407 SD for these land-uses 

respectively; WMA wildlife zones and parks exclude human settlements, although the 

Central Kalahari Game Reserve has a few small settlements whose pooled populations 

probably number less than 200 (see Chapter 3). The vast majority of the villagers in the 

study area historically depended on a combination of wildlife and non-timber forest 

products, but more recently (particularly after independence in 1966, and with the 

introduction of permit systems to regulate wildlife hunting), the relative importance of 

wildly collected natural resources has declined (e.g. Twyman, 2001; Sallu et al., 2009). 

However, the most frequently hunted wildlife species, the most preferred species, total 

numbers of wildlife killed per village or district, hunting techniques, and the extent to 

which hunting may be affected by socio-economic status, are poorly understood and 

largely undocumented; but, it is probable that throughout the study area, medium- and 

large-bodied herbivores, small mammals and galliformes respectively constitute the 

most preferred hunting quarry (pers. obs.).  

Although the relative importance of income generating strategies is 

undocumented across much of the study site, where such data is available (e.g. Chanda 

et al., 2003; Sallu et al., 2009), livestock, particularly cattle, are the single most 

important economic activity in the smaller and more remote settlements. Due to the 

harsh environmental conditions and nutrient-poor soils, the major economic activities 

within the study area therefore revolve around small-scale livestock-rearing (based on 

number of cattle kept and spatial extent over which they forage, ≤10 km) on 

communally-managed lands. The number of cattle owned by households varies greatly, 

depending on household economic status (e.g. Chanda et al., 2003). For example, 

Schiess-Meier et al. (2007) reported that ‘owners of small cattle herds’ owned a mean 

42 cattle ± 27 SD (n = 32) while ‘owners of large cattle herds’ owned a mean 353 cattle 

± 396 SD (n = 28), in communally managed areas. Nevertheless, cattle stocking rates 

are variable depending on the land tenure, but are commonly 6 ha per livestock unit in 

communal lands and 12.5 ha per livestock unit in fenced commercial ranches (Abel & 

Blaikie, 1989). The extent to which these stocking rates vary spatially across the study 

area is unknown, but this is unlikely to be significant due to similar cultural motivation 

for livestock keeping, especially in communal areas where cattle are managed for 

subsistence non-commercial use. Commercial cattle ranches, typically 16 km
2
 each, 
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occur sporadically in parts of the study area (Perkins, 1996), largely under freehold 

tenure.  

In unprotected areas, most households have three homesteads: (a) a ‘village 

home’; (b) a ‘cattle-post’, where livestock are kept, and with a few resident cattle 

herders who spend their entire time at those cattle-posts tending to the livestock; and (c) 

‘arable lands’, where crop farming is practised, although this is less common in the drier 

south-west regions of the sampling extent (arable farming is generally negligible, and 

for example, crop fields of 0.2–6.0 ha are not uncommon in Botswana e.g. Jackson et 

al., 2008). The abovementioned three homesteads can be separated by up to 20–40 km 

(e.g. Chanda et al., 2003), although the physical separation is less defined within 

WMAs because of the more restricted areal extent of buffers for settlements and 

associated agricultural activities (see Chapter 3). Livestock, particularly cattle, are 

generally excluded from both villages and lands. In unprotected areas, at village-level, 

fencing is often used to separate cattle-posts from lands; this does not occur within 

WMAs. The exclusion of cattle from villages is less direct and is often through the 

prohibition of watering livestock from the same boreholes that water the human 

population. The vast majority of the livestock-watering boreholes, located at variable 

distances from villages, utilise diesel-powered engines to draw underground water.  

The harvesting of non-timber forest products (e.g. Kalahari Devil’s Claw 

Harpagophytum procumbens, truffles Kalaharituber pfielii and wild berries such as 

Grewia flava), contributes significantly to the income of most households in the remote 

villages within the study area (Chanda et al., 2003). 
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Figure 1.2. Location of the study area in the Kalahari, showing the approximate outline 

of the sampled area, land-use designation (Government of Botswana, 2011) and 

vegetation zones (following Weare & Yalala, 1971). Protected areas included in the 

sampling extent are (1) Nxai National Park, (2) Nata Sanctuary, (3) Makgadikgadi 

National Park, (4) Orapa Game Park, (5) Central Kalahari Game Reserve, (6) Dithopo 

Game Ranch, (7) Khutse Game Reserve and (8) Jwana Game Park. 

 

Thesis aims and structure 

 

This study has five main aims, each addressed in separate chapters except the second 

and third aims, which are pooled into one chapter. Firstly, to test if high cattle grazing 

pressure is associated with greater landscape-scale bush cover; although cattle can cause 

site-specific greater bush cover, their role in driving large-scale greater bush cover 

remains poorly studied. Secondly, to examine the relative importance of cattle grazing 

and unregulated hunting as threats to a suite of medium- and large-bodied wildlife 

species; unregulated hunting and cattle-induced impacts have previously been suggested 

as the main threats to wildlife in Botswana’s Kalahari, but hitherto, their relative 

importance is unknown. Thirdly, to investigate the conservation effectiveness of PAs 
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and WMAs in the Kalahari, based on the abundance of medium- and large-bodied 

wildlife species in these management areas, relative to unprotected landscapes. 

Fourthly, using Kori as a case study, to test a new methodology to assess the range-wide 

conservation status of a widely distributed low-density species despite a lack of 

quantitative and long-term population monitoring data. The fifth aim, again using Kori 

as a case study, is to test the extent to which home range size and placement in an arid 

ecosystem are affected by season and habitat type. All five aims are geared towards 

improving understanding of the conservation ecology of widely distributed wildlife 

species in African savannas, particularly the need to ascertain: (a) the relative 

importance of threats; (b) the effectiveness of conservation areas; (c) the possible 

implications of seasonally-variable food resources on wildlife conservation; and (d) 

whether the widely available incidental sight records can be systematically used to 

produce evidence-based and objective conservation status assessments.  

 The thesis examines the conservation ecology of widespread low-density species 

across three different spatial scales: across 14 countries in southern and East Africa; in 

multiple PAs, WMAs and intervening areas in central Botswana; and within a single PA 

(Central Kalahari Game Reserve). The presentation of the research undertaken to meet 

the five aforementioned study aims follows the decreasing spatial scale at which 

analysis were done, rather than emphasise any relative importance or chronology of data 

analysis. Chapter 2, assesses the conservation status of Kori across its entire African 

geographic range, and uses this case study to develop a methodological framework for 

studying population and geographic range changes for widely distributed tropical birds. 

Chapter 3, assesses the relative effectiveness of PAs and WMAs at conserving medium- 

and large-bodied vertebrates in Botswana’s Kalahari ecoregion, and tests the relative 

importance of differential cattle stocking rates and unregulated hunting in explaining 

observed patterns. Comments are made on the practical implementation of WMAs, as 

well as the conceptual underpinnings of this model that assumes that linking 

biodiversity conservation to livelihoods improves conservation outcomes. Chapter 4, 

uses the opportunity provided by the juxtaposition of Kalahari PAs, WMAs and 

unprotected areas to test the degree to which increased cattle density is associated with 

increased woody vegetation cover, with results discussed in relation to rangeland 

management and mitigation of the impacts of cattle grazing. The last results chapter, 

Chapter 5, examines the degree to which Kori movement patterns and seasonal home 

range use respond to stochastic resource availability and resource-rich habitat patches. 
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Abstract 

 

There are no systematic, long-term, large-scale bird monitoring programmes in Africa, 

and the most comprehensive available data for most species are incidental occurrence 

records. Can such data be used to assess range-wide conservation status of widespread 

low-density species? We examine this using Kori Bustard Ardeotis kori, a large, easily 

identifiable species with an extensive African range. A comprehensive and systematic 

review of published and unpublished sources from all of the bird’s geographic range 

spanning 14 countries in southern and East Africa provided 1948 unique locality 

records spanning the years 1863–2009; these included 410 non-atlas records and 97 

historical (pre-1970) records. Potential range-size changes were examined by comparing 

minimum convex polygons to quantify Extent of Occurrence pre- and post-1970, and by 

testing whether more historical records fell outside the recent (post-1970) 95% 

probability kernel than expected by chance. Additionally, qualitative evidence of 

changes in abundance was obtained from historical published accounts and 

contemporary assessments by in-country experts. Since the late nineteenth century, 

range-size (measured as Extent of Occurrence) has contracted, by 21% in East Africa 

and 8% in southern Africa. There is strong qualitative evidence of considerable pre- and 

post-1970 population declines in all range states, except Zambia (slight increase) and 

Angola (trend unclear). In some countries declines occurred from the early 1900s. Thus, 

while relatively modest change in range-size has occurred in over 100 years, numbers 

have greatly reduced throughout the species’s range. Our methodology allowed 

objective appraisal of continent-wide status of this species. Despite lacking quantitative 

population estimates and trends, and poor understanding of the species’s autecology, 

common issues for many African species, incidental occurrence records can be used to 

assess range-wide changes in status. We recommend that this or similar approaches be 

applied to other widespread low-density species that probably also have rapidly 

declining populations despite apparently stable range-extents. 
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Introduction 

 

Evaluating the global conservation status of low-density widely distributed species 

poses many challenges. Assessments are particularly difficult in developing countries, 

where monitoring data are sparse (Balmford et al., 2003). Uncertainty over older, 

unquantified statements on status, differences in type and extent of survey coverage 

between range states, geographic variations in abundance and habitat occupancy, and 

logistic difficulties in achieving range coverage (e.g. Houlahan et al., 2000) often render 

status assessment of such species close to guesswork. While rapid declines raise 

international alarms by triggering IUCN Red List criteria (IUCN, 2001), as occurred for 

Indian vultures (Pain et al., 2008), steady declines over long periods can go 

unrecognised and hence unremedied (e.g. Turvey et al., 2010).  

 Population and range-size changes in widely distributed African bird species 

have never been assessed systematically, although birds remain the best-studied class of 

animals on the continent. Objective baseline data are sparse. Although bird atlases have 

summarised sight and other records in some countries (e.g. Harrison et al., 1997; Ash & 

Atkins, 2009), none has been repeated to provide information on changing abundance or 

range. Repeating road transects after 20–30 years has demonstrated localised declines 

for some species (e.g. Thiollay, 2006), but such fine-scale systematic monitoring has 

not been conducted across larger spatial scales. All that otherwise exist are 

distributional records and anecdotal remarks on abundance scattered amongst the 

published literature, trip reports and museum specimen data. Could this material be 

combined with atlas data from discrete periods to evaluate conservation status change?  

We examine this using Kori Bustard Ardeotis kori, a large-bodied, low-density 

species with an extensive African range. Kori occur as two taxonomically distinct 

populations: A. k. kori in southern Africa (Angola, Namibia, Botswana, Zambia, 

Zimbabwe, Mozambique and South Africa; extinct in Swaziland) and A. k. 

struthiunculus in East Africa (Somalia, Ethiopia, Sudan, Uganda, Kenya and Tanzania: 

Collar, 1996). It is thought to be experiencing range-wide decline (Collar et al., 1986; 

Collar, 1996), and in South Africa has twice been listed as regionally ‘Vulnerable’ 

(Brooke, 1984; Anderson, 2000). Nevertheless, it is globally classified as Least 

Concern, because perceived population declines are thought not to approach the 
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threshold of a 30% decline in 10 years or three generations, at which it would qualify as 

threatened under IUCN Red List criteria (BirdLife International, 2008). 

 

Methods 

 

Locality data 

 

We analysed locality and demographic data from 1863 (earliest record) to December 

2009. Locality records and reports on Kori distribution and population trends were 

obtained from documentary evidence, coupled with input from in-country experts. We 

undertook systematic literature searches, without restriction on publication year, using 

the terms ‘Ardeotis kori’, ‘Kori Bustard’, ‘kori’ and alternative names ‘Giant Bustard’, 

‘Large Bustard’, ‘Choriotis kori’, ‘Otis kori’, ‘Outarde kori’, ‘Riesentrappe’, ‘Greater 

Bustard’ and ‘Avutarda Kori’, in academic search engines (Scopus, Google Scholar, 

Web of Science), and also reviewed reference lists of papers mentioning the species. In 

addition, we searched indices of Zoological Record, Recent Ornithological Literature 

(www.nmnh.si.edu/birdnet/rol), the three peer-reviewed African ornithological journals 

(Bulletin of the African Bird Club, Ostrich and Scopus), plus African Journal of 

Ecology, Koedoe and South African Journal of Wildlife Research, the tables of contents 

of Pan African Ornithological Congress proceedings, and newsletters from 

ornithological societies in range states. We reviewed BirdLife International’s online 

monitoring database (www.worldbirds.org), country and subregional bird atlases and, 

where accessible, expedition reports, checklists and project reports (see Appendix 2.1).  

 

Spatial analyses  

 

We adopted a coarse spatial resolution due to imprecise locality data. Where authors did 

not provide coordinates of localities (e.g. ‘near Somerset East, South Africa’: Skead, 

1968), we obtained coordinates of the nearest (≤25 km) settlement or feature from the 

National Geospatial Intelligence Agency 

(www.geonames.nga.mil/ggmagaz/geonames4.asp); localities with location errors much 

greater than 25 km (e.g. ‘seen along Umzimkhulwana River’: Jonsson, 1973) were 

excluded from spatial analyses. National bird atlas data were resolved to the centroid 
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coordinates of occupied sampling units, which varied in resolution from 10 km point 

radii (Uganda) to 120 × 120 km grid-squares (Sudan). The Sudanese atlas provided only 

six occupancy points, while the majority of atlases used 50 × 50 km grid-squares 

(Appendix 2.1), for which the maximal error from centroids is 35 km, comparable to the 

spatial error of assigning imprecise locality records to mapped settlements and features.  

Range-size of each subspecies was estimated as the mapped Extent of 

Occurrence (EOO; area of Minimum Convex Polygon [MCP] formed by outermost 

records) and, within this, the Area of Occupancy (AOO; sensu Gaston & Fuller, 2009) 

was calculated as the 95% density kernel of records (Worton, 1989). The MCPs 

delineate the smallest area containing all sight records, whilst meeting the constraint 

that none of the polygon’s internal angles exceed 180° (IUCN, 2001). Kernel estimators 

are three-dimensional probability density functions, whose shape is determined by the 

number of individual records at a given locality (Worton, 1989); the shape and 

probability density function can then be utilised to infer which region within the areal 

extent from where records were derived supports a given probability (such as 95%) of 

the range extent. Kernel analysis was conducted assuming bivariate normal fixed-

kernels, using Home Range Tools for ArcGIS (version 1.1; Rodgers & Kie, 2010). 

Adaptive-kernels overestimated range-size. Selecting a smoothing factor (Worton, 

1989; Kenward, 2001) by Least Squares Cross-Validation failed, reverting instead to the 

reference smoothing factors href (1.381 and 0.985 for southern and East Africa 

respectively). Therefore, to minimise over-smoothing we followed the ad hoc approach 

of Rodgers & Kie (2010), testing values from 0.2 to 1.6 times href, in increments of 0.05, 

and accepted the minimal value for which the outer 95% kernel contour remained 

continuous and uninterrupted. This provided smoothing factors of 1.036 (i.e. 0.75*href) 

and 0.985 (i.e. href) for the southern and East African subspecies respectively. The 

resolution of the largest atlas grid-squares was 2500 km
2
 for southern Africa 

(Botswana), but 14,400 km
2
 for East Africa (Sudan; Appendix 2.1); range extents were 

therefore rounded to a resolution of 10,000 km
2
, to make measures of range change for 

the two regions comparable.  

 We chose 1970 as the date before and after which to compare range-size and 

abundance trends, because bird atlases for some countries are based on records collected 

from 1970 onwards, although other atlases date from the 1980s and 1990s (Appendix 

2.1). We computed the maximum recorded (1863–2009) and recent (post-1970) EOO 

separately for each subspecies. The difference in overall EOO between these periods 
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was taken as a crude measure of range change, following Burgman & Fox (2003); the 

Red Listing criteria also use changes in EOO to infer trends in range size (IUCN, 2001).  

To investigate potential range contractions while controlling for both temporal 

and spatial survey effort, we tested whether the proportion of historical records outside 

the recent AOO was greater than expected by chance. The null hypothesis that no more 

than 5% of historical (pre-1970) records lie outside the recent 95% density kernel 

(buffered by 85 km, the maximal location error from the coarsest atlas grid-squares: 120 

× 120 km) was examined using a one-tailed χ
2
 Goodness-of-Fit test. We first assessed 

the validity of each historical record located outside the recent 95% range kernel 

estimate, by consulting in-country experts and reviewing the strength of evidence for 

purported records. We recognise that, given sparse historical records (<100) and thus 

limited statistical power, this is a conservative test of range contraction. 

We used ArcGIS version 9.3 for geospatial analysis and SPSS version 16.0 for 

statistical analysis. Data are presented as mean ± SD. 

 

Data quality 

 

Despite civil conflicts in some range states, these did not cause any obvious gaps in 

survey effort (Appendix 2.1) with the exception of Angola. We therefore report tests of 

range changes with and without the Angola data. In contrast to southern Africa atlases, 

those from East Africa were not based on systematic surveys of grid-squares (Appendix 

2.1). To assess whether Kori range boundaries derived from these atlases were artefacts 

of incomplete coverage, we inferred observer presence in apparently unoccupied grid-

squares at the Kori range margin by examining records for 10 other conspicuous, widely 

distributed bird species (Appendix 2.2) whose ranges (in Stevenson & Fanshawe, 2004) 

encompass the relevant grid-squares.  

 

Population trends 

 

Qualitative evidence of population trends was obtained by reviewing published material 

and using questionnaires (Appendix 2.3) to collate contemporary in-country expert 

opinion. To infer pre-1970 trends we collated all published statements located during 

the systematic review of Kori records, in which authors made explicit reference to Kori 

numbers, and consistently scored the strength of evidence as: weak; or strong; and the 
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degree of change as: substantial decline; slight decline; no change; slight increase; 

substantial increase; or trend unknown.  

 To assess post-1970 trends, we reviewed published materials reporting 

countrywide Kori numbers. Some materials provided national population estimates, and 

we report these and the applicable time-periods. In-country experts, comprising 

coordinators or editors of national bird atlases, bustard researchers, and active 

ornithologists, were asked to assess (1) national or subnational trends in numbers and 

range, (2) factors that may have caused these trends, (3) quality of data underlying their 

assessments and (4) time-periods over which their estimates apply. This analysis 

excluded Swaziland, where Kori went extinct pre-1970 (Parker, 1994), and Zambia, 

which had only six records (Dowsett, 2009). We aimed to solicit input from at least 

three experts for each range state.  

 

Results  

 

Historical and current distribution  

 

We collated 2248 locality records, 1853 (82%) from published sources and 395 (18%) 

from BirdLife International’s online monitoring database, the latter only populated for 

Botswana (n = 308) and Kenya (n = 87). The 2248 records were combined to provide 

1948 unique records for one locality (or grid-square, for countries with atlases) within 

one calendar year. Of all unique records, 1538 (79%) were from atlases, and more 

records (1354; 70%) were for A. k. kori, largely owing to finer spatial resolution and 

greater geographic coverage in southern Africa atlases. Most records (1851; 95%) were 

post-1970 (Appendix 2.1, Fig. 2.1); however, the systematic review successfully 

collated 97 unique pre-1970 locality records.  

We estimated recent (post-1970) EOO to be 4,060,000 km
2
 (southern Africa 

2,680,000 km
2
; East Africa 1,380,000 km

2
). The AOO enclosed by the 95% kernel was 

estimated at 3,420,000 km
2 

(southern Africa 2,230,000 km
2
; East Africa 1,190,000 

km
2
). The historical EOO, omitting localities 1–3 in Fig. 2.2a which had insufficient 

supporting evidence (Table 2.1) and were therefore excluded from subsequent analysis, 

was estimated at 4,652,000 km
2
 (southern Africa 2,900,000 km

2
; East Africa 1,752,000 

km
2
). 
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Figure 2.1. Cumulative total of Kori Bustard Ardeotis kori unique locality records 

(sightings, museum collections, hunting records and atlases) collated from published 

literature, in relation to year (1863 to 2009). Data post-1970 include as unique locality 

points the centres of all occupied grid-squares from country bird atlas projects and 

reflect atlas publication dates rather than sighting dates. Country-specific data sources, 

sample sizes, spatial resolution and time-periods for atlas data are provided in Appendix 

2.1. 
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Figure 2.2. Kori Bustard Ardeotis kori distribution in (a) East Africa and (b) southern Africa from collated sightings, hunting and museum 

records and atlas data.  pre-1970; × post-1970 (atlas and other records). Atlas records are the coordinates of centres of all occupied grid-

squares in atlases listed in Appendix 2.1. Geographic range boundaries are represented as the minimum convex polygon enclosing all 

confirmed sightings spanning the years 1863–2009 ( ) or only post-1970 data ( ) and 95% kernel density estimate (bivariate normal 

fixed kernels, smoothing factor h = 1.036 and 0.985 for southern and East Africa respectively) for post-1970 data ( .). Numbered 

localities are all pre-1970 point localities falling outside the subspecies-specific 95% kernels and are detailed in Table 2.1; East African 

localities 1–3 are excluded from range loss calculations as they are misidentified Kori. Arrows indicate the three localities where range-

extent is limited to one confirmed occupied 50 km-wide grid-square: A, east of Harar (Ethiopia); B, Misraq Shewa Zone of the Oromia 

Region, south of Addis Ababa (Ethiopia); C, Nairobi–Nakuru (Kenya).  
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Since the 1860s, A. k. struthiunculus has been recorded in Sudan, Uganda, Tanzania, 

Kenya, Ethiopia and Somalia. Apparent records from central Sudan, Eritrea and 

northern Ethiopia (localities 1–3, Fig. 2.2a, Table 2.1) were probably misidentified 

Arabian Bustard Ardeotis arabs. Based on their 1949 collections in southern Sudan and 

a synthesis of available information, Cave & MacDonald (1950, 1955) described Kori 

as a common resident only in south-east Sudan. Thus Kori were either extirpated in 

central Sudan during 1900–1940s or, more likely, never there, with purported earlier 

records (e.g. Ogilvie-Grant, 1902; Butler, 1905; Lloyd, 1910) confusing the species 

with A. arabs. Meinertzhagen (1954) regarded the two as conspecific, a probably widely 

held view at the time. We found no evidence for ‘accidental’ Kori in Eritrea (Moltoni & 

Ruscone, 1944): thus, at least since the nineteenth century, the species probably never 

occurred there. Similarly, the record in northern Ethiopia lacked supporting evidence 

and was excluded on the basis of likely misidentification (Table 2.1).  

We consider that post-1970 range limits in East Africa were not affected by the 

use of locality records rather than systematic grid-based surveys in atlas compilation, 

because many co-occurring widely distributed and conspicuous species were recorded 

from grid-squares bordering Kori range margins (Appendix 2.2). The recent Kori range-

core largely overlapped the Great Rift Valley, with a narrow elongate and generally 

continuous range; an exception was the subpopulation in south-east Ethiopia (Fig. 2.2a). 

This subpopulation was probably genuinely disjunct from the core population, because 

co-occurring widely distributed species were reported from 9 of the 12 grid-squares 

surrounding it (mean 3 ± 2 SD species; range 0–6 species per 50-km grid-square), and 

its minimum distance to the range-core kernel was approximately 200 km. There were 

at least three localities where the range of A. k. struthiunculus was constrained to a 

single 50 km-wide occupied grid-square (Fig. 2.2a), although there was no evidence 

(except in Kenya: Lewis & Pomeroy, 1989) that these potential bottlenecks were ever 

wider. 

Nominate A. k. kori has been recorded in Angola, Namibia, Botswana, Zambia, 

Zimbabwe, South Africa, Mozambique and, in the 1950s, Swaziland. The low number 

of Angolan records (n = 5) precluded inference of probable historical and current range 

limits in that country, although Dean (2000) suggested that the northernmost recent 

distribution broadly coincided with the boundaries of the arid belt in southern Angola, 

south of 16°S, based on assumed Kori preference for arid and semi-arid grasslands and 

shrublands (e.g. Collar, 1996; Allan & Osborne, 2005). 
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Table 2.1. Historical (pre-1970) Kori Bustard Ardeotis kori locality records outside the 95% kernel of recent (post-1970) geographic range. 

Mapped location of these numbered extralimital records are shown in relation to the kernels in Fig. 2.2a, b. * reliable records falling outside 

the 85 km-buffered kernels; † rejected records; EOO Extent of Occurrence. 

 

Subspecies Record Year Locality name  Source Record reliability and relevance 

A. k. 

struthiunculus 

1
†
 1901 Renk, Sudan  Ogilvie-Grant, 

1902 

Specimen at the British Natural History Museum is in fact a misidentified 

Ardeotis arabs (G. Nikolaus pers. comm.). 

2
†
 Undated, 

pre-1944 

Mendefera, 

Eritrea  

Moltoni & 

Ruscone 

(1944) 

Probably misidentified A. arabs given no other A. kori record from Eritrea; 

excluded from analysis. 

3
†
 Undated, 

pre-1944 

Amba Ghermie, 

Ethiopia  

Moltoni & 

Ruscone 

(1944) 

Lacks supporting details (Ash & Atkins, 2009); excluded from analysis, 

more than 300 km from northernmost confirmed records; probably a 

misidentified A. arabs. 

4 Undated, 

pre-1944 

Wobok, Ethiopia  Moltoni & 

Ruscone 

(1944) 

Occupied atlas grid-square (Ash & Atkins, 2009). Lacks supporting 

details, but less than 25 km from northernmost confirmed records; 

included in analysis. 

5 January 

1949 

Acholi-Lango 

border, Uganda 

Carswell et al., 

(2005)  

Record accepted by Carswell et al. (2005). Very probably genuine, 

especially in light of A. kori ‘common in north-eastern Uganda, on areas 

less than 2000 m above sea level’ (van Someren, 1933). 

6* Undated, 

pre-1938 

Ankole, Uganda Jackson 

(1938); 

Carswell et al., 

(2005) 

No primary source; hunting report to Jackson (1938). Area ‘well grassed’ 

(Friedmann & Loveridge, 1937), typical of presumed A. kori habitat 

(Collar, 1996). Record less than 100 km from confirmed records in north-

west Tanzania (Fig. 2.2a). Record accepted here, given there are no other 
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large bustards in the area; may represent extinct Ugandan subpopulation or 

visitors from Tanzania. 

7* Undated, 

pre-1944 

Harar, Somalia Moltoni & 

Ruscone 

(1944) 

No primary source, but given proximity to extant Ethiopian subpopulation, 

record probably genuine but subpopulation now possibly extinct.  

8* Undated, 

pre-1944 

Giumbo, Somalia Moltoni & 

Ruscone 

(1944) 

Accepted records in Ash & Miskell (1998); no reports from area since 

1950s. 

9* Undated, 

pre-1944 

Chisimaio plains, 

Somalia 

Moltoni & 

Ruscone 

(1944) 

Accepted records in Ash & Miskell (1998); no reports from area since 

1950s. 

10* 1921 Mlenga, Tanzania Friedmann & 

Loveridge 

(1937) 

Reported by A. Loveridge who in 1920s collected many Kori specimens 

for Museum of Comparative Zoology, Boston, USA, thus improbably 

misidentified. No recent records from area (Baker et al., in prep.); 

probably a genuine range contraction. 

Subspecies Record Year Locality name  Source Record legitimacy and relevance. 

A. k. kori 1* 1860s Humbe, Angola Traylor (1963) Specimen collected by Bocage in 1860s; present status unclear (Dean, 

2000) 

2* Pre-1960s Mulondo, Angola Dean (2000) Genuine record (Dean, 2000). Pinto’s 1960 report misspelt as Mulundo, 

outside predicted Angolan range (R. Dean pers. comm.); present status 

unclear (Dean, 2000). 

3 1943 Orangemund, 

Namibia 

Plowes (1943) Enclosed within EOO based on post-1970 data; no influence on overall 

range boundary.  
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4 1956–

1959 

Aussenkjer, 

Namibia 

Maclean 

(1960) 

No range decline; less than 20 km from recent records (Harrison et al., 

1997). 

5 1956–

1959 

Viool's Drift, 

Namibia 

Maclean 

(1960) 

Enclosed within EOO based on post-1970 data; no influence on overall 

range boundary. 

6 1954 Calvinia, South 

Africa 

Skead (1955) No range decline; less than 40 km from recent records (Harrison et al., 

1997). 

7 1960s Grahamstown, 

South Africa 

Skead (1967) No range decline; less than 20 km from recent records (Harrison et al., 

1997). 

8 1863 Umgwali 

Reserve, South 

Africa 

Jonsson 

(1973) 

Enclosed within EOO based on post-1970 data, no range decline; less than 

20 km from 1992 records (Colahan, 1993).  

9* 1863 Richmond, South 

Africa 

Jonsson 

(1973) 

Locality less than 20 km from a recent (Harrison et al., 1997) record. 

While Harrison et al. (1997) argue all A. kori records in this region may 

refer to misidentified Denham’s Bustard Neotis denhami, Cyrus & Robson 

(1980), with data collection 1970–1979, included Kori in list of ‘rarer 

species and vagrants’, with a confirmed Pietermaritzburg record (1976). 

This 1976 record results in recent EOO encompassing Richmond, but 

abundance appears drastically reduced relative to 1862–1863, when ‘lots 

of Pou [colloquial for bustard] were shot near Richmond’ (Jonsson, 1973). 

Despite possible confusion with N. denhami, Kori population seem to have 

declined. 

10* 1863 Ifafa, South 

Africa 

Jonsson 

(1973) 

Approximately 60 km from locality 9; status and relevance the same as 

that record. 
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11 Pre-1960 Mafutseni, 

Swaziland 

Parker (1994) R. Girwood and R. Hardin (pers. comm. to Parker, 1994). Occurred more 

widely around this locality, but unrecorded post-1960, including during 

monthly atlas field surveys 1985–1991.  

12 Pre-1960 Hlane Royal 

National Park, 

Swaziland 

Parker (1994) R. Girwood and R. Hardin (pers. comm. to Parker, 1994). Unrecorded 

post-1960, including during monthly atlas field surveys 1985–1991. 
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Kori only marginally extended into Zambia: all six published records, the earliest in 

1997 (Dowsett, 2009), were within 20 km of the northernmost records in Botswana and 

Zimbabwe. The recent Kori range enclosed all of Namibia and Botswana, much of 

western South Africa, but with a noticeable absence in south-east South Africa. 

Elsewhere in South Africa the Kori mainly occupied areas bordering Botswana and 

Zimbabwe and southwards to Kruger National Park. There was a small range projection 

into Mozambique, restricted to areas adjoining Kruger National Park. In Zimbabwe, 

although the range extended as far north as 16°S, there was a gap (ranging 50–150 km; 

Fig. 2.2b) from south-west to north-east along the ‘central plateau’, probably owing to 

birds avoiding this extensively cultivated region (Rockingham-Gill, 1983).  

 

Range-size change 

 

Since the nineteenth century there has been a modest Kori range contraction, notably in 

East Africa within Somalia, Tanzania and Uganda (Fig. 2.2a). Differences between the 

historical and recent EOO suggested 21% and 8% declines in East and southern Africa 

respectively.  

 For the East African subspecies, marginally more reliable historical records 

occurred outside the buffered recent 95% kernel (5/48: localities 6–10, Fig. 2.2a) than 

expected by chance, given the density distribution of recent records (χ
2
 = 2.965, d.f. = 1, 

P = 0.085). These five extralimital historical records were a mean 150 km ± 30 SD 

outside the buffered kernel, and an average 290 km ± 50 SD from the nearest recent 

record.  

This apparent decline is supported by strong qualitative evidence for historical 

range contractions for A. k. struthiunculus. In the early 1920s the species was still 

‘occasionally seen’ in Jubaland (south-westernmost Somali province: Clifford, 1928), 

but was locally extirpated before 1950 (Ash & Miskell, 1998). In Kenya, local 

extinctions occurred east and west of Nairobi, and in the south-east (east of Mt Kenya, 

and along the coast in the Mombasa area), leaving a seemingly disjunct population on 

the lower Tana River (Lewis & Pomeroy, 1989). Elsewhere in East Africa, the isolated 

subpopulations in south-west (Ankole region) and northern Uganda (Acholi region) and 

south-west Tanzania appear to have died out: for example, van Someren (1933) stated 

‘Kori common’ in north-east Uganda, but there are no recent records (Carswell et al., 
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2005). In contrast putative historical records from central Sudan, northern Ethiopia and 

Eritrea lacked support and were discarded prior to considering range contraction. 

For the southern subspecies, the proportion of historical records outside the 

buffered recent 95% kernel (4/49) was similar to that expected by chance (χ
2
 = 1.032, 

d.f. = 1, P = 0.310). Distances between all historical extralimital records and the recent 

buffered kernel boundary were similar to those for extralimital East African records 

(mean 180 km ± 90 SD, t = 0.815, d.f. = 7, P = 0.442), but extralimital historical records 

were located closer to recent records than was the case for East Africa (130 km ± 90 

SD, t = 3.395, d.f. = 7, P = 0.012). This difference was not due to the coarser East 

African atlas grid-squares. Coordinates of the closest recent records were derived from 

atlases where the maximal error from using grid-square centroids was 35 km (n = 4, 

localities 6–9, Fig. 2.2a) or 8 km (n = 1, locality 10) for East Africa, and 18 km for all 

four southern Africa records (localities 1, 2, 9 and 10, Fig. 2.2b, Appendix 2.1). 

Extralimital historical records in East Africa were still located further from recent 

records, even after adjusting proximity measures in southern Africa by the maximum 

difference in grid resolution, by adding 17 km (t = 2.967, d.f. = 7, P = 0.021).  

In southern Africa real range contraction probably occurred only in Swaziland 

and south-east South Africa, based on a lack of post-1970 records from these regions 

(Fig. 2.2b); this is corroborated by the only available qualitative evidence of historical 

large-scale range loss in the subregion (Astley-Maberly, 1937; Parker, 1994; Table 2.2). 

The trend in Mozambique and Angola was unclear. Parker (1999) suggested the 

Mozambique range was always restricted to areas bordering Kruger National Park, 

although the time-period over which this assessment applied was not stated, but 

probably largely post-1970. Of the five Angolan records (three pre-1970, two post-

1970) one pre-1970 record was within the kernel boundary; although four of the five 

records were outside the kernel, this was probably an artefact of the kernel estimator 

properties. Owing to the small sample size, large inter-locality distances and 

remoteness, these records were excluded from the parsimonious kernel that captures 

95% of record density in the smallest possible areal extent. When historical Angolan 

records were excluded from χ
2
-tests, the proportion of extralimital localities (2/47) was 

similar to that expected by chance (χ
2
 = 0.055, d.f. = 1, P = 0.815), providing further 

evidence for minimal large-scale contraction in southern Africa.  
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Table 2.2. Assessment of pre-1970 Kori Bustard Ardeotis kori population trends from published literature. Only publications where authors 

explicitly comment on trends are reported, along with corresponding spatial extent and time-period. Quality of evidence is assessed as 

weak/strong based on the authors’ confidence in ascertaining trends. Degree of purported population change is classed as: ≈ uncertain 

trend; = no evidence for population change; − slight decline; −− substantial decline; + slight increase; ++ substantial increase. None 

reported an increase.  

Spatial extent Time-

period 

Statement on population trend Quality 

of 

evidence 

Inferred 

trend 

Source 

Natal Province, South Africa 1860s ‘Must have been abundant in Natal during early 1860s…based on 

Dobie’s Diary (Hattersley, 1945)’. 

Weak −− Jonsson 

(1973) 

Kroonstad District, Free State 

Province, South Africa 

1870s–

1907  

‘Rarely seen here now, though it was never common’. Strong −− Symonds 

(1907) 

South Africa 1900–

1970 

‘Numbers less than they were a century and more ago but the extent 

of reduction unknown’. 

Weak − Brooke 

(1984) 

Present-day Mashonaland East 

Province, Zimbabwe 

Pre-

1930s 

‘Although fairly plentiful in the Beatrice District in the past, by 

1930 it was seldom seen and likely to go locally extinct in a few 

years’. 

Strong −− Krienke 

(1931) 

Eastwards of Johannesburg up 

to border with Swaziland and 

Mozambique, South Africa 

1920s ‘Even by 1925, when Kruger National Park was established, the 

bird had already lost much of its range in South Africa’s Highveld 

region, mainly due to considerable persecution’. 

Strong −− Astley-

Maberly 

(1937) 

South Africa and Zimbabwe  1940s–

1950 

‘In Southern Africa reported as decreasing at a dangerous rate’.  Weak −− Lynn-Allen 

(1951) 

Swaziland Pre-

1960 

‘Hunted to local extinction prior to 1960, with subsequent bush 

encroachment of its former range making it impossible for re-

Strong −− Parker 

(1994) 
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colonisation’. 

Eastern Cape Province, South 

Africa 

1962–

1967  

‘Status uncertain due to confusion with Stanley’s Bustard Neotis 

denhami and Ludwig’s Bustard Neotis ludwigii. If most 

identifications are correct, kori has considerably weakened in 

status’. 

Weak −− Skead 

(1967) 

Eastern Cape Province, South 

Africa 

1960s ‘Has probably declined in the eastern Cape’. Weak − Clancey 

(1972) 

North of Windhoek, Namibia 1960s ‘Status satisfactory in Northern Namibia, and there is no evidence 

for decline’. 

Weak = Clancey 

(1972) 

Botswana 1960s–

1970 

‘No evidence for decline’, author citing June 1970 pers. comm. 

with R.H.N. Smithers. 

Weak = Clancey 

(1972) 

Zimbabwe 1960s–

1970 

‘Regarded as holding its own’, author citing June 1970 pers. comm. 

with M.P.S. Irwin. 

Weak ≈ Clancey 

(1972) 

Free State Province, South 

Africa 

1960s–

1970s 

‘Present status in province unclear’. Weak ≈ Clancey 

(1972) 

Somalia, Kenya and Tanzania 1940s–

1950 

‘In the wilder parts of Somalia, Northern Frontier Province and 

Turkana in Kenya and in Northern Tanganyika, still very plentiful’. 

Weak ≈ Lynn-Allen 

(1951) 

Ethiopia 1960s–

1970 

‘Formerly fairly common south of Ardeotis arabs range (the two 

almost entirely allopatric) in less arid areas’. 

Strong − Ash (1989) 

Somalia 1960s–

1970 

‘Previously fairly common in open bush country and grassy plains 

of the northwest, south to about 9º-N and east to 46 º-E, but no 

recent records’. 

Strong −− Ash (1989) 
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Population trends 

 

Although quantitative data suitable to examine whether population declines had 

occurred were not available for any range state, reported qualitative trends provided a 

strong indication of subregional and global-level declines in abundance. There was 

strong qualitative evidence from published statements of population declines within 12 

of the 14 range states, both pre- and post-1970 (Tables 2.2, 2.3). Of 16 inferred pre-

1970 trends from published statements, 11 were negative or strongly negative. 

Published subjective abundance indices and qualitative comments on trends together 

suggest that in some countries (e.g. South Africa and Zimbabwe) declines occurred 

from the early 1900s (Table 2.2). 

Published statements suggest Kori population numbers continued to decline 

post-1970 in all six East African and six of the eight southern African range states; 

exceptions were Zambia and Angola (Table 2.3). However all six Zambian records (in 

all but one case singletons) were from 1997–1999 (Dowsett, 2009), so any apparent 

population increase may have been temporary. While only five records were available 

from Angola (Appendix 2.1), expert opinion suggested a larger population still existed 

in the country (W. R. J. Dean & P. Vaz Pinto pers. comm.), although abundance trends 

were unclear (Dean, 2000).  

Twenty-nine responses were obtained from 55 questionnaires sent to in-country 

experts regarding post-1970 population and range-size trends; a 53% response rate. 

Responses spanned all range states, providing one (South Africa, Mozambique, 

Tanzania, Somalia, Sudan), two (Zimbabwe, Uganda), three (Angola, Ethiopia), four 

(Botswana, Kenya) and six (Namibia) respondents respectively. However ten 

respondents (34%), all with more than 20 years’ fieldwork experience in their range 

states, did not comment on likely trends, seven reporting they had infrequently 

encountered Koris or had not noted sightings and thus were unable to judge trends; 

these were excluded from analyses. The remaining 19 survey responses providing 

information on Kori trends were all from fieldworkers with long experience in their 

respective countries (seven 1970s–2009; two 1980s–2009; six 1990s–2009; three 

2000s–2009; one 1974–1981), and all but one were still involved in conservation in-

country. Of these, 12 made national-level assessment (Angola, Namibia, Mozambique, 

Tanzania, Kenya, Uganda, Ethiopia and Somalia), with no disagreement where more 
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than one country-level response was obtained (Angola, Kenya and Ethiopia). Seven 

respondents commented on trends at provincial or site-levels, mostly protected areas 

Appendix 2.4. Responses were subjective in most instances, but in South Africa they 

were supplemented by published data (Tarboton et al., 1987). 

Expert opinion from the 12 range states assessed suggested that post-1970 Kori 

numbers have declined, or are at best unchanged; of the 12 respondents providing 

information on national-level Kori trends, four (33%) reported declines (two substantial, 

respondents themselves suggesting more than 50% decline; two slight), six considered 

trends uncertain, two reported no change and none reported increases. Half were unclear 

if there had been concomitant range-size changes, four suggested range contraction and 

two reported no change.  

Published post-1970 Kori population estimates were available from only three 

range states, all in southern Africa (Table 2.3). However, all population numbers are 

best guesses and none of the sources provided underlying evidence; thus any future 

assessments of population trends against these estimates need to be done with caution. 

 

Discussion  

 

We have demonstrated that changes in abundance and range-size in unmonitored 

widespread species can be systematically evaluated without comparing occupancy 

patterns between atlases (e.g. Gibbons et al., 2007; Robertson et al., 2010) or field 

surveys (e.g. Riou et al., 2011). It was possible to calculate historical and recent Extent 

of Occurrence (EOO), and recent Area of Occupancy (AOO), based on national atlas 

data, incidental records and other published sources. Range boundaries were validated 

by inferring observer coverage from the distribution of co-occurring species. Although 

non-systematic records prior to the period of atlas compilation were sparse, by formally 

testing the distribution of such records against the 95% density kernel of more abundant 

recent records we were able to test whether range contraction had occurred. Systematic 

review of published sources provided strong qualitative evidence of declines in 

abundance, and localised reductions in range. Questionnaire responses provided further 

qualitative evidence of recent trends in abundance. 
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Figure 2.3. Kori Bustard Ardeotis kori population trends in each range state during 

1970–2009, based on published sources and in-country expert opinion.  Strong 

evidence for possible local extinction;  strong qualitative evidence for population 

decline;  population trend unclear;  strong qualitative evidence for population 

increase. None of the range states has quantitative estimates of population decline. 
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Table 2.3. Post-1970 population estimates and trends for Kori Bustard Ardeotis kori, collated from published accounts in each range state. 

 

Subspecies Country Population estimate (year) Population trend (time-period) Source 

Ardeotis k. 

kori 

Angola none unclear (1970s–2000) Dean (2000) 

Botswana none decline (1990–2005) Tyler (2005) 

Mozambique <100
a
 (1999) decline (1970s–1999) Parker (1999) 

Namibia none decline (1990s–2000) T. Osborne & L. Osborne 

(unpublished data) 

South Africa 2000–5000 (2000) decline (1980s–2000) Anderson (2000) 

Swaziland 0 (1994) decline, extinct in 1950s  Parker (1994) 

Zambia none range expansion; slight population 

increase (1997–present) 

Dowsett (2009) 

Zimbabwe 10,700 (1980); 2000 (1989) 

5000 (1990) 

decline (1980s–1990) Rockingham-Gill (1983); 

Mundy (1989); Dale (1990) 

 Subregion  none   

A. k. 

struthiunculus 

Ethiopia none decline (1980s–2009) Ash & Atkins (2009) 

Kenya none decline (1970s–1989) Lewis & Pomeroy (1989) 

Somalia none decline (1970s–1998) Ash & Miskell (1998) 

Sudan none decline(1976–1989) Nikolaus (1987) 

Tanzania none decline (1970s–present) Baker et al. Tanzania Bird 

Atlas (in prep.)  

Uganda none decline, possibly locally extinct in 1970s
 b
 Carswell et al. (2005) 

 Subregion none   

 Entire range none   

 

a 
This estimate is for southern Mozambique, south of the Save River. Kori have only been reported from this region, thus this estimate is 

effectively a country estimate.  

b 
However, there are recent (post-2000) reports from Kidepo National Park in north-east Uganda along the border with Sudan (H. 

Kemigisha & A. Byaruhanga pers. comm.) 
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Trends in Kori population and range size 

 

Our analysis indicates the importance of data-screening and quality control as critical 

steps in evidence-based status assessment, particularly for widespread low-density 

species whose ranges straddle multiple countries. Verification of locality records 

revealed some misleading historical records from central Sudan, Eritrea and northern 

Ethiopia which inflated the true historical range of A. k. struthiunculus.  

Although Kori populations declined greatly in both subregions during the period 

1863–2009, overall range sizes (measured as EOO) did not, being moderately reduced 

in East Africa and largely unchanged in southern Africa. At the species scale, range 

contraction was 13% over more than 100 years, based on contrasts of pre- and post-

1970 EOO. However, the continued contemporary occupation of the atlas-based range 

is difficult to gauge, owing to (1) the use of 1970s–80s data in post-1990 atlases and (2) 

sparse data since some earlier atlases (e.g. no information on Sudanese Kori post-1989). 

Our analysis was, therefore, unable to examine whether more recent range contractions 

may have also occurred. However, further range contraction is highly unlikely to have 

exceeded 30% (the weakest Red List threshold: IUCN, 2001) over the period 1965–

2010 (approximately three generations for Ardeotis bustards: S. H. M. Butchart pers. 

comm.), given both the strong spatial similarity of post-1990 atlas records to records 

from the 1960s and 1970s and qualitative evidence from survey respondents suggesting 

no dramatic post-1980 distributional change. Consequently, solely on the basis of range 

contraction, the Kori’s current listing as Least Concern (BirdLife International, 2008) is 

not inappropriate. Nevertheless, there is extensive qualitative evidence for a 

considerable overall population decline and profound change in the internal 

characteristics of the Kori’s range, which has been ongoing since the 1900s. It is a 

source of substantial unease that this has occurred without being registered as a 

significant issue for the conservation of the species.  

The causes of overall population declines and range losses in south-east South 

Africa, south-west Somalia, south-west Tanzania as well as south-west and northern 

Uganda are unknown. Hypothesised factors include persecution (Astley-Maberly, 1937; 

Porter, 1949; Herremans, 1998) and perceived impacts of rangeland degradation and 

shrub encroachment largely driven by livestock (Collar, 1996; Ash & Miskell, 1998; 

Herremans, 1998). However, these have not been investigated in any range states. Thus, 
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in Chapter 3, I test the relative importance of bushmeat hunting (indexed as proximity to 

human settlement) and cattle-driven impacts (indexed as proximity to a livestock-

watering borehole) in influencing the abundance or incidence of Kori Bustards and 20 

other large-bodied vertebrates in the Kalahari, Botswana. 

The apparent discrepancy in severity of range loss between the eastern and 

southern subspecies, as measured by historical and recent EOOs, is not an artefact of 

coarser atlas grid-square resolution in East Africa. Range loss was most distinct in 

south-west and northern Uganda, south-west Somalia and western Tanzania, where 

seemingly isolated subpopulations were extirpated. All East African extralimital 

historical records outside the current AOO were obtained either from national parks that 

remain popular with visitors, or within 50 km of settled areas, so recent Kori absence 

from these localities is unlikely to be attributable to lack of observation effort.  

 

Influence of spatio-temporal sampling effort and data resolution  

 

It is important to examine how robust the methodology was to different levels of search 

effort, sampling bias and spatial scale. Our approach overcame several statistical issues 

resulting from uneven spatial and temporal sampling effort within and across range 

states, which may otherwise compromise the analysis of occurrence records collated 

through search strategies of the type used in this study.  

First, there was more sampling effort for Kori in protected than unprotected 

areas. At site level, this bias was reduced by subsuming all records within one calendar 

year into a single entry. At national level, where atlas data are available, grid-squares 

cover the whole country, and the 95% kernel was largely based on these extensive 

datasets. In countries without geo-referenced atlases (Angola and Zambia), fewer than 

10 records were collated, so any bias towards protected areas was unlikely to influence 

subregional range estimates significantly.  

Second, animal detectability and observer-favoured sampling sites vary with 

vegetation type and accessibility, increasing the potential for under-reporting in more 

wooded or harder-to-reach areas. However, the coarse spatial scale of analysis reduced 

finer-scale errors resulting from preferential sampling along roads or habitats offering 

better visibility.  
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Third, there were differences in sampling effort between the two time-periods, 

because effort increased greatly with time throughout the range (Fig. 2.1). However, the 

χ
2
-test of the extent of pre- compared to post-1970 ranges used to evaluate evidence of 

range decline was robust, though conservative. Although the long time-periods used 

here compromised temporal resolution, they ensured that the recent range boundaries, 

against which decline was measured, were delineated based on the best available data. 

Our results are robust largely because kernel estimators are not sensitive to (1) different 

in-country sample sizes (robust if more than 30 data points are used), (2) range size or 

shape, and (3) the spatial resolution of input data (Kenward, 2001). Our use of kernel 

estimators is an improvement over methods based solely on minimum convex polygons, 

whose estimates can be largely biased by sample size and range shape (Burgman & Fox, 

2003). However, sparse historical records (48 and 49 records for the East and southern 

subspecies respectively) meant that the test of whether more occurred outside the recent 

AOO than expected by chance had limited statistical power and was therefore highly 

conservative. 

Fourth, however, at local scales our 95% kernels probably overestimated true 

recent AOO owing to the coarse spatial resolution used so that any increased perforation 

of continuously occupied range could not be detected. Moreover, our estimates of 

distributional limits and buffers around kernels are conservative and possibly underplay 

range contractions; for example, although the recent range limits in southern Africa are 

fairly robust, being based on extensive and systematic atlasing (e.g. Harrison et al., 

1997; Parker 1999), we still buffered them by 85 km, equivalent to nearly two or more 

than three of some of the subregion’s atlas grid-squares (Appendix 2.1). Similarly, we 

rounded range estimates to 10,000 km
2
 based on the coarsest atlas resolution (Sudan), 

although that country contributed only six occupancy records, and most countries had 

atlases with resolutions smaller than half that of the Sudanese atlas (Appendix 2.1).  

We acknowledge that demonstrating long-term Kori decline required an 

extensive exercise in data-gathering and analysis. Such work is greatly intensified if 

different in-country experts are sought to validate records from range states or provide 

trend evidence for different subpopulations. Using only expert-interviews would reduce 

effort required to complete assessments, but such appraisals remain possible only for a 

few species, particularly those not prone to misidentifications in the field or subject to 

recent taxonomic revisions (e.g. Turvey et al., 2010; Ogada & Buij, 2011), and where 

the number of experts is not likely to be limited. Moreover, for species with ranges as 
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large as the Kori’s, expert-interviews alone cannot be used for range-wide quantitative 

assessments that permit fine-scale spatial analysis because the assumption that 

informants continuously ‘surveyed’ wildlife at multiple fine-scale localities throughout 

the geographic extent and the period of interest would less probably be met. 

 

Conservation implications  

 

Widespread low-density species may experience steady, pervasive and virtually 

undetected declines in abundance without showing obvious commensurate range 

collapse (Rodríguez, 2002; Turvey et al., 2010). There is, therefore, a compelling need 

to develop methods for objective range-wide status assessments of such species. While 

an important long-term goal is to build capacity for systematic monitoring based on 

repeat survey or atlas work (e.g. Telfer et al., 2002; Pollock, 2006), the conservation 

value of shorter-term assessments in the absence of such information is obvious. It is 

not appropriate to use studies that have only measured local abundance or relations 

between habitat and density to extrapolate range-wide (e.g. Tobias & Brightsmith, 

2007) or even country-wide (e.g. Gros, 2002) population size or patterns of population 

trend or abundance. Problems with such approaches include variation in wildlife-habitat 

association (Whittingham et al., 2005), for example arising from patchily distributed 

conservation effort (Gray et al., 2009). Consequently, ecologists in developing countries 

may need to assess range-wide conservation status using incidental rather than 

systematic distributional or census data from localised scales. Within the caveats 

discussed our methodology may be especially valuable for key indicator species, and its 

transferability (for instance to flocking rather than solitary species such as Kori), needs 

to be investigated. 
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Appendix 2.1 

Number, source and period (pre or post-1970) of Kori Bustard Ardeotis kori unique locality records (sightings, museum collections, 

hunting records and occupied atlas grid-squares) collated from published literature for each range state, and atlas characteristics. 

 

Subspecies Country  No. locality records 
a
 Atlas characteristics Main non-

atlas sources   Atlas Non-atlas
 b
 Temporal resolution Spatial resolution 

(km) 

Source 
c 
 

   Pre-

1970 

Post-

1970 

Ardeotis kori 

kori 

Angola - 3 2 - - - 10 

Botswana 122 7 68 Monthly surveys, 1989–1995 50 × 50  1 11, 12 

Mozambique - - 5 Monthly surveys, 15 of 1778 checklists 

from 1980–94, otherwise 1994–98 

50 × 50  2 13, 14 

Namibia 415 14 5 Monthly surveys, 1989–95 25 × 25  1 15, 16, 17 

South Africa 438 22 56 Monthly surveys, 1989–95 25 × 25  1 17, 18, 19, 

20, 21, 22 

Swaziland 2 - - Monthly surveys, 1985–91  12.5 × 12.5  3 none 

Zimbabwe 120 3 67 Monthly surveys, 1989–95 25 × 25  1 23, 24 

Zambia - - 6 opportunistic data 1997–2008 - - 25 

Total 1097 49 209     

A. k. 

struthiunculus 

Ethiopia 54 16 2 >70% data from 1969–77, opportunistic 50 × 50  4 26 

Kenya 84 14 89 Mostly 1970–84 opportunistic data 50 × 50  5 12, 27, 28 

Somalia 12 7 1 >70% data from 1978–81, opportunistic 

data 

50 × 50  6 27, 28 

Sudan 5 1 - Continuous 1976–84 field surveys by 

author 

120 × 120  7 27, 28 

Tanzania 283 10 12 mid-1990s–2009, opportunistic 12.5 × 12.5  8 27, 28 

Uganda 3 - - 1800s–1990 published literature, post-

1990 opportunistic sight records 

1–10 km diameter 

point data 

9 27, 28 

Total: 441 48 104     
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a
 Each record is a unique locality; comprising either all records at one site within one calendar year subsumed into a single entry, or the 

centre of an occupied atlas grid-square. South Africa had two post-1970 atlases: Brooke (1984, data collected 1970s–84) and Harrison et al. 

(1997; records from 1989–95), and a further 65 collated incidental records (spanning 1970–93); although 9 of these 65 records may also 

have been included in the atlases (six from 1970–81; three from 1992–93), thus n = 56 for ‘post-1970 non-atlas’ refers to occupied grids in 

Brooke (1984). South African records collected post-1995 (mostly as part of an ongoing atlasing project, www.sabap2.adu.org.za) are not 

included in our database. 

b
 Large non-atlas sample sizes are available in some states due to more than one sighting report from the same locality over subsequent 

years (in www.worldbirds.org: Kenya and Botswana), summary of earlier atlas (South Africa: Brooke [1984]) or previous collation of A. 

kori records (Zimbabwe: Rockingham-Gill [1983]). Swaziland (n = 2) and Uganda (n = 3) records are reported in respective country 

atlases, but are pre-1970 records; our analysis includes them within the pre-1970 dataset. 

c
 Sources: 1, Harrison et al. (1997); 2, Parker (1999); 3, Parker (1994); 4, Ash & Atkins (2009); 5, Lewis & Pomeroy (1989); 6, Ash & 

Miskell (1998); 7, Nikolaus (1987); 8, Barker (in prep.); 9, Carswell et al. (2005); 10, Dean (2000); 11, Babbler; 12, www.worldbirds.org; 

13, Clancey (1971); 14, Clancey (1996); 15, Madoqua; 16, Lanioturdus; 17, Ostrich; 18, Brooke (1984); 19, Bokmakierie; 20, Mirafra; 21, 

Laniarius; 22, Promerops; 23, Rockingham-Gill (1983); 24, Honeyguide; 25, Dowsett et al. (2008); 26, Walia; 27, Scopus; 28, East 

African Natural History Bulletin. 
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Appendix 2.2.  

 

Data quality – museum records, conflicts and East African atlases 

 

Historical records commonly derive from museum specimens and narratives of hunting 

expeditions. All range states except Ethiopia are former colonies of only four European 

countries: Britain, Germany, Portugal and Italy, although colonial period differed. 

Degree of interest in natural history and thus data-collecting effort differed among 

colonial powers, being greatest in British and German colonies respectively, although 

these were spread widely across the continent. Collecting in-country is likely to have 

been biased towards more accessible areas, but resulting error was minimised by 

adopting a coarse-scale analysis. 

Civil conflict and unrest restricted data collection during discrete periods in 

some range states: Sudan (1955–72, 1983–2005, Darfur 2003–10), Ethiopia (1974–91), 

Angola (1975–2002), Mozambique (1977–92), Uganda (1981–86) and Somalia (1991–

present). Thus pre-1970 conflicts may contribute to under-estimation of the historical 

range in Sudan only, although this is not likely to be significant: Cave & MacDonald 

(1950, 1955) suggested a Kori range restricted to south-east Sudan, overlapping the 

contemporary range. In contrast, post-1970 conflicts could potentially have affected 

many contemporary range estimates. However, range states with post-1970 conflicts 

were generally still open to atlas data collection either because the conflict was short 

relative to atlas data periods (Uganda; five-year war, atlas data spans late 1800s–1990s: 

Carswell et al., 2005); or because most data were collected prior to (Ethiopia, Ash & 

Atkins, 2009; Somalia, Ash & Miskell, 1998) or after (Sudan: Nikolaus, 1987; 

Mozambique: Parker, 1999) conflicts, again ameliorated by long atlas data collection 

periods (Appendix 2.1, Fig. 2.1). In contrast, prolonged conflict in Angola precluded 

fieldwork and χ
2
-tests of range changes with and without the Angola data are therefore 

presented.  

 To test the extent to which the Kori range boundaries in East Africa could be 

influenced by incomplete atlas survey coverage, for apparently unoccupied grid-squares 

that border occupied squares at the range margins, we quantified atlas-derived 

occupancy of ten conspicuous and widely-distributed species: Common Ostrich Struthio 

camelus, Bateleur Terathopius ecaudatus, Black-shouldered Kite Elanus caeruleus, 



Chapter Two: Assessing conservation status change in an unmonitored widespread African bird species 

79 

 

Secretarybird Sagittarius serpentarius, White-backed Vulture Gyps africanus, Helmeted 

Guineafowl Numida meleagris, Crested Francolin Francolinus sephaena, Black-bellied 

Bustard Lissotis melanogaster, Little Bee-eater Merops pusillus and Lilac-breasted 

Roller Coracias caudatus. All co-occur with Kori in semi-arid scrub and savanna 

habitats (pers. obs.) and have a potential range encompassing the relevant grid-squares 

(Stevenson & Fanshawe, 2004).  

Kori range boundaries defined by East African atlases are unlikely to be 

artefacts of incomplete survey coverage, because most of the co-occurring widely-

distributed and conspicuous species were recorded from grid-squares bordering the 

outermost Kori-occupied grid-squares. In Sudan a mean 6 ± 4 SD (range 2–9) of the 

widely-distributed species were recorded in all four grid-squares adjoining the five 

Kori-occupied grid-squares. In Ethiopia widely-distributed species were recorded in 56 

of 83 grid-squares around the 54 Kori-occupied grid-squares (mean 3 ± 3 SD species 

per grid-square, range 0–8). In Kenya widely-distributed species were recorded in 61 of 

73 grid-squares adjoining 84 grid-squares occupied by Kori at the species range margin 

(mean 4 ± 3 SD, range 0–8), and the only region for which Kori range limit remained 

uncertain was bounded by 0°30'–1°30'N and eastwards of 40°E towards the Somalia 

border, an area approximately 15,000 km
2
 (six 50-km grid-squares). No records for any 

Kenyan bird species were received from this area during atlas data collection (Lewis & 

Pomeroy, 1989). However, Bateleur and White-backed Vulture were recorded in 

adjoining areas in Somalia (Ash & Miskell, 1998). Therefore, because Kori was not 

recorded along the Somali border, the species’ range limits in Kenya and Somalia are 

probably disjunct, and at worst its easternmost range limit in Kenya lay in the six 50-km 

grid-squares eastwards of our range boundary estimate, but within the Kenyan border. 

This area (15,000 km
2
) is approximately 1.26% of the overall East African AOO 

estimate, thus the potential maximum error in estimating the true boundary in this part 

of the range is negligible.   

 Somalia had a total of 14 Kori-occupied grid-squares; Ash & Miskell (1998) 

show an additional two historically (pre-1970) occupied grid-squares in the south-west 

(Fig. 2.2a). The 14 grids were surrounded by a total of 20 adjoining grid-squares, nine 

surrounding the pre-1970 records in the south-west and 11 surrounding the north-west 

subpopulation. Widely-distributed species were reported from 8 of 9 grid-squares 

surrounding the south-west subpopulation (mean 4 ± 3 SD, range 0–8), and because 

Kori have not been reported in this region post-1970, that subpopulation is likely to be 
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genuinely extirpated. Widely-distributed species were not reported from six grid-

squares surrounding the north-west range limit, although the widely-distributed species 

were recorded in grid-squares 100 km east of the 46°E limit suggested by the atlas data. 

The other gaps around Kori-occupied grid-squares were also bounded by grid-squares 

occupied by widely-distributed species, 50 km away (grid-square resolution = 50 km). 

Consequently our contemporary Kori range boundary estimate in north-west Somalia 

may at worst have been underestimated by approximately 7500 km
2
, about 0.63% of the 

estimated East Africa AOO.  

In Tanzania, maps for most of the widely-distributed species were still 

incomplete (Baker et al., in prep.), but where these were available (Secretarybird, 

Ostrich and Black-shouldered Kite) these species were recorded around the Kori range 

boundary west of Lake Victoria and eastwards of Serengeti National Park, suggesting 

depicted western and eastern Kori range limits were genuine. No widely-distributed 

species was recorded south-west of the Kori range in the Serengeti. While data on Kori 

historical range was incomplete, at least post-1950 it was unlikely to have extended into 

central Tanzania (south of Shinyanga Province: Reynolds, 1968). Kori were never 

recorded around Tabora: Reynolds (1968) traversed much of the region during 1959–

1966 and recorded no Koris. Thus the contemporary southernmost range limits were 

most likely genuine. 

 

Additional references 

Reynolds, J.F. (1968). Notes on the birds observed in the vicinity of Tabora, Tanzania, 

with special reference to breeding data. Journal of the East Africa Natural History 

Society and National Museum 27, 117–139. 
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Appendix 2.3.  
Questionnaire sent to in-country experts to solicit opinions on trends in Kori Bustard 

population numbers and geographic range. 

 
As part of a PhD study on Kori Bustard Ardeotis kori, supervised by Dr. Nigel Collar (BirdLife 

International) and Dr. Paul Dolman & Dr. Iain Lake (University of East Anglia), I would like to seek your 

assistance. I aim to assess the conservation status of wild Kori across all range states. I have reviewed 

existing distributional data, including sighting localities, peer-reviewed literature, and other documentary 

sources, to assess whether there is any evidence of range contraction, or fragmentation. However, there is 

scant published material by which to assess population trends. To assist in this, we seek your opinion. We 

appreciate very few quantitative data are likely available, but pooling expert opinion from across the 

bird’s range should enable us gain a clearer idea of the bird’s likely population trends in the recent past 

(1970–2009). The survey should take less than 10 minutes to complete. Thank you for your support.  

 

Mr. Kabelo Senyatso (School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, 

UK. Please email questionnaire/questions, to k.senyatso@uea.ac.uk; or post to abovementioned address.   

 

1. Respondent’s name  

2. Email contact  

3. Country to which assessment applies  

 

4. Are you commenting on status throughout 

country?  

 

If no, please list Districts/Provinces to which your assessments apply 

  

  

  

5. Which time-period(s) does your assessment refer to?  

 1970–

2009 

 1980–

2009 

 1990–

2009 

 2000–

2009 

 Other  to  

Month/Year Month/Year 

6. Kori Bustard population trend over time-period? (if this is different among districts 

please provide details under no. 10) 

 Large decrease  No change  Large increase 

 Small decrease  Small increase  Unclear 

 

7. Has the population trend been accompanied by any change in geographic range? 

 Range 

contraction 

 Range 

perforation 

 No 

noticeable 

change 

 Range 

increase 

 Unclear 

 

8. In your view, what factors explain the population trends and range patterns? 

 

9. Data quality 

 Personal 

experience 

 View of long-term 

residents 

 Published data (please cite in 

no. 10) 

10. Any other comments, including names of other experts you recommend I contact? 

 

 

 Yes  No 
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Appendix 2.4 

Summary data of responses to questionnaire sent to in-country experts to solicit opinions on post-1970 population trends. 

Country 
a
 No. of 

questionnaires 

sent out 

No. of positive 

responses 

Main characteristics of assessment (from positive responses) 

Countrywide 

assessment 

Sub-national 

assessment 

Unable to comment 

on trends 

Angola 3 3 3 0 0 

Botswana 9 4 0 3 1 

Mozambique 2 1 1 0 0 

Namibia 8 5 1 1 3 

South Africa 4 1 0 1 0 

Zimbabwe 5 2 0 0 2 

Southern Africa sub-total 31 16 5 5 6 

Ethiopia 4 3 2 1 0 

Kenya 9 4 2 1 1 

Somalia 3 1 1 0 0 

Sudan 2 1 0 0 1 

Tanzania 3 2 1 0 1 

Uganda 3 2 1 0 1 

East Africa sub-total 24 13 7 2 4 

 

a
 Swaziland and Zambia excluded because Kori is known to have gone locally extinct in Swaziland in pre-1970 (Parker, 1994), while 

for Zambia, the species has been recorded only six times (Dowsett, 2009) and thus inference of population trends is not possible.  
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Abstract 

 

Wildlife Management Areas (WMAs) are promoted to achieve positive outcomes for 

both livelihoods and conservation in southern Africa, primarily through ecotourism and 

trophy hunting. However, the response of different functional groups of vertebrates to 

WMAs and whether WMAs abate livestock-driven impacts and illegal hunting 

(presumed key threats to wildlife in these landscapes), are poorly understood. Using 

data from 103 independent driven transects totalling 4030 km and spanning eight 

protected areas (PAs; area 64,000 km
2
), 15 WMAs (72,000 km

2
)
 
and intervening 

unprotected areas (114,000 km
2
) in Botswana’s Kalahari ecoregion, this study examined 

the relative abundance among land-uses of seven vertebrate functional groups, 

comprising 21 species of medium- and large-bodied mammals and birds. WMAs 

enhanced the abundance of most functional groups, relative to unprotected areas, and 

appeared adequate to conserve medium-sized ungulates. In contrast, although less 

effective than comparable South African PAs, Kalahari PAs are crucial for conserving 

large-bodied ungulates. Abundance of large-bodied grazers, medium-bodied browsers, 

carnivores and raptors was greater in WMAs than in unprotected areas, with encounter 

rates in WMAs similar to (large-bodied grazers, medium-bodied browsers, carnivores), 

greater than (pale chanting goshawk), or lower than (large ground birds) those found in 

PAs. However, gemsbok (the largest legally huntable ungulate) had encounter rates 

within WMAs almost as low as in unprotected areas; contradicting a key tenet of the 

WMA model, that species generating the most revenue for local communities should be 

directly or preferentially conserved. Furthermore, scarcer species for which models 

could not be constructed were largely restricted to PAs: they either were not 

encountered in either WMAs or unprotected areas (zebra, eland, giraffe, leopard and 

lion), or were only rarely encountered in WMAs (greater kudu, wildebeest and bat-eared 

fox: PA encounter rates 6–7 times greater than WMAs). In contrast, galliforms 

(predominantly helmeted guineafowl) were most abundant in unprotected areas, and 

least abundant in WMAs. The relative importance of unregulated bushmeat extraction 

(indexed as proximity to human settlement) and cattle impacts (indexed as distance to 

borehole) as mechanisms underlying wildlife responses was examined in Generalised 

Linear Mixed Models that also controlled for habitat characteristics (Normalised 
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Difference Vegetation Index, pan proximity and altitude). Model-averaged parameter 

estimates and selection probabilities obtained by Multi Model Inference showed a 

strong negative effect of hunting (with lower abundance or incidence closer to 

settlements) for medium-bodied browsers, including a specific effect on steenbok, and 

for large ground birds, including specific effects on both black korhaan and red-crested 

korhaan. In contrast, no detrimental direct impacts of cattle were found, with no 

functional groups or species occurring at lower abundance or incidence closer to 

boreholes. WMAs clearly offer tangible benefits to many wildlife species in Botswana, 

greatly expanding and buffering the areal extent of conservation beyond strictly 

protected parks. However, stronger regulation of hunting quotas may further enhance 

these benefits within WMAs, while the largest bodied browsers and grazers appear to be 

severely depleted even within PAs.  
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Introduction 

 

Protected areas (PAs) exist to conserve wildlife (Rodrigues et al., 2004; Gaston et al., 

2008) and can mitigate anthropogenic threats to wildlife and habitats (Bruner et al., 

2001). However, pragmatic and ethical problems caused by excluding communities 

from land and resources, along with other livelihood impacts such as livestock 

depredation or crop damage by wildlife, require the development of alternative models 

(Naughton-Treves et al., 2005). Efforts to engage local communities more fully in 

conservation by directly linking livelihoods to biological resources are increasingly 

common, with increased emphasis on co-management, empowerment and participatory 

approaches (Salafsky & Wollenberg, 2000; Naughton-Treves et al., 2005). Recent 

global conservation area network expansion has primarily been through areas allowing 

consumptive use, not strictly protected categories (Naughton-Treves et al., 2005), but 

the extent to which these approaches actually conserve biodiversity remains largely 

uninvestigated (Ferraro & Pattanayak, 2006; Gaston et al., 2008). Unregulated 

bushmeat harvest is emerging as one of the most serious threats to the viability of 

wildlife populations, both inside and outside conservation areas (Fa et al., 2002, 2005; 

Milner-Gulland & Bennett, 2003), so it is crucial to examine whether wildlife 

exploitation is mitigated by livelihood-based approaches to conservation in human-

occupied areas. 

In southern Africa, primarily in Botswana, Namibia, Zambia and Zimbabwe, 

community-based conservation has been attempted through Wildlife Management Areas 

(WMAs) based on trophy hunting and ecotourism (Du Toit, 2002; Child & Barnes, 

2010; Naidoo et al., 2011). WMAs have increased communities’ wildlife-based income 

particularly when profit margins are large, for example where high-value species such 

as African elephant (Loxodonta africana) are included in hunting quotas (Taylor, 2009; 

Naidoo et al., 2011). However, the degree to which WMAs mitigate threats to wildlife 

and the mechanisms by which this may occur are unknown. If WMAs promote 

conservation by strengthening the link between wildlife resources and livelihoods, 

giving incentives to curb illegal hunting, then species on which livelihood activities are 

directly based should be maintained following WMA designation. However, this 

predicates that communities’ interests are best served by the conservation approach 

(with even marginalised sectors perceiving it as in their own interest to desist from 
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illegal hunting), that viable institutions exist or can be created, that benefit-sharing 

mechanisms are transparent and that wildlife utilisation is based on appropriate 

biological assessments (Du Toit, 2002; Child & Barnes, 2010).  

If WMAs also permit other livelihoods incompatible with or providing little 

incentive for conservation, then this could undermine WMAs’ ecological aims. Notably 

livestock-rearing is allowed in WMAs, typically within specified buffers, despite 

postulations that livestock may compromise wildlife conservation in African savannas 

(du Toit & Cumming, 1999; Ogutu et al., 2005). Although differing wildlife 

abundances between PAs and unprotected areas have been interpreted as evidence of 

livestock impacts (Ogutu et al., 2005; Rannestad et al., 2006), these contrasts are 

confounded by other anthropogenic impacts such as bushmeat harvest. Relationships 

between cattle stocking rates and wildlife densities have never been investigated. 

Notwithstanding, several mechanisms have been proposed by which cattle may impact 

wildlife, including competition for forage or water (Sitters et al., 2009; Hibert et al., 

2010) and indirect impacts through cattle-induced bush encroachment (du Toit & 

Cumming, 1999). At localised scales cattle can reduce grass forage and increase bush 

encroachment (Skarpe, 1990; Perkins, 1996; Roques et al., 2001), but it is unclear 

whether such effects are detrimental to large-scale wildlife conservation.  

The aims of this study were threefold: first, to investigate the conservation 

effectiveness of WMAs relative to that of PAs and unprotected pastoral savanna 

landscapes in a large-scale intensively replicated study and to examine the response of 

differing functional groups (wildlife of similar diet and body size) and individual 

species of diurnal vertebrates to designation; second, to use the opportunity provided by 

replicated WMAs, PAs and unprotected areas to test the responses of wildlife to varying 

intensities of cattle and other anthropogenic impacts, particularly unregulated (and 

illegal) hunting; and third, to qualitatively contrast Kalahari PAs to previously sampled 

South African PAs, to enable us to place any differences in effectiveness between 

Kalahari PAs and WMAs in a wider regional context. 

This study tested the conservation effectiveness of WMAs in Botswana’s 

Kalahari ecoregion. This region is ideal for such a study because it contains multiple 

WMAs that cover more than 80,000 km
2
, have been operational for more than 15 years, 

and are interspersed with both PAs and unprotected land. This reduces the confounding 

effects of latitudinal rainfall gradients and finer-scaled factors such as localised rains, 

terrain variation and anthropogenic habitat modification. 
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The conservation effectiveness of Kalahari WMAs has not previously been 

assessed systematically. Earlier studies (mammals: Wallgren et al., 2009b; birds: 

Herremans, 1998) suggested that wildlife may be more abundant in WMAs than in 

unprotected areas, but less so than in PAs. While these findings appear intuitively 

correct, both studies suffered shortcomings including: (a) low spatial replication within 

and across land-uses; (b) re-sampling within short time-periods the same transects in 

fenced-in areas but analysing as independent data despite a strong likelihood of re-

counting the same individuals of sedentary species; (c) not accounting for potential 

differences in animal detectability among land-uses (Wallgren et al., 2009b); or (d) 

directional biases due to slower driving speed and increased search effort within PAs, 

relative to WMAs, and with least effort in unprotected areas (Herremans, 1998). Both 

Herremans (1998) and Wallgren et al. (2009b) suggested that a combination of cattle 

and hunting contributed to observed wildlife patterns, but neither tested these 

hypotheses. Similarly, Verlinden (1997) has suggested negative effects of cattle and 

unregulated bushmeat hunting on Kalahari wildlife, but did not test their relative 

importance. The relative importance of differing anthropogenic threats for different 

functional groups and individual species, and the extent to which WMAs may mitigate 

them, had not been investigated prior to this study. 

Using data from 103 independent driven transects (total length 4030 km) that 

quantified wildlife abundance in eight replicate PAs, 15 WMAs and extensive 

contiguous unprotected areas, this study examined: (1) the relative abundance of 

different functional groups of large-bodied vertebrates among PAs, WMAs and 

unprotected areas; (2) differential responses of functional groups to WMA designation; 

(3) the relative importance of cattle stocking rate (indexed by distance to borehole), 

bushmeat hunting (indexed by proximity to human settlement), and habitat 

characteristics (independent of cattle effects) to different functional groups and 

individual species; and (4) whether the wildlife response to conservation designations 

and the anthropogenic threats support the notion that direct biodiversity–livelihoods 

linkages have resulted in effective wildlife conservation.  
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Methods 

 

Study area 

 

The study area (about 250,000 km
2
: 20–24°S 22–26°E; Fig. 3.1) lies within a flat semi-

arid region of the Kalahari Desert in central Botswana, characterised by fossil river 

valleys, pans and sandy soils, with predominantly wooded grasslands and dense 

bushland interspersed with low-growing shrubs (Weare & Yalala, 1971). Principally 

summer (October–March) rainfall varies from 300 mm y
-1

 in the south-west to 450 mm 

y
-1

 in the north-east (Nicholson & Farrar, 1994), and field-measured mean annual 

rainfall at the 11 rainfall stations with long-term data (spanning the period 1961–2003) 

had a coeffiecint of variation that ranged 0.28–0.43 (Parida & Moalafhi, 2008). 

Drought-resistant Acacia scrub increases south-westwards while woody plant density 

and diversity increases north-eastwards, where tree savanna and isolated stands of 

Colophospermum mopane dominate (Weare & Yalala, 1971). The study area is among 

the driest savannas in Africa, with a depauperate species richness for both plants and 

mammals (Shorrocks, 2007). With the exception of crested francolin, which is restricted 

to tree savannas that represent the south-westernmost edge of its geographic range in 

central Botswana (Harrison et al., 1997) all sampled species occurred throughout the 

study area (Kingdon, 1997).  

Sampled PAs comprised three privately owned (Jwana Park, Orapa Park and 

Nata Sanctuary) and all five state-managed PAs in central Botswana (area 64,000 km
2
), 

15 WMAs (72,000 km
2
) and intervening unprotected areas (114,000 km

2
: Fig. 3.1). To 

reduce confounding geographic effects, analyses controlled for underlying habitat and 

rainfall gradients (see below and Table 3.1). All PAs were designated before 1980 and 

WMAs during the early 1990s; therefore any contemporary difference in wildlife 

abundance were considered to primarily to reflect differences in designation and 

management (following Urquiza-Haas et al., 2011). 
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Figure 3.1. Location of the study area in the Kalahari, showing transect positions, land-

use designation (Government of Botswana, 2001) and vegetation zones (following 

Weare & Yalala, 1971). Protected areas within the sampling extent are (1) Nxai 

National Park, (2) Nata Sanctuary, (3) Makgadikgadi National Park, (4) Orapa Game 

Park, (5) Central Kalahari Game Reserve, (6) Dithopo Game Ranch, (7) Khutse Game 

Reserve and (8) Jwana Game Park. 

 

Hunting is prohibited in PAs. Within WMAs, trophy hunting of medium- and large-

bodied ungulates and ostrich (Table 3.2) is regulated by communities under quotas 

issued by the national Department of Wildlife and National Parks (DWNP). In WMAs, 

areas within 20 km of settlements are zoned for livestock-rearing (hereafter, WMA 

livestock-rearing buffers). The remainder of the WMA (hereafter, WMA wildlife zones) 

is designated for either regulated hunting or wildlife viewing (Appendix 3.1); my own 

field count data of cattle confirmed that this species was absent from these wildlife 

zones (Appendix 3.2). Gamebird shooting under permit occurs in unprotected areas and 

WMAs. Illegal, largely subsistence hunting, of large ungulates speared from horseback 

and of smaller species caught with dogs or snaring, occurs across all land-use types 
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(pers. obs.), but was hypothesised to be ubiquitous across unprotected areas, potentially 

reduced in WMAs and lowest in PAs due to both remoteness from settlement and law 

enforcement (Appendix 3.1).  

Human settlements were absent from PAs and WMA wildlife zones, 

communities within them having been relocated at their establishment (Campbell, 1973; 

Twyman, 2001; Appendix 3.1). In WMA livestock-rearing buffers and unprotected 

areas, human activities are typically restricted to 20–40 km around villages (Chanda et 

al., 2003). Livestock-rearing is important to livelihoods across unprotected areas and 

WMAs, while arable farming is negligible (Twyman, 2001; Chanda et al., 2003; 

Chapter 1). Livestock are prohibited from PAs; all three private reserves and one state-

managed PA were entirely fenced, while remaining PAs were fenced to exclude 

livestock along borders close to human settlements. Livestock-rearing, with herders and 

cattle staying at permanent bases (‘cattle posts’) throughout the year (see Chapter 1), 

primarily involved cattle, restricted to within 10 km of boreholes throughout the year 

(Perkins, 1996), occasionally with associated horses, donkeys, sheep and goats. 

Livestock-rearing was mostly on a subsistence and free-ranging basis; those commercial 

ranches occurring locally (typically not exceeding 16 km
2
) were excluded from study 

because fencing minimised interaction between ranched cattle and wildlife.  

Spatially replicated sampling across the gradient of PA, WMAs and unprotected 

areas (comprising locations at differing proximities to settlement and to boreholes) 

allowed us to examine responses to land-use designation, cattle density, and proximity 

to human settlement in order to examine mechanisms underlying observed patterns. 

 

Survey methodology 

 

A 500-km square centred on the Central Kalahari Game Reserve (CKGR) was 

subdivided into 25-km grid-squares, the basic sampling units. Replicate non-contiguous 

grid-squares were randomly selected for survey, stratified by land-use (PAs, WMAs and 

unprotected areas), with the constraint that they contained drivable tracks, because 

substratum structure prohibited off-road driving. Surveys were conducted over a single 

discrete period from 15 April to 8 July 2009, when most trees had shed leaves, to 

minimise seasonal variation in animal detectability. Within these survey design 

constraints, a total of 103 grid-squares were sampled (n = 33, 18 and 52 for PAs, 
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WMAs and unprotected areas respectively). Unprotected areas received the greatest 

sampling effort because the largest variation in the primary predictor variables, cattle 

abundance and proximity to human settlement, was expected in this land-use type. 

Because of their similar size, the intention was to sample an equal number of grid-

squares in PAs and WMAs, but this could not be achieved owing to the poor track 

network within WMAs. Consequently, the overall lower sampling intensity in WMAs 

meant that tests of whether more wildlife occurred in this than the other land-use types 

had limited statistical power and were therefore highly conservative, but unbiased. The 

poor track network within WMAs also meant that it was not possible to stratify WMA 

livestock-rearing and WMA wildlife zones a priori and in the field; but post-hoc 

stratification resulted in similar sampling effort (n = 98 and 94 4-km segments in WMA 

wildlife zones and WMA livestock-rearing buffer respectively), which were considered 

to introduce minimal bias (see below for justification of using 4-km sampling 

segments). To avoid confounding spatial and temporal effects, different land-uses or 

far-apart grid-squares within one land-use were surveyed within short time-periods; 

where possible a pair of grid-squares representing different land-uses was surveyed in 

one day. 

Within each surveyed grid-square, characteristic medium- and large-bodied 

diurnal mammals, raptors, large ground birds and galliforms (Table 3.2) were surveyed 

along transects driven at 20 km/h following unpaved roads or tracks, after preliminary 

comparison of encounter rates and variance in density estimates with transects driven at 

40 km/h. Although disturbance-sensitive species may avoid tracks, vehicle encounter 

rates were negligible across all land-use types (PAs 0.02 vehicles km
−1

 ± 0.10 SD; 

WMAs 0.06 vehicles km
−1

 ± 0.25; unprotected areas 0.04 vehicles km
−1

 ± 0.22, F2, 1108 

= 3.013, P = 0.05) and so this was not considered a concern. All surveys were 

conducted by the same three observers, between 07:00–11:00 and 15:00–18:00, 

coinciding with peak activity times for the study species. 

Within each grid-square a single uninterrupted 40-km DISTANCE transect 

(Buckland et al., 2001) was driven, along which animal abundance and local 

explanatory variables, including vegetation structure (woody vegetation canopy cover), 

were sampled simultaneously on contiguous 4-km segments; this scale was considered 

appropriate to capture gradients in cattle intensity and their impacts on vegetation close 

to and away from boreholes, following Perkins (1996). Segments were constrained to 

homogeneous canopy cover based on a 4-point ordinal score of openness (woody 



Chapter 3: How well do Wildlife Management Areas manage wildlife?  

93 

 

vegetation cover index, Table 3.1, this index was strongly correlated with canopy cover 

of shrubs and trees, Chapter 4); if a marked change in canopy cover occurred before 4 

km elapsed then a new segment was begun, with the boundary recorded using a 

handheld GPS. Mean segment length was therefore less than 4 km and although slightly 

shorter in unprotected areas owing to greater heterogeneity was broadly similar across 

land-use types (PAs 3.7 km ± 1.0 SD; WMAs 3.8 km ± 0.9; unprotected areas 3.5 km ± 

1.0, F2, 1108 = 6.564, P = 0.001). Animal observations were recorded in four distance 

categories (Buckland et al., 2001): 0–50, 50–100, 100–200 and >200 m, with 

individuals within 30 m of each other recorded as a single group. Large dispersed 

groups that spanned distance category boundaries were recorded according to the 

estimated geometric centre of the group, following Buckland et al. (2001). Canopy 

cover of woody vegetation, measured in variable radius sampling plots (Mueller-

Dombois & Ellenberg, 1974) in one randomly selected segment within each of 91 

transects (out of total 103 transects), differed among land-use types (Generalised Linear 

Model, GLM Wald χ2
2
= 9.106, P = 0.011), being lowest in PAs (9.63 percent cover ± 

9.16 SD), intermediate in WMAs (14.76 percent ± 8.75), and greatest in unprotected 

areas (19.89 percent ± 11.52), but was not influenced by vegetation zone (GLM Wald 

χ3
2
= 6.083, P = 0.108; Chapter 4). Thus segments with poorest visibility were most 

common in unprotected areas. Consequently, it was not possible to simultaneously 

control for vegetation cover and varying detectability of wildlife while comparing 

encounter rates among land-use designations, the lowest common distance band within 

which animals were consistently detected irrespective of habitat was identified, and 

subsequent analyses were restricted to this band. Sighting records were therefore 

truncated to 100-m wide strip transects (simultaneously surveying 50 m either side of 

the vehicle), within which all animals were detected (Appendix 3.3).  

 

Predictors of animal abundance 

 

To test possible mechanisms driving observed wildlife abundance, the following 

predictors were considered: (1) land-use designation (PA, WMA, unprotected); (2) 

segment proximity to human settlement, considered a proxy for illegal hunting pressure 

following similar use of the index in other parts of Africa (e.g. Muchaal & Ngandjui, 

1999; Brashares et al., 2001) and other tropical regions (e.g. Urquiza-Haas et al., 2009; 
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Latin America); (3) segment proximity to borehole (a robust proxy measure for cattle 

density: Appendix 3.2); three terrain variables: (4) pan proximity; (5) mean altitude and 

(6) altitudinal variance along segment; and (7) Normalised Difference Vegetation Index 

difference between the start and end of the wet season (flush NDVI) as a measure of 

segment-level cumulative rainfall during the preceding rainy season (see below). 

Predictors were obtained from remotely sensed data and statutory agencies (Table 3.1). 

Of the species for which species-specific models were developed, seasonal movement 

patterns in the Kalahari have been investigated for gemsbok (a large-bodied grazer) and 

springbok (a medium-bodied browser); neither undertakes large-scale movements 

(Verlinden, 1998). 

For each segment, land-use classification was extracted, and for segments within 

WMAs or unprotected areas, distance to nearest PA was also calculated. Spatially 

referenced human settlement data obtained from the Botswana atlas (Government of 

Botswana, 2001) were incomplete, so were cross-validated against the complete but 

non-spatially referenced 2001 census data that provide all settlement names and 

associated population estimates 

(www.cso.gov.bw/images/stories/Census/population_town.pdf). All settlements with 

more than 200 people were mapped based on coordinates obtained from the Botswana 

atlas and the National Geospatial Intelligence Agency (Table 3.1); these sources do not 

map smaller settlements. For each segment, distance to the nearest borehole located 

within a WMA livestock-rearing buffer or unprotected area provided a measure of cattle 

density, validated by relating borehole data to independent cattle abundance estimates 

from aerial counts and to field-based cattle encounter rates (Appendix 3.2). The 

relationship between observed cattle encounter rate and segment distance to borehole 

was similar and consistent between unprotected areas and WMA livestock-rearing 

buffers (Appendix 3.2). 

In arid and semi-arid tropical areas plant phenology and productivity are largely 

influenced by soil moisture (Nicholson & Farrar, 1994). However, measures of spatial 

variation in rainfall were not available owing to a lack of weather stations across much 

of the study area, so seasonal variation in NDVI (the difference between the start of the 

2009 dry season [March] and the start of the 2008 wet season [October], hereafter ‘flush 

NDVI’) was considered in models of wildlife abundance, as a proxy for geographic and 

local differences in precipitation and therefore vegetation productivity (following 

Pettorelli et al., 2005). Larger positive values of flush NDVI indicate greater wet season 
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productivity. Flush NDVI was not related to vegetation zone, localised density of 

woody vegetation or borehole proximity (Appendix 3.4), suggesting that the index 

primarily measured segment-specific rainfall. Both flush NDVI and borehole proximity 

were retained as independent measures in subsequent modelling of wildlife abundance.  

 Local landscape terrain measures (area-weighted mean altitude and altitudinal 

variance extracted for each 1 km-buffered segment: Table 3.1) were also considered as 

candidate variables that relate to local ecological variation between higher-elevation 

sand-dominated shrublands and lower-elevation grasslands. Because pans provide key 

foraging resources for some Kalahari wildlife (Verlinden, 1997; Wallgren et al., 2009a), 

distance to the nearest pan mapped in the Botswana atlas was also considered as a 

candidate variable. 

 

Statistical analysis 

 

Wildlife responses were analysed for functional groups defined by body size and diet 

(large-bodied grazers, large-bodied browsers, medium-bodied browsers, carnivores, 

raptors, large ground birds and galliforms: Table 3.2) and individually for all species 

recorded in more than 25 segments. Two sets of models were considered. First, wildlife 

encounter rates were compared among land-use categories (PAs, WMAs, unprotected), 

controlling for regional variation in ecosystem considered as four regional vegetation 

classes (grasslands, short shrub savanna, fine-leaved tree savanna and broad-leaved tree 

savanna: Appendix 3.4). Second, the response of the wildlife species to cattle and 

hunting was examined by testing independent effects of segment proximity to borehole 

and to settlement (both square-root transformed because effects were predicted to 

decrease non-linearly), in models that controlled for any significant effects of landscape 

productivity (flush NDVI), pan proximity and terrain. 
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Table 3.1. Explanatory variables examined as determinants of wildlife abundance in the Kalahari, their spatial scale and data source. All variables 

extracted for each 4-km segment. 

Variable  Units Mean  SD Min Max Description  

Land-use designation 

PA, WMA or 

unprotected area 

Nominal - - - - Botswana atlas (Government of Botswana, 2001; 1-km
2
 resolution polygons).  

Distance between 

WMA-segment start-

point and PA 

boundary 

km 68 40 0.01 156 Derived.  

Anthropogenic threats 

Hunting (distance to 

nearest settlement)  

km  29 26 0.24 122 All settlements with more than 200 people (mapped point localities, 1-km
2
 

resolution, Botswana atlas; additional coordinates from 

www.geonames.nga.mil/ggmagaz/geonames4.asp).  

Cattle-induced 

impacts (distance to 

nearest livestock-

watering borehole 

outside PA or WMA 

wildlife zone)  

km  13 16 0.08 101 Borehole GPS points (correct to less than 10 m; Government of Botswana, 

Geological Surveys Department, unpublished data).  
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Ecological and environmental variation 

Vegetation zone Nominal 

scale 1–4 

- - - - Ten vegetation types (Weare & Yalala, 1971) pooled into four broad classes: 

grasslands; shrub savanna; fine-leaved tree savanna; broad-leaved tree savanna, 

see Appendix 3.4 for details (1-km
2
 resolution).  

Flush NDVI: mean 

March 2009 minus 

mean October 2008 

NDVI values 

Index 

potentially 

ranges −2 to 

+2 

0.51 0.08 0.03 0.52 10-day composites, based on min and max NDVI over 10-day period (October 

2008 and March 2009; from the VEGETATION programme, 

www.free.vgt.vito.be; 1-km
2
 resolution raster data) overlain on vector layer of 

segments buffered by 1-km, and area-weighted mean NDVI calculated based 

on the extent of overlap between NDVI dataset and the straight line connecting 

the segment’s start and end points. Flush NDVI potentially ranges from −2 to 

+2 because raw NDVI ranges −1 to +1. 

Mean altitude m, a.s.l. 1043 93 900 1254 Mean segment altitude (800-m grid-square resolution polygons; mean altitude 

error:  ±1.13 m (scrub habitats). NASA, www.asterweb.jpl.nasa.gov/gdem.asp).  

Altitudinal variance  m 13 45 0 699 Based on differences between the mean altitude along a segment, and the larger 

of the highest or lowest points along that segment. 

Distance to nearest 

pan 

km 6.18 6.56 0 45 Distance from segment-start point to nearest mapped pan larger than 1 km
2
 (1-

km
2
 resolution polygons; Botswana atlas).  

Woody vegetation 

cover 

Ordinal scale 

1–4 (most to 

least dense) 

- - 1 4 Field measure of vegetation openness and perpendicular distance to which 

wildlife readily detected along segments: <30 m, 30–80 m, 80–150 m, >150 m.  
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Wildlife counts per segment were modelled using Generalised Linear Mixed Models 

(GLMMs; Bolker et al., 2009), within an information-theoretic approach (Burnham & 

Anderson, 2002), including segment length as an offset variable and grid-square as a 

random effect to account for sampling multiple segments within each transect. Non-

flocking species were modelled as count data (Poisson error, log link function), 

producing models with minimal over-dispersion (deviance/df ≤ 1.5). For flocking birds, 

herding ungulates and any functional group that included a congregatory species (large-

bodied grazers, medium-bodied browsers, large ground birds and galliforms) models 

considered incidence per segment (0/1, with binomial error and a logit link function), 

due to overdispersion of count data (deviance/df ≥ 10) in Poisson models that was not 

resolved by modelling square-root tranformed counts rounded to integers, or by use of 

quasi-Poisson models. GLMMs were constructed within R v2.11.1 (R Development 

Core Team, 2008) using the glmer function of the lme4 package, which calculates 

parameter estimates based on Laplace approximations to compute true likelihood and 

generate robust Akaike Information Criterion (AIC) values, unlike GLMMs based on 

penalised quasi-likelihood (Bolker et al., 2009).  

The abundance (or incidence) of functional groups and individual species was 

compared among the three levels of land-use designation, by comparing the strength of 

support for four a priori models:  

Model 1, effects of PAs and WMAs are similar (sharing a single parameter), and 

differ from those of unprotected areas. Land-use modelled with 2 levels: (PA + 

WMA); unprotected. 

Model 2, each land-use has a unique effect. Three levels: PA; WMA; unprotected. 

Model 3, WMA and unprotected areas effects are similar (sharing a single 

parameter), and differ from PA effects. Two levels: PA; (WMA + unprotected). 

Model 4, null model; land-use effects are similar (land-use variable excluded).  

 

Models within two AIC-units of the best-supported model were considered to have 

similar support, ΔAIC 4–7 much less support, and ΔAIC >10 little support (Burnham & 

Anderson, 2002). Model support was further considered by calculating Akaike weights 

and evidence ratios, following Burnham & Anderson (2002). 

Next, wildlife responses to settlement proximity, borehole proximity, flush 

NDVI, and terrain variables were examined by Multi Model Inference (Burnham & 

Anderson, 2002), using a reduced dataset comprising only segments in WMAs and 
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unprotected areas. In the complete dataset, strong positive correlations between segment 

proximity to settlement and nearest borehole (r = 0.811, n = 1109, P < 0.0001) resulted 

from a strong correlation among segments that were simultaneously distant from 

settlements and boreholes, and located within PAs (r = 0.822, n = 352, P < 0.0001). 

Outside PAs, settlement and borehole proximity were not strongly related (unprotected 

areas: r = 0.333, n = 565; WMA livestock-rearing buffer: r = 0.374, n = 94; WMA 

wildlife zone: r = 0.429, n = 98), allowing independent examination of their effects. 

Within this reduced non-PA dataset, no other predictor pairs were strongly correlated 

(−0.106 < r < 0.195, n = 757 segments). Prior to examining effects of anthropogenic 

variables, candidate terrain variables were filtered by highly conservative backward 

elimination from the full model of all test and candidate effects, retaining those for 

which P ≤ 0.1 for subsequent multi-model inference. The ‘dredge’ function within the 

MuMIn R package was then used to develop all possible combinations of retained 

candidate terrain variables (pan proximity, altitude mean, altitude variance), flush NDVI 

and test variables (distance to borehole, distance to settlement), while segment length 

and grid-square were included into all models as an offset variable and a random factor 

respectively. There was no a priori ecological reason to consider interaction terms, so 

none was modelled. Model-averaged parameter estimates, standard errors and 

confidence intervals were calculated using Akaike weights of all models within the 95% 

confidence model set (cumulative Akaike weight >0.95) following Burnham & 

Anderson (2002). The selection probability of each predictor was estimated by 

summing Akaike weights of all models in the confidence model set containing that 

predictor.  

Protected area proximity may potentially buffer wildlife trends in surrounding 

areas through source–sink dynamics (Gaston et al., 2008). Whether wildlife abundance 

within WMAs was affected by overspill from PAs was, therefore, examined using 

GLMMs that considered distance between segment and nearest PA boundary (square-

root transformed) as a fixed effect, grid-square as a random effect, segment length as an 

offset variable, and settlement proximity (square-root transformed, to account for 

decreased likelihood of illegal hunting farther from settlements). Outside PAs, distance 

to PA boundary was only weakly related to distance to nearest borehole, similarly for 

WMAs (r = –0.220) and unprotected areas (r = –0.232); relationships between distance 

to PA boundary and human settlement were also weak and similar (WMAs: r = −0.123, 

unprotected r = −0.166), so independent effects of PA proximity could be tested. 
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Raw encounter rates (animals km
-2

, assuming ESW of 136 m, obtained from 

DISTANCE analysis pooling all sight records of the six species regardless of tree cover 

index and distance categories [i.e. 0–50, 50–100, 100–200 and >200 m], but with 

truncation of the 10% most distal records) of large-bodied grazers and browsers in 

Kalahari PAs were compared to those from sampled South African PAs. Choice of 

sampled South African PAs included deliberate inclusion of Kruger National Park 

because it is the largest South African PA and presumably similarly susceptible to 

census bias due to wildlife movement within a large PA, as suspected for the large 

Kalahari PAs. The published literature was searched (using Google Scholar and Web of 

Science) for a single study that tabulated recent wildlife abundance at multiple PAs 

spanning similar vegetation and rainfall as the Kalahari PAs, as well as an example of a 

small fenced PA to enable contrasts with the three completely fenced Kalahari PAs. 

Spatial autocorrelation in model residuals was examined by Moran’s I, based on 

Euclidian distances between segments. All spatial analyses were conducted in ArcGIS 

9.2 (ESRI ArcMap 1999–2006). 

 

 

Results 

 

A total 4722 individuals from 21 vertebrate species, 2174 in PAs, 975 in WMAs and 

1573 in unprotected areas were recorded. Encounter rate varied greatly among species 

(Table 3.2, Fig. 3.2), from those that were only recorded in a single segment (zebra, 

leopard and lion) to at least one record in 199 segments for northern black korhaan 

(Table 3.2). Ten species (Table 3.2) were recorded in fewer than 10 segments; these 

were included within functional groups, but species-specific models were not 

constructed. Species-specific GLMMs testing the effects of land-use and the relative 

importance of management-influenced variables were developed for the remaining 11 

species (Table 3.2), although for gemsbok models testing anthropogenic variables were 

not constructed because it was encountered in only five non-PA segments. For large-

bodied browsers sample sizes were too small to allow any statistical model to be fitted, 

either for constituent species or for the pooled functional group.  

None of the GLMM residuals were spatially autocorrelated (Moran’s I ≤ 0.012, P ≥ 

0.384 for all models). 
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Effects of land-use designation on functional groups and species-specific 

encounter rate 

 

Encounter rates of functional groups differed among land-use types (Fig. 3.2), however, 

different functional groups and species showed contrasting responses. There was strong 

evidence that WMAs provided positive effects for numerous functional groups and 

species that had lower abundance in unprotected areas. For these, either Model 1 (that 

abundance was similar between PA and WMA, but different in unprotected areas) 

and/or Model 2 (that land-use designation gave unique effects, with WMAs again better 

than unprotected areas but not as good as PAs) was the most strongly supported, 

receiving much greater support than either Model 3 (similar abundance between WMAs 

and unprotected areas, differing from PAs) or Model 4 (null model; no effect of 

designation). Large-bodied grazers, medium-bodied browsers, overall abundance of 

carnivores, specific abundance of black-backed jackal, and abundance of raptors 

(specifically pale chanting goshawk) all shared this pattern (Table 3.3), with estimates 

of land-use effects (produced for Model 2) confirming the ranking as PA ≥ WMA > 

unprotected. However, patterns for individual species within these functional groups 

were not always consistent. For example, although overall abundance of large-bodied 

grazers did not differ between PAs and WMAs, there was nevertheless strong evidence 

that the probability of encountering gemsbok was lower in WMAs than in PAs, with 

Model 3 (PA > WMA ≈ unprotected) the best-supported model. For gemsbok, although 

there was also moderate support for Model 2 (ΔAIC < 1.5), suggesting incidence in 

WMAs may have been intermediate between PAs and unprotected areas, encounter rate 

in PAs was 33-times that in WMAs (Fig. 3.2). Species-specific models could not be 

constructed for the infrequently encountered large-bodied grazers (wildebeest, 

hartebeest and zebra); however none of these was recorded from unprotected areas and 

most had encounter rates 6–7-times greater in PAs than in WMAs (Table 3.2). 

Conversely, despite strong evidence that overall encounter rates of medium-bodied 

browsers were similar in WMAs and PAs, apparent abundance of steenbok was three 

times greater in WMAs than in PAs (Fig. 3.2), with Model 2 the best-supported (ΔAIC 

≈ 2 compared to Model 1, Table 3.3). In contrast, springbok had similar abundance in 

WMAs and PAs, with Model 1 best-supported (ΔAIC ≈ 2 compared to Model 2; Table 

3.3, Fig. 3.2). 
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Although overall abundance of carnivores was similar between PAs and WMAs, 

with Model 1 receiving strongest support (ΔAIC ≈ 2 compared to Model 2, Table 3.3), 

this pattern was strongly influenced by the frequently encountered jackal. In contrast, 

although not considered in species-specific models, the infrequently encountered 

carnivores were only seen in PAs (lion, leopard) or were rarely encountered in WMAs 

(bat-eared fox) and consistently absent from unprotected areas (Table 3.2). Raptors 

(comprising pale chanting goshawk only) were twice as abundant in WMAs as in PAs, 

and least abundant in unprotected areas, which supported approximately 20% of the 

WMA abundance (Fig. 3.2). However, although Model 2 was the best-supported model, 

indicating different abundance between PAs and WMAs, Model 1 (PA ≈ WMA) also 

received moderate support (ΔAIC≈1.0, Table 3.3); thus it can only be concluded that the 

species’s abundance was lower in unprotected areas than in either conservation area. 
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Table 3.2. Species and functional groups considered, showing body weights, hunting quota or game status and total number of segments on 

which species were recorded. For each land-use (Protected Areas, PAs, n = 352; Wildlife Management Areas, WMAs, n = 192; unprotected 

areas, n = 565) the mean encounter rate per 100 km (± SE) of animals in 100 m-wide 4-km long strip transect segments is presented, and in 

parentheses the total number of individuals sighted and largest number of individuals recorded on an individual segment. 

 

Functional groups and representative species Body 

weight  

(kg)
a
 

Sociality
b
  Hunt 

vulnerability
c
 

segment 

with 

record 

Mean segment length (km ± SD), total survey effort (km)  

PA 

      3.69 ± 1.0 

Σ             1298  

WMA 

3.81 ± 0.88 

 732  

unprotected areas 

3.54 ± 1.01  

1998  

     Wildlife encounter rate, individuals/100 km 

Large-bodied browsers 
d
     3.24 ± 1.52  0.13 ± 0.13 0.49 ± 0.23 

Giraffe Giraffa camelopardalis angolensis 450–1930 H HNQ 2 1.78 ± 1.26 (25; 13) 0 (0; 0) 0 (0; 0) 

Eland Taurotragus oryx 460–700 H HNQ 3 0.61 ± 0.49 (9; 7) 0 (0; 0) 0 (0; 0) 

Greater Kudu Tragelaphus strepsiceros 180–250 H HQ 9 0.86 ± 0.72 (12; 10) 0.13 ± 0.13 (1; 1) 0.49 ± 0.23 (11; 3) 

Large-bodied grazers 
e
      5.52 ± 1.53 2.68 ± 1.268 0.18 ± 0.14   

Gemsbok Oryx gazella 210–240 H HQ 27 4.39 ± 1.32 (58; 15) 0.13 ± 0.13 (1; 1) 0.18 ± 0.14 (4; 3) 

Wildebeest Connochaetes taurinus 180–250 H HQ 4 0.90 ± 0.77 (13; 11) 0.13 ± 0.13 (1; 1) 0 (0; 0) 

Red Haartebeest Alcelaphus caama 120–150 H HQ 7 0.09 ± 0.09 (1; 1) 2.42 ± 1.24 (19; 7) 0 (0; 0) 

Plains Zebra Equus quagga burchellii 175–320 H HNQ 1 0.14 ± 0.14 (2; 2) 0 (0; 0) 0 (0; 0) 

Medium-bodied browsers 
f
     79.97 ± 35.80 87.71 ± 35.72 10.49 ± 6.24 

Steenbok Raphicerus campestris 7–16 S HQ 138 4.82 ± 0.79 (59; 4) 13.99 ± 2.38 (99; 6) 3.00 ± 0.53 (55; 3) 

Springbok Antidorcas marsupialis 20–59 H HQ 54 75.15 ± 35.81  

(1012; 468) 

73.72 ± 35.75  

(539;197) 

7.49 ± 6.22 

(193;153) 

Carnivores 
g
     2.44 ± 0.66 1.85 ± 0.70 0.45 ± 0.19 
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Black-backed Jackal Canis mesomelas 6–10 S HQ, NG 28 1.17 ± 0.35 (16; 2) 1.46 ± 0.59 (9; 2) 0.45 ± 0.19 (9; 2) 

Bat-eared fox Otocyon megalotis 3–5 H HQ, NG 6 1.13 ± 0.56 (9; 3) 0.38 ± 0.38 (3; 3) 0 (0; 0) 

Leopard Panthera pardus 20–90 S HNQ, NG 1 0.07 ± 0.07 (1; 1) 0 (0; 0) 0 (0; 0) 

Lion Panthera leo 110–225 H HNQ, NG 1 0.07 ± 0.07 (1; 1) 0 (0; 0) 0 (0; 0) 

Raptors 
h
     4.30 ± 0.66 8.27 ± 1.39 1.90 ± 0.39 

Pale chanting goshawk Melierax canorus 0.7–0.8 S HNQ, NG 115 4.16 ± 0.64 (57; 4) 8.27 ± 1.39 (58; 4) 1.75 ± 1.29 (35; 3) 

Secretarybird Sagittarius serpentarius 3–4 S HNQ, NG 3 0.14 ± 0.14 (2; 2)  0 (0; 0) 0.10 ± 0.10 (2;1) 

Large-bodied ground birds 
i
     39.25 ± 3.83  24.56 ± 3.47 16.33 ± 2.02 

Ostrich Struthio camelus 90–130 H HQ 28 2.18 ± 0.86 (28; 9) 3.37± 1.11 (27; 5) 2.82± 1.42 (65; 25) 

Kori Bustard Ardeotis kori 6–12 S HNQ 27 1.46 ± 0.02 

(10; 2) 
1.09 ± 0.003 (7,2) 0.55 ± 0.007 (11; 4) 

Northern black korhaan Eupodotis afraoides 0.7–0.8 S HNQ 199 27.94 ± 3.51 

(355; 21) 

13.89 ± 2.88 (109; 

12) 
6.39 ± 1.12 (123; 10) 

Red-crested korhaan Eupodotis ruficrista 0.6–0.8 S HNQ 183 7.89 ± 1.19 (89; 5) 6.24 ± 1.19 (47; 5) 6.65 ± 0.83 (128; 5) 

Galliforms 
j
     32.64 ± 9.39 6.15 ± 4.83 47.90 ± 11.05  

Crested francolin Francolinus sephaena 0.2–0.4 H HQ 28 1.36 ± 1.02 (11; 6)  1.40 ± 0.91 (12; 7) 3.86 ± 1.21 (83; 21) 

Helmeted guineafowl Numida meleagris 1.1–1.6 H HQ 46 31.28 ± 9.34 (387; 

53) 
4.76 ± 4.76 (42; 42) 

44.11 ± 10.97 (854; 

80) 
a 
Taxonomy, bodyweights and Extent of Occurrence (EOO) range maps follow Kingdon (1997) for mammals; Hockey et al. (2005) for birds. Based on EOO 

range estimates, all 21 species occur throughout the sampling extent, except crested francolin, which is restricted to tree savannas. 
b
 S, singletons; H, herding/social group  

c
 HQ, legally hunted in WMAs on quota issued by Department of Wildlife and National Parks; HNQ, no legal hunting quota, but liable to poaching or 

indiscriminate snares; NG, non-game species whose meat is generally not consumed by humans nor fed to pets, otherwise considered edible. 
d,e,f,g,h,i,j 

 Row statistics based on pooled data for species listed below each functional group heading. 
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Figure 3.2. Mean encounter rate per 100 km (± SE) of species recorded in at least 25 segments and of functional groups in 100 m-wide 4-km 

long strip transect segments in protected areas (black bars, n = 352), Wildlife Management Areas (grey bars, n = 192) and unprotected areas 

(white bars, n = 565). See Table 3.2 for details on hunting vulnerability (HQ, HNQ, NG). 
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While all of the preceding groups were clearly or marginally more abundant in 

conservation areas than in unprotected areas, the pooled abundance of galliforms was 

substantially greater in unprotected areas. This group was dominated by the frequently 

encountered helmeted guineafowl (Fig. 3.2); both this species and the aggregate group 

showed incidence in PAs that approached those in unprotected areas, but a considerably 

lower incidence in WMAs. In contrast, there was no evidence that crested francolin 

(which was scarce overall) differed in abundance among land-uses (Table 3.3) despite a 

trend towards greater abundance in unprotected areas relative to both PA and WMAs 

(Fig. 3.2). 

For four species (steenbok, pale chanting goshawk, black korhaan and red-

crested korhaan) recorded in more than 30 segments within WMAs, it was possible to 

test whether abundance within WMAs was related to PA proximity. Abundance of 

steenbok was marginally greater closer to PAs (GLMM PA proximity 0.19 ± 0.09 SE, P 

= 0.04, controlling for proximity to settlement 0.27 ± 0.12, P = 0.03, n = 192); such 

effects were not found for the three remaining species (pale chanting goshawk, PA 

proximity 0.02 ± 0.05, P = 0.67, settlement −0.18 ± 0.11, P = 0.11; black korhaan, PA 

proximity −0.17 ± 0.10, P = 0.10, settlement 0.72 ± 0.17, P < 0.001; red-crested 

korhaan, PA proximity 0.04 ± 0.10, P = 0.73, settlement 0.19 ± 0.18, P = 0.28; n = 192 

in all cases). 
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Table 3.3. Wildlife species response to Protected Area (PA), Widlife Management Area (WMA) and unprotected areas, controlling  for 

vegetation zone in Generalised Linear Mixed Models, including grid-square (n = 103) as a random effect and segment length (n = 1109) as an 

offset. Parameter estimate (mean ± SE) are shown for models testing unique effects of each land-use category (M2) to illustrate direction of 

effect for the conservation areas relative to unprotected area. The Log-likelihood (Log(L)), AIC of best-supported model, AIC differences from 

the best model (ΔAIC), Akaike weights (ω) and evidence ratios (ω1/ ωj) for the four a priori models a testing for differences in the effects of 

land-use designation are also shown. Functional wildlife groups as in Table 3.2.
 

 

Response Variable Model 
a
 Log(L) AIC ΔAIC ω ω1/ ωj Land-use  

β ± SE 

PA WMA Unprotected 

area 

Large-bodied 

grazers 
M1  −144.721 301.441 0 0.626 1.000    

M2  −144.251  1.061 0.368 1.700 3.63 ± 1.16 3.03 ± 1.26 0 

M3  −149.533  9.625 0.0005 123.008    

M4  −158.378  25.316 0.000002 314236.134    
Gemsbok M1 −110.967  4.801 0.057 11.030    

M2 −108.280  1.428 0.310 2.042 3.39 ±1.16 1.15 ±1.65 0 

M3 −108.566 229.133 0 0.633 1.000    

M4 −119.642  20.151 0.00003 23750.290    
Medium−bodied 

browsers 
M1 −482.368 976.735 0 0.604 1.000    

M2 −481.795  0.855 0.394 1.534 1.10 ± 0.34 1.58 ± 0.42 0 

M3 −488.503  12.271 0.002 461.924    

M4 −490.745  14.754 0.0004 1599.026    
Steenbok

 b
 M1 −418.112  1.993 0.263 2.709    

M2 −416.116 846.232 0 0.714 1.000 0.45 ± 1.44 1.22 ± 0.31 0 

M3 −421.853  9.475 0.006 114.148    

M4 −421.936  7.640 0.015 45.604    
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Springbok M1 −169.521 351.0411 0 0.646 1.000    

M2 −169.496  1.951 0.244 2.653 2.59 ± 1.41 2.87 ± 1.74 0 

M3 −171.875  4.708 0.061 10.529    

M4 −173.109  5.177 0.049 13.310    
Carnivore

 b
 M1 −180.112 372.224 0 0.649 1.000    

M2 −180.096  1.969 0.243 2.676 1.30 ± 0.54 1.19 ± 0.67 0 

M3 −181.903  3.583 0.108 5.998    

M4 −184.172  6.121 0.030 21.338    
Black-backed 

jackal
 b
 

M1 −125.512 263.023 0 0.361 1.000    

M2 −125.511  1.998 0.133 2.716 0.70 ± 0.58 0.73 ± 0.70 0 

M3 −126.142  1.259 0.192 1.877    

M4 −126.654  0.285 0.313 1.153    
Pale chanting 

goshawk
 
(Raptors)

b
 

M1 −333.555  1.040 0.372 1.682    

M2 −332.035 678.070 0 0.627 1.000 0.80 ± 0.31 1.42 ± 0.36 0 

M3 −340.296  14.521 0.0004 1422.968    

M4 −340.989  13.909 0.0006 1047.593    
Large ground birds M1 −683.902  4.611 0.067 10.029    

M2 −681.548  1.905 0.258 2.592 1.01 ± 0.29 0.12 ± 0.37 0 

M3 −681.596 1375.192 0 0.670 1.000    

M4 −687.441  9.691 0.005 127.167    
Ostrich M1 −125.859 263.718 0 0.364 1.000    

M2 −125.103  0.488 0.285 1.276 0.48 ± 0.64 1.30 ± 0.69 0 

M3 −127.200  2.683 0.096 3.825    

M4 −127.209  0.701 0.256 1.420    
Kori bustard

 b
 M1 −129.049  0.485 0.269 1.274    

M2 −128.897  2.182 0.115 2.977 0.83 ± 0.68 0.39 ± 0.82 0 

M3 −129.028  0.442 0.274 1.247    

M4 −129.806 269.613 0 0.342 1.000    
Black korhaan

b
 M1 −782.326 1576.652 0 0.470 1.000    

M2 −781.948  1.245 0.252 1.864 1.44 ± 0.47 0.87 ± 0.62 0 
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M3 −782.922  1.191 0.259 1.814    

M4 −786.604  6.557 0.018 26.536    
Red-crested 

korhaan
 b
 

M1 −525.701  1.439 0.212 2.053    

M2 −524.855  1.747 0.182 2.395 −0.02 ± 0.26 −0.48 ± 0.33 0 

M3 −525.913  1.864 0.171 2.540    

M4 −525.981 1061.962 0 0.435 1.000    
Galliforms M1 −248.436  1.292 0.309 1.908    

M2 −246.790 507.580 0 0.589 1.000 −0.56 ± 0.43 −1.89 ± 0.78 0 

M3 −250.717  5.853 0.032 18.661    

M4 −250.904  4.228 0.071 8.283    
Helmeted 

guineafowl 
M1 −187.015  2.634 0.196 3.732    

M2 −184.698 383.396 0 0.732 1.000 −0.53 ± 0.43 −2.57 ± 1.27 0 

M3 −189.189  6.982 0.022 32.817    

M4 −189.391  5.386 0.050 14.775    
Crested 

francolin 
M1 −114.561  0.676 0.293 1.402    

M2 −114.522  2.599 0.112 3.668 −0.88 ± 1.20 −1.26 ± 1.71 0 

M3 −115.027  1.609 0.184 2.235    

M4 −115.223 240.446 0 0.411 1.000    
a
 Four a priori models tested M1: [PA≈WMA]≠unprotected areas; M2: PA≠WMA≠unprotected areas; M3: PA≠ [WMA≈unprotected areas]; 

M4, null model: PA=WMA=unprotected areas.  

b
 Species or functional group modelled using count data (with Poisson error and log link); all other species and groups modelled as 

presence/absence (with binomial error and a logit link). For functional groups, if any of the members was a congregatory species, logistic 

regression was used. 
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Effects of anthropogenic factors on functional groups and individual 

species 

 

The relative importance of illegal hunting (indexed as proximity to human settlement) 

and cattle impacts (indexed as distance to borehole) as mechanisms underlying wildlife 

responses to land-use were examined in GLMMs that controlled for potentially 

important aspects of habitat (flush NDVI, pan proximity and altitude). Strength of 

evidence for anthropogenic effects was assessed by examining selection probabilities 

and the confidence intervals of model-averaged parameter estimates obtained by Multi 

Model Inference.  

There was a strong negative effect of hunting (with strong support for lower 

abundance or incidence closer to settlements) for aggregate medium-bodied browsers, 

including a specific effect on steenbok (Table 3.4), and also for large-bodied ground 

birds, including specific effects on both black korhaan and red-crested korhaan, 

although with no effect on either ostrich or kori bustard. In contrast, no support was 

found for a negative impact of hunting on large-bodied grazers, carnivores, raptors or 

galliforms, with confidence intervals spanning zero. 

No evidence of any detrimental direct impact of cattle was found, with no 

functional groups or species occurring at lower abundance or incidence closer to 

boreholes. For red-crested korhaan, there was some evidence that abundance increased 

closer to boreholes, with a negative parameter estimate for distance to borehole and a 

95% CI that only marginally spanned zero. This is compatible with greater shrub cover 

in the vicinity of livestock-watering areas (Perkins, 1996; see also Chapter 4), which 

would enhance habitat quality for this scrub-associated species (Harrison et al., 1997). 

Aggregate abundance of medium-bodied browsers and large ground birds was 

also strongly affected by local habitat. Pooled abundance of medium-bodied browsers 

and the specific abundance of steenbok and springbok were greater in areas with lower 

values of flush NDVI (Table 3.4). Encounter rates for large ground birds were greater 

closer to pans; encounter rates for black korhaan also increased with lower flush NDVI 

and altitude, while that of red-crested korhaan increased with increasing flush NDVI 

and closer to pans (Table S4). 

 Kalahari PAs supported much lower abundances (generally at least an order of 

magnitude less, Table 3.5) of large-bodied grazers and browsers for which species-
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specific models were not developed (giraffe, eland, kudu, wildebeest, hartebeest and 

zebra) than observed in South African PAs. 

 

 

Figure 3.3. Ranking of variables in the best-supported models accounting for 

cumulative Akaike weights ≥0.95 (Table 3.4). –ve and +ve indicate direction of effect 

on wildlife abundance. settl, settlement proximity; BH, borehole proximity; NDVI, 

flush Normalised Difference Vegetation Index; pan, pan proximity; alt.mean, mean 

segment altitude. Null variable (  mean selection probability;  95th 

percentile, 100 replicates; see Statistical analysis section of Chapter 4 for how the null 

variable and its 95
th

 percentile are calculated). Selection probabilities greater than the 

null variable and its 95
th

 percentile represent significant effects. 
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Table 3.4. Effects of anthropogenic impacts (hunting, indexed as proximity to settlement and cattle density, indexed as proximity to borehole) 

and flush NDVI (change in NDVI over the wet season, a proxy for segment-specific rainfall) for wildlife functional groups and species, assessed 

by multi-model inference across candidate models that also included combinations of potentially important terrain and ecological variables 

(listed under Model). Model-averaged parameter estimates are shown, with lower and upper confidence intervals in parentheses; parameters for 

which confidence limits do not span zero are shown in bold. See Fig. 3.3 for selection probabilities and Table S4 for highest ranked models, 

number of predictors, AICc of best-fitting model, AICc differences, model Akaike weights and cumulative Akaike weights.  

 

Response Variable segments with  Model
b
 Averaged-model β (confidence interval) 

≥1 record  Settlement proximity Borehole proximity Flush NDVI 

Large-bodied grazers 9 int+alt.mean 0.19 (−0.38, 0.76) 0.28 (−0.42, 0.98) −2.20 (−9.10, 4.69) 

Medium-bodied browsers 109 int 0.36 (0.13, 0.59) −0.003 (−0.09, 0.08)  −6.85 (−10.70, −2.96) 

Steenbok 93 int+distpan 0.34 (0.14, 0.53) −0.003 (−0.05, 0.04) −6.04 (−9.05, −3.02) 

Springbok 19 Int−distpan 0.07 (−0.25, 0.39) 0.05 (−0.25, 0.35) −15.00 (−25.80, −4.16) 

Carnivore
a
 19 int 0.01 (−0.16, 0.18) 0.35 (−0.20, 0.89) −1.83 (−7.50, 3.83) 

Jackal
a
 16 int 0.04 (−0.20, 0.27) 0.29 (−0.28, 0.86) −0.26 (−3.05, 2.52) 

Pale chanting goshawk
a
 (Raptor) 69 int−alt.mean 0.11 (−0.14, 0.34) 0.07 (−0.17, 0.37)  −0.66 (−3.09, 1.77) 

Large ground birds 211 int−distpan 0.35 (0.19, 0.51) −0.01 (−0.09, 0.06) −0.14 (−1.00, 0.72) 

Ostrich 19 int−distpan 0.05 (−0.16, 0.26) 0.08 (−0.22, 0.37) −0.26 (−2.51, 1.99) 

Kori bustard
a
 14 int+distpan 0.03 (−0.17, 0.23) 0.22 (−0.34, 0.78) 1.05 (−3.61, 5.71) 

Black korhaan
a
 91 int−alt.mean−distpan 0.59 (0.34, 0.84) 0.15 (−0.12, 0.42) −4.88 (−8.13, −1.62) 

Red-crested korhaan
a
 119 int−distpan 0.43 (0.23, 0.62) −0.20 (−0.46, 0.05) 1.84 (−1.95, 5.63) 

Galliforms 48 int −0.08 (−0.35, 0.19) −0.24 (−0.74, 0.27) 4.02 (−3.80, 11.80) 

Helmeted guineafowl 30 int −0.03 (−0.20, 0.13) −0.19 (−0.68, 0.31) 3.81 (−4.20, 11.80) 

Crested francolin 23 int −0.05 (−0.35, 0.24) −0.42 (−1.39, 0.56) 3.24 (−6.80, 13.30) 
a 
Modelled using count data; otherwise as presence/absence. Among functional groups, large-bodied grazers, medium-bodied browsers, large 

ground birds and galliforms modelled using logistic regression because one of the group members was congregatory (see main text). 
b 

 int, intercept; distpan, distance to nearest pan; alt.mean, mean segment altitude; alt.var, altitude variance along segment. +ve or –ve prefix 

shows direct of effect for the habitat variables. 
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Table 3.5. Raw encounter rates (animals km
-2

) of large-bodied grazers and browsers in Kalahari protected areas (PAs) relative to those from 

sampled South African PAs (considering from one to four parks for each species), with abundance estimates derived from driven transects. Also 

shown are estimates for Shamwari Game Reserve (walked transects), Kruger National Park (Smit et al., 2007; aerial counts) and five other PAs 

reviewed by Hayward et al. (2007, aerial counts).  

 

Species Density (animals km
-2

) 

Driven transects Walked 

transects 

Aerial counts Aerial counts 

Eight Kalahari 

PAs 

(this study) 

1 to 3 PAs, MLR, 

PRR, PNP 

Sabi-Sand 

Wildtuin  

SGR 1 to 5 PAs, including KNP, MZNP, 

Addo, Nyathi, Darlington 

Kruger National 

Park 

 ± SD 

(n = 352 

segments) 

Hayward et al. 

(2007)
 a
 

 (range) 

Ben-Shahar 

(1995) 

 (range) 

Hayward et al. 

(2007)
 a
 

 (range) 

Hayward et al. (2007)
 a
 

 (range) 

Smit et al. 

(2007) 
n 

 (range) 

Giraffe 0.075 ± 0.768 0.39 
b
   0.74 (0.13–0.96) - 0.24 (0.23–0.25) 

Eland 0.026 ± 0.302 1.24
 c
  0.56 (0.37–0.66) 0.89 (0.19–1.43)

 i
  0.03 (0.02–0.05) 

Kudu 0.021 ± 0.336 1.17 (0.53–2.13)
 d

  4.80 (4.27–5.26) 2.17 (0.50–8.44)
, j 

 0.29 (0.15–0.43) 

Wildebeest 0.253 ± 2.277 4.63 (1.67–8.53) 
e
 55 (10–160) 

h
 0.65 (0.29–0.93) 1.49 (0.68–1.99) 

k
  0.69 (0.63–0.72) 

Hartebeest 0.009 ± 0.139 3.63 (2.43–5.33) 
f
  0.72 (0.60–0.84) 1.30 (0.11–2.43) 

l
  - 

Zebra 0.004 ± 0.067 2.40 (0.33–5.73) 
g
 12 (0–60) 

h
 0.55 (0.33–0.74) 0.20 (0.04–0.43) 

m
  1.53 (1.43–1.60) 
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 1  

a
 Survey timing: Shamwari Game Reserve (SGR: all species sampled annually 2000–2004 inclusive); Karoo National Park (KNP: 2002–2004); 

Mountain Zebra National Park (MZNP: 2002–2004); Addo Elephant National Park (Addo: 2002–2004), Nyathi and Darlington (different 

sections of Addo, both fully fenced and separate from Addo Main Camp, 2004); Madjuma Lion Reserve (MLR, sampled 1997 and 1998); Phinda 

Resource Reserve (PRR: 1995); Pilanesberg National Park (PNP: 1997)  

b 
One estimate: PRR. 

c 
One estimate,: PNP 

d 
Three

 
estimates, two PAs: MLR, PRR 

e
. Three

 
estimates, two PAs: MLR, PRR

 

f 
Three estimates, two parks: MLR, PNP. 

g
 Four estimates, three parks: MLR, PRR, PNP. 

h
 Sabi-Sand Wildtuin (540 km

2
), bordering Kruger National Park, South Africa; 52 abundance estimates, 13 monthly driven surveys May 1998–

June 1999, in four different habitat types 

i 
Ten estimates, five PAs: KNP, MZNP, Addo, Nyathi, Darlington 

j 
Eleven estimates, five PAs: KNP, MZNP, Addo, Nyathi, Darlington 

k
 Four estimates, three PAs: KNP, Nyathi, Darlington 

l 
Eleven estimates, five PAs: KNP, MZNP, Addo, Nyathi, Darlington 

m 
Ten estimates, four PAs: KNP, MZNP, Addo, Nyathi 

n
 Mean (and range) of aerial census counts during 1987–1993. 
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Discussion 

 

Designating WMAs has provided clear conservation benefits for many functional 

groups and species. Positive WMA effects were observed for large-bodied grazers, 

medium-bodied browsers, carnivores and large ground birds. Abundance of large-

bodied grazers and large ground birds was greatest in PAs, intermediate in WMAs and 

lowest in unprotected areas, while abundance of medium-bodied browsers was greatest 

in WMAs, intermediate in PAs and lowest in unprotected areas. However, of the legally 

huntable species, WMAs appeared to offer marginal benefit for steenbok, while the 

infrequently encountered large-bodied browsers, although not modelled, were rarely 

seen outside of PAs; therefore WMAs appear best-suited for conserving medium-sized 

ungulates while PAs remain crucial for conserving large-bodied herbivores. Galliforms 

were least frequently encountered in WMAs, and were more abundant in unprotected 

areas than in either conservation designations, perhaps reflecting differences in ecology, 

resources or the abundance of competitors and predators. 

There was strong evidence that hunting depressed abundance or incidence of 

several functional groups and individual species. Conversely, and contrary to frequent 

opinion (Verlinden, 1997; Herremans, 1998; Wallgren et al., 2009b), no evidence of 

any direct impact of cattle on wildlife abundance was observed. The clear implication 

here is that, if hunting pressure can be alleviated or at least regulated, WMAs offer 

positive conservation benefits for characteristic Kalahari wildlife.  

 

Contrasts of Kalahari wildlife encounter rates to those of other southern 

African savannas 

 

Before commenting on the performance of WMAs relative to PAs and unprotected 

areas, it is important to first assess how effective Kalahari PAs are at conserving 

wildlife. Although offering some benefits to large-bodied herbivores relative to 

unprotected areas, Kalahari PAs supported much lower abundances of large-bodied 

grazers and browsers for which species-specific models were not developed (giraffe, 

eland, kudu, wildebeest, hartebeest and zebra) than observed in South African PAs; 

because raw encounter rates measured in this study were an order of magnitude less 

than obtained by similar driven transect methodology or other census methods across 



Chapter 3: How well do Wildlife Management Areas manage wildlife?  

116 

 

ecologically comparable PAs in South Africa (Table 3.5). Caveats include the 

possibility that wildlife in South African PAs may be more habituated to vehicles (e.g. 

Ben-Shahar, 1995), that transects may have preferentially sampled habitats where 

visibility was greater or ungulate density higher (as may occur in pans) or that greater 

rainfall or more mineral-rich soils in South African parks may support greater carrying 

capacity; for example much of Kruger National Park receives a mean 400–600 mm y
-1

 

of rainfall, up to 25% greater rainfall than much of central Botswana. However, given 

comparable landscapes (thickets, grasslands and savanna habitats) and variable size for 

PAs reported by Hayward et al. (2007: ranging 70–3410 km
2
), these are not likely to be 

consistent biases. The unavoidable conclusion is that densities of the large-bodied 

grazers and browsers have been depleted within Kalahari PAs. Park guards in Kalahari 

PAs are few and restricted to PA gates, and only occasionally undertake anti-poaching 

patrols. In contrast, most South African PAs are fenced, which restricts unauthorised 

access, and receive a greater degree of anti-poaching patrols (e.g. Hayward et al., 2007) 

than occurs in the Kalahari. 

Aerial counts by DWNP in the Kalahari ecosystem suggested that large-bodied 

herbivores (both browsers and grazers), particularly migratory species, declined 

drastically between 1979/1980 and 2004 (Fynn & Bonyongo, 2010). Wildebeest and 

hartebeest experienced >90% declines and zebra 75% declines, although some species 

fared better, with giraffe and eland apparently unchanged and a 20% increase for 

gemsbok (Fynn & Bonyongo, 2010). Although population crashes were presumed to 

have been primarily drought-induced in the early 1980s (Spinage & Matlhare, 1992; 

Fynn & Bonyongo, 2010) reasons for the lack of subsequent recovery are unclear, 

particularly for species such as wildebeest, hartebeest and zebra. In contrast, in the 

Serengeti wildebeest populations increased sixfold in 14 years following rinderpest 

disappearance in 1963 (Sinclair, 1995). While aerial census methodology is reported to 

have remained consistent, the possibility that the large estimates (approximately 

300,000 animals each for wildebeest and hartebeest during the 1979/1980 counts; Fynn 

& Bonyongo, 2010) may have been overestimated owing to the difficulty of censusing 

animals that congregate in large herds (Buckland et al., 2001) cannot be excluded. 

Moreover, although it has been argued that the lower abundance in 2004 than in 

1979/1980 was due to fencing along the northern border of the CKGR, restricting 

access to the Okavango river system and Lake Xau north of the PA (Fynn & Bonyongo, 

2010), this remains debatable. 
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First, whereas Fynn & Bonyongo (2010) argue but provide no evidence that fencing 

severed movements of animals tracking forage resources, Williamson et al. (1998) 

showed that movements were in search of water, because migrating animals left 

abundant forage inside CKGR for localities with limited forage but plentiful surface 

water. Large numbers of some species died in the early 1980s owing to the fence, 

directly entangled or as a result of thirst and starvation, with an estimated 52,000 (95% 

CI: 28,000–76,000) wildebeest killed in 1983 (Williamson & Mbano, 1988). However, 

since the mid-1980s wildlife in the CKGR has been supplied with water from boreholes, 

with no significant change to grass species composition or habitat degradation reported 

around these watering points after 10 years of use (Makhabu et al., 2002), so that forage 

and water may not be limiting factors within CKGR. 

Second, sampling was intensive on both sides of the fence, but low large-bodied 

herbivore encounter rates were observed on PAs either side of the fence, and in 

adjoining WMAs and unprotected areas. Furthermore, because the west and south of the 

CKGR are unfenced, migratory species should be able to move between their dry and 

wet season foraging grounds inside and outside PAs; Verlinden (1998) showed that 

eland, wildebeest and hartebeest had their dry season ranges restricted to PAs, and the 

wet season centred on neighbouring WMAs. Consequently, one would expect much 

greater wildlife abundance inside PAs than outside, because wildlife were sampled 

during the dry season, but, because the large-bodied herbivore encounter rates were only 

marginally greater in PAs than in WMAs and unprotected areas, this suggests that the 

Kalahari PAs are failing to effectively conserve this group even within park boundaries. 

Because the abundance of lions and leopards―the largest carnivores in the Kalahari 

capable of killing many of the large-bodied herbivores―was also low within PAs 

(although this may partly be because the felids are more active at night), predation is 

unlikely to explain the low large-bodied herbivore abundance. Consequently, the low 

encounter rates for the large-bodied herbivores is suggestive of unregulated hunting, 

independently, or jointly with Allee effects, as an issue limiting the effectiveness of 

Kalahari PAs and impeding population recovery since the 1980s decline.  
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Wildlife response to land-use designation 

 

The mean distance between sampled WMA segments and PAs was 68 km ± 40 SD and, 

because most WMAs abut PAs, greater wildlife abundance was expected in WMA 

wildlife zones (especially closer to PAs) as these areas should be exposed only to legal 

hunting. However, for species benefiting from WMAs abundance was not enhanced by 

PA proximity, although a marginal relationship was found for steenbok (non-significant 

after Bonferroni correction for multiple tests). The lack of any relationship between PA 

proximity and wildlife encounter rate suggested anthropogenic threats are not restricted 

to the WMA livestock-rearing buffer and may persist even within WMA wildlife zones.  

Steenbok were more frequently encountered in WMAs than in either PAs or 

unprotected areas. This may reflect density compensation, following population crashes 

of large-bodied herbivores, as observed in other systems where mid-sized taxa 

compensate for reduced abundance of large-bodied taxa with similar dietary 

requirements (e.g. Peres & Dolman, 2000).  

Abundance of pale chanting goshawk was greater in WMAs than in PAs, but 

encounter rates within WMAs did not vary with distance to park boundary or human 

settlement. Because this species prefers drier areas (Harrison et al., 1997, Fig. 3.3), the 

difference between PA and WMA encounter rates may be due to a combination of 

greater representation of WMAs in the drier south-west of the sampling extent, and 

more open woody vegetation cover in that area, permitting more efficient hunting; the 

species hunts from a perch, rather than on the wing (Herremans & Herremans-

Tonnoeyr, 2000). Wallgren et al. (2009b) found that although small mammal (≤0.2 kg) 

trapping frequency was highest in PAs, abundance, species richness and diversity were 

not different across PAs, WMAs and unprotected areas (except inside cattle ranches), 

which suggests that variations in habitat structure rather than food availability may 

account for the observed abundance patterns of raptors feeding on these small 

mammals, such as pale chanting goshawk.  

Declining encounter rates for large-bodied grazers across the site protection 

spectrum perhaps reflects their status as the preferred target for both legal and illegal 

hunting (Verlinden, 1997; Verlinden et al., 1998); thus cumulative offtake was probably 

greatest in unprotected areas, reduced in WMAs, and lowest in PAs. Although DWNP 

undertake aerial surveys on which WMA hunting quotas are ideally based, counts are 
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often PA-restricted (DWNP, unpublished data); the poor geographic coverage and time-

lag between sampling and quota-setting possibly leads to both spatial and numerical 

mismatches between quotas and true abundance in WMAs. Additionally, perhaps 

because large-bodied ungulates generate greater revenue (Du Toit, 2002; Naidoo et al., 

2009) there is political and financial pressure on DWNP to allocate large trophy hunting 

quotas, despite a lack of scientific basis, so as to entice communities to adopt more pro-

conservation attitudes as per WMA assumptions.  

In Kalahari WMAs, gemsbok constitutes the second largest proportion (by 

number) of huntable species, representing ≥15% of all quotas for 11 of the 15 sampled 

WMAs during 2007–2009 (second to ostrich, which constituted ≥35%: DWNP, 

unpublished data). As the largest legal ungulate quarry, extremely popular with hunters 

(Verlinden, 1997), gemsbok should generate the largest revenue per animal. However, 

scant evidence was found that WMAs benefit gemsbok and the species’s low encounter 

rate in WMAs suggests that either legally permitted offtake is unsustainable or 

unregulated hunting persists. This is a cause for concern given the species’s importance 

to the economic viability of WMAs. Because overall gemsbok numbers are thought to 

have increased in the Kalahari since the 1980s (Fynn & Bonyongo, 2010), as these 

animals are largely restricted to PAs this suggests WMAs have lower positive effects 

compared to strict parks. 

The causes of the paradoxically greater abundance of galliforms (principally 

helmeted guineafowl) in unprotected areas and apparent lower abundance in WMAs 

relative to PAs, are unclear, but there are at least two plausible mechanisms independent 

of hunting by humans, a widely assumed direct threat to galliforms (e.g. Herremans, 

1998). First, galliforms associate with heavily wooded habitats (Harrison et al., 1997), 

which were most prevalent in unprotected areas, largely driven by cattle-driven effects 

up to 10 km around boreholes (Chapter 4). Second, as results from this study and earlier 

published work (e.g. Herremans, 1998) suggest, raptors have greater encounter rates in 

conservation areas, and the increased incidence of raptor predation in these land-uses 

may account for reduced galliform encounter rates. Therefore, availability of food 

resources and/or predator release may override effects of hunting by humans on these r-

selected species, and consequently, galliform hunting quotas need to consider these 

potential ecological trade-offs.  

Furthermore, robust census methodologies are critical, as for instance contrasts 

of sighting records based on unsystematic surveys across land-use types (Herremans, 
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1998) had suggested galliforms were least abundant in unprotected areas; in contrast, 

results from this study highlight the importance of using standardised and narrow strip 

transects because wildlife density in unprotected areas may otherwise be 

underestimated, as likely to have happened in Herremans (1998), owing to the poor 

visibility which effectively results in narrower sampling strips within these landscapes 

relative to land-use types with less woody vegetation cover.  

 

Effects of human settlement and borehole proximity 

 

Previous work in the Kalahari (Verlinden, 1997; Herremans, 1998; Verlinden et al., 

1998; Wallgren et al., 2009b) hypothesised that key mechanisms driving wildlife 

population declines were poaching and cattle-grazing, although their relative importance 

was not tested. At the large spatial scale considered here, results from this study suggest 

that unregulated hunting is a genuine threat while cattle-grazing is not. Hunting effects 

may in part be greater owing to the greater distance over which this threat operates. 

Transhumance is not practised in the study area, and cattle are restricted to within 10 km 

around boreholes (Perkins, 1996). Moreover, the proportion of WMAs and unprotected 

areas that is within 10 km of a borehole is approximately 10% and 70% respectively, 

suggesting a small spatial extent over which cattle-grazing may affect wildlife in 

WMAs (see Chapter 4). In contrast, hunters on horseback can travel much farther than 

10 km.  

Further evidence that hunting effects were more important than cattle-driven 

effects came from contrasts of model support for wildlife abundance across the three 

land-use types. The hypothesis that the effects of PAs and WMAs were similar (Model 

1) should have had strong support for more species and groups, if indeed illegal hunting 

was much reduced in WMAs. This was expected because, for most sampled WMAs, the 

WMA wildlife zone areal extent was at least three times greater than the livestock-

rearing buffer (mean WMA area 4117 km
2
 ± 3835 SD, n = 15; in contrast, assuming a 

20 km WMA livestock-rearing buffer gives an area of approximately 1257 km
2
), so that 

much of the WMA wildlife zone areal extent was far from human settlements. 

Furthermore, human population density in WMA wildlife zones was negligible 

(Appendix 3.1). However, the low encounter rate of legally hunted species in WMA 
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wildlife zones suggests that subsistence hunting persisted. Thus WMAs appear to 

underperform in abating the impacts of illegal hunting. 

However, the extent to which hunting may be a threat is not universal for 

functional groups and may be species-dependent; for example, the larger-bodied ostrich 

and kori bustard were less affected by this threat than the smaller-bodied black and red-

crested korhaans. This may be due to several factors, e.g. korhaans skulk when 

approached rather than fly off and thus may be easier to kill, ostriches may outrun 

hunters, ostrich and kori are less likely to be killed by catapult shots or caught in snares 

(most of which are improvised motion-triggered contraptions made from strings or 

twigs: pers. obs.), and may also be less hunted due to their stronger legal protection 

(kori hunting is prohibited, ostrich only huntable by permit, while no strict regulation 

exists for the smaller korhaans). 

Of the 11 species for which species-specific models could be developed, four 

(gemsbok, ostrich, steenbok and springbok) are huntable trophy species in WMAs, but 

their ecology suggests even legal offtake needs to be managed cautiously. Gemsbok was 

infrequently encountered in WMAs and its hunting therefore seemed unsustainable. 

While steenbok benefited most from WMAs, springbok and ostrich had similar 

encounter rates in WMAs and PAs. But outside PAs, for steenbok, springbok and 

ostrich, habitat variables (flush NDVI and pan proximity) showed strong selection 

probabilities, suggesting that the abundance of these species was strongly determined by 

landscape features, rather than the two main threats (cattle-grazing and bushmeat 

hunting) that WMAs aim to curb. Findings from this study suggest an urgent need to 

incorporate an improved understanding of the ecology and demographics of trophy 

species into quota-setting mechanisms.  

 

Conservation implications 

 

Within Botswana, PAs comprise 17% and WMAs 22% of the national land area. 

WMAs offer tangible benefits to many wildlife species in the study area, greatly 

expanding and buffering the areal extent of conservation areas. However, findings from 

this study highlight the importance of assessing WMA ecological viability, and of 

strictly regulated hunting quotas that are based on ecological rather than economic 

considerations. This is probably more important in those semi-arid areas such as the 
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Kalahari that lack mega-herbivores that provide much greater revenue per animal (e.g. 

Naidoo et al., 2009). Paradoxically, while WMAs in semi-arid areas have low carrying 

capacity, high quotas of trophy ungulates are needed to ensure their economic viability 

owing to the lack of high-value species; for instance during 2007–2009, a mean 97 ± 23 

SD animals per annum of 14 species were availed for trophy hunting in each of nine 

WMAs (mean WMA area 3861 km
2
 ± 3787 SD) sampled during this study (DWNP, 

unpublished data).  

A key assumption of the WMA model is that increased income from trophy 

hunting decreases illegal hunting (Du Toit, 2002; Child & Barnes, 2010). However, 

results from this study suggest that illegal hunting may persist in both WMAs and the 

poorly protected Kalahari PAs. Identification of co-occurring economic activities at 

WMA level, against which wildlife use and species-specific responses could be 

compared, would help clarify the value of wildlife to livelihoods, and identify factors 

optimising WMA effectiveness. If the contribution of trophy hunting to livelihoods is 

minor, there may be little incentive to cease illegal hunting, and the WMA model may 

be inadequate to curb wildlife declines. Results from this study highlight the importance 

of testing the assumptions behind these alternatives to strictly protected landscapes, and 

show that although WMAs have important tangible benefits for wildlife conservation 

they cannot replace PAs. 
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Appendix 3.1  
Wildlife Management Areas (WMAs): Institutional organisation and density of human 

populations and boreholes relative to protected areas and unprotected pastoral lands 

 

The WMAs were established primarily for wildlife conservation, and secondarily for 

sustainable wildlife utilisation for economic returns (Rozemeijer, 2009). The Botswana 

government’s Department of Wildlife and National Parks (DWNP) supported communities in 

forming a legally constituted community trust, to which WMA management was devolved 

(Twyman, 2001). Trusts have an elected management committee that develops benefit-

sharing protocols, and land-use and management plans that guide zoning within WMAs. 

Annually, after DWNP issue WMA-specific hunting quotas, the management committee 

decide how much trophy hunters should be charged for the huntable species. Part of the 

revenues from hunting and tourism are directly paid to households, and the remainder 

invested in community projects selected by the management committee. 

Protected areas are occasionally patrolled by DWNP personnel. In contrast, within 

WMAs, DWNP staff only attend to reported incidents of unregulated hunting or problem 

wildlife animals (e.g. carnivores depredating livestock) that stray near human settlements; 

large dangerous predators are captured and released in parks, but are shot if this is not 

possible (C. Taolo, DWNP, pers. comm.), but it is unclear what impact such offtake has on 

overall carnivore abundance and land-use specific population trends. None of the WMAs 

have regular community-led patrols, although community members (‘wildlife escorts’) 

accompany hunters during sanctioned trophy hunts. Thus the level of enforcement is lower in 

WMAs than in PAs. No coordinated or regular anti-poaching patrols are undertaken in 

unprotected areas; however, DWNP personnel may again attend to incidents of livestock 

depredation, whose frequency is variable, although in a part of this study’s sampled area, 

lions and leopards killed at least ten cattle, goats or sheep per month over the period October 

1999–September 2002 (Schiess-Meier et al., 2007). 

Since designation, none of the PAs have had human settlements within their 

boundaries, except for nomadic non-pastoralist San communities in the Central Kalahari 

Game Reserve (CKGR), totalling a maximum of five communities each numbering fewer 

than 150 people when the park was created in 1961 (Campbell, 1973; Tanaka, 1976). 

Presently, these communities number 10–50 people each (C. Taolo, pers. comm.), following 

large-scale relocation of San from the CKGR since the mid-1990s (e.g. Taylor, 2003). 
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One of the study’s predictions was that WMAs presently experience lower cattle grazing and 

human population pressure than unprotected areas. Current human population density, based 

on the 2001 census estimates (www.cso.gov.bw/images/stories/Census/population_town.pdf) 

of only settlements with more than 200 people as these could be accurately mapped using 

coordinates obtained from the Botswana atlas (Government of Botswana, 2001) and from the 

National Geospatial Intelligence Agency, 

(www.geonames.nga.mil/ggmagaz/geonames4.asp), were compared among WMAs and 

unprotected areas. Comparisons of borehole density exclude boreholes inside PAs and within 

WMA wildlife zones (see Appendix 3.2 for justifications). Human population and borehole 

density were both calculated within all WMA livestock-rearing buffers and unprotected area 

shapefile polygons that intersect sampled 25-km grid-squares. This was achieved by first 

calculating land-use-specific surface areas in each 625 km
2
 grid-square with at least one 

sampled segment. Within each 625 km
2
 grid-square, land-use specific human and borehole 

density was then calculated, based on population estimates of settlements and number of 

boreholes that intersect the land-use-specific polygons, respectively. Overall land-use density 

estimates were obtained by averaging across all polygons designated as either WMA 

livestock-rearing buffer or unprotected area. Density estimates are based on measures 

extracted for each 625 km
2
 grid-squares rather than across the entire land-use-specific 

polygons, because human activities are restricted to 20–40 km around settlements (Chanda et 

al., 2003). Contemporary human population and borehole density within WMA livestock-

rearing buffers are approximately 10% of that across unprotected areas (Table S1). 

Although the lack of historical records and the undated borehole dataset precluded 

confirmation that these densities were always lower in WMAs, there is strong circumstantial 

evidence to suggest this. Most boreholes in the Kalahari were drilled after national 

independence in 1966 (Perkins, 1996) primarily through government grants and livestock 

development schemes, such as the Tribal Land Grazing Policy (TGLP) of 1975 that also 

promoted demarcation and fencing of ranches (Twyman, 2001). Government-financed 

borehole drilling continued through the 1980s, but dropped when TGLP was discontinued in 

1991 (Perkins, 1996). On the other hand, discussions to create WMAs began as early as 1983 

(Cooke, 1985), and WMAs were first officially mentioned as an alternative land-use type in 

the 1986 Fauna Conservation Act (Twyman, 2001). When they were designated, WMAs 

excluded ranched areas. Moreover, with minimal government grants for borehole drilling in 

unfenced communal areas post-1990 (Perkins, 1996), it is unlikely that the greater borehole 
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density in unprotected areas (Table S1) was due to a recent increase in the number of 

boreholes drilled in this land use, relative to WMAs.  

Thus, the assumption that WMAs were preferentially located in areas with lower 

cattle density and have always had lower borehole and human density is not unrealistic. 
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Table S1. Mean (± SD) of human population and borehole density across protected areas (PAs), Wildlife Management Area (WMA) wildlife 

zones (WMA wildlife zone), WMA livestock-rearing buffers and unprotected areas.  

 

Variable PA WMA 

wildlife 

zone 

WMA livestock-

rearing buffers 

Unprotected area F df P 

Borehole density (boreholes km
-2

) 
a
 0 ± 0 0 ± 0 0.003 ± 0.006 0.016 ± 0.018 34.706 273 <0.0001 

Human population density (persons km
-2

) 
b
  0 ± 0 0 ± 0 0.092 ± 0.258 0.998 ± 2.407 9.458 273 <0.0001 

 

a 
All pairwise comparisons significantly different (Tukey HSD, P < 0.05), except between PA and WMA wildlife zone (P = 1.000), 

between PA and WMA livestock-rearing buffer (P = 0.515) and between WMA wildlife zone and WMA livestock-rearing buffers (P = 

0.527).
 

b
  All pairwise comparisons significantly different (Tukey HSD, P < 0.05), except between PA and WMA wildlife zone (P = 1.000), 

between PA and WMA livestock-rearing buffer (P = 0.989) and between WMA wildlife zone and WMA livestock-rearing buffers (P = 

0.989). 
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Appendix 3.2  

Validation of borehole proximity as a measure of cattle density: relation with field-

based estimates of cattle abundance 

 

During field surveys cattle were encountered within a PA and within a WMA wildlife 

zone in only two segments in each land-use type, resulting in similarly low encounter 

rate (mean within PAs 0.006 animals km
-1

 ± 0.10 SD; WMA wildlife zone 0.01 animals 

km
-1 

± 0.15, t448 = 0.711, P = 0.477). Cattle encounter rates were an order of magnitude 

greater within WMA livestock-rearing buffer segments (within ≤20 km of settlements: 

0.73 animals km
-1 

± 2.88 SD), although encounter rates were then two-fold greater in 

unprotected areas (1.47 animals km
-1 

± 6.01 SD). However, although encounter rates 

during driven transects sampled those cattle visible in the immediate vicinity of the 

transect segment on that day, they have large sampling error variance and do not 

provide a full picture of the prevailing cattle density per segment. Consequently, a 

dataset of borehole locations was used, because cattle are restricted to within a few 

kilometres of these watering points (Perkins, 1996) that therefore predict the spatial 

distribution of cattle averaged over longer time periods. 

A spatially referenced borehole dataset (Botswana government: Geological 

Surveys Department, unpublished data) included both privately owned boreholes 

outside PAs, predominantly used for watering cattle, and government-owned boreholes 

provisioning wildlife inside PAs or human settlements throughout the study area. 

Because interest was on boreholes used for cattle-rearing, all government-owned 

boreholes were excluded from analysis. Furthermore, because cattle were effectively 

absent from WMA wildlife zones (as demonstrated by encounter rates from field 

surveys, see above), private boreholes located in these zones were also excluded from 

analysis. Therefore for each transect segment, the distance of the segment start point to 

the nearest private borehole located either in a WMA livestock-rearing buffer or in 

unprotected areas was extracted. Segment mid-points often could not be established 

because many of the tracks along which counts were made were unmapped.  

At the landscape level (25-km grid-square), the following metrics were 

compared: (1) cattle aerial counts obtained from the Department of Wildlife and 

National Parks (for methodology see Verlinden, 1997; the most recent and 

comprehensive data available were from the dry season, June–September 2003: mean 
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3.4 livestock unit km
-2 

± 3.9 SD, range: 0–17.8 livestock unit km
-2

), (2) field counts of 

cattle per 40-km long 100-wide strip transects along which wildlife were sampled 

(mean 1.75 cattle km
-1 

± 2.97 SD, range: 0–13 cattle km
-1

, for 40-km transects) and (3) 

density of boreholes per 25-km grid-square (mean 0.02 boreholes km
-2

 ± 0.02 SD, 

range: 0–0.11 boreholes km
-2

). All three measures were significantly positively related 

(r > 0.4, P < 0.0001; Fig. S1), validating use of borehole data as a measure of cattle 

density. At the segment level (overall mean segment length 3.61 km ± 0.99 SD, n = 757, 

non-PA segments only), field counts of cattle were negatively related to the segment 

distance to the nearest borehole (Fig. S1d). To test whether proximity to borehole acts 

similarly as a proxy of cattle density in different land-use designations, comparisons 

were made of the relation between segment-level cattle encounter rates obtained during 

transect surveys (cattle km
-1

, integer of square-root transformed value) and square-root 

transformed distance to nearest borehole (km), among those segments located in 

unprotected areas, those within WMA livestock-rearing buffers (within 20 km of 

settlements), and those within WMA wildlife zones. Both the density of cattle close to 

boreholes, and the rate at which this declined with increasing distance from the nearest 

borehole, were similar between unprotected areas (Generalised Linear Mixed Model 

incorporating grid-square as a random effect with Poisson error and log link function: 

unprotected area constant −3.880 ± 0.206 SE; coefficient of distance to borehole: 

−0.248 ± 0.073) and WMA livestock-rearing buffers (constant −4.287 ± 0.567, t657 = 0. 

733, P = 0.464; borehole −0.503 ± 0.178, t657= 1.325, P = 0.186). Thus borehole 

proximity acted as a similar proxy for cattle density in both land management types. In 

contrast, in WMA wildlife zones both the intercept and borehole coefficient were close 

to zero, confirming negligible presence of cattle (GLMM constant −18.391 ± 19.008, z 

= −0.968, P = 0.333; borehole −18.391 ± 19.008, z = 0.269, P = 0.788).  
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Figure S1. Relationships between (a) number of boreholes in 25-km grid-squares, (b) 

field count of cattle in 100-m wide 40-km long strip transects, and cattle biomass as 

estimated from June–September 2003 aerial census;(c) field count of cattle per 40-km 

transect and borehole density per 25-km grid-square, and (d) field count of cattle per 

c.4-km segment and segment proximity to the nearest borehole (considering only 

segments in WMAs and unprotected areas). Correlations were performed on square-root 

transformed data; plots show untransformed data. Boreholes in parks and in WMA 

wildlife zones were excluded in calculating both borehole density and segment 

proximity to borehole. 

 

 



Chapter 3: How well do Wildlife Management Areas manage wildlife?  

135 

 

Appendix 3.3 

Detectability of wildlife in relation to land-use specific density of woody vegetation 

 

To examine how detectability of characteristic species varied among segments with 

different density and canopy cover of woody vegetation, the Effective Strip Width 

(ESW) estimated in DISTANCE analysis (Buckland et al., 2001) was compared among 

models in which the detection function was stratified by woody vegetation canopy 

index (Table 3.1). The ESW estimates for individual species (following truncation of 

the 10% most distal records) had large confidence intervals due to low encounter rates; 

therefore, data for similar-sized species were pooled and truncated at 200 m to improve 

the fit of detection functions. The ESW for cattle was used to test for detection bias of 

wild large-bodied ungulates (giraffe, eland, kudu, gemsbok, wildebeest, hartebeest and 

zebra) and ostrich because even after pooling the total number of large-bodied ungulates 

and ostrich, sightings were less than the 40 records recommended by Buckland et al. 

(2001), and thus inadequate for DISTANCE analysis for some of the woody vegetation 

canopy cover index scores (<30 m, 14 groups; 30–80 m, 23 groups; 80–150 m, 21 

groups; >150 m, 147 groups). 

The ESW was greater than 50 m for large and medium bodied size classes 

regardless of the woody cover index (Table S2). Thus for analysis of wildlife responses 

to land-use designation and anthropogenic factors, all data were truncated at 50 m and 

analysed surveys as 100-m wide strip transects. Within these strip transects, there was 

no detection bias for large-bodied ungulates, bustards and ostrich (Table S2) between 

segments with denser or more open cover of woody vegetation. However, abundance 

estimates for medium-sized mammals may have been underestimated by up to 24% in 

densely wooded strata, for which the estimated ESW was only 38 m (confidence 

interval: 14–106 m; Table S2). More densely wooded segments were predominantly 

found in unprotected areas (Chapter 4) relative to WMAs and PAs. Therefore, because 

medium-bodied browsers’ apparent encounter rates in WMAs (the land-use favoured by 

this group, see main text) were at least four times greater than in unprotected areas (Fig. 

3.2c, main text), a 30% underestimation of abundance in the unprotected area would 

make the reported patterns conservative. Similarly, the smallest-bodied species 

considered (galliforms) were most frequently encountered in unprotected areas (Fig. 

3.2o, main text), thus reported results are again conservative. Conversely, jackal 
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encounter rates in unprotected areas were at least half (relative to PA) or one-third 

(relative to WMA) those of conservation areas (Fig. 3.2g, main text), thus the lower 

abundance in unprotected areas may be partly attributable to vegetation-mediated 

encounter rates, inflating the observed difference in density.  
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Table S2. Effective Strip Width (m) for different animal size-classes sampled in 1109 transect segments in Protected Areas, Wildlife 

Management Areas and unprotected areas. For each group, data (truncated at 200 m) are pooled across land-use types, with detection 

function and encounter rate stratified by woody vegetation canopy cover index (Table 3.1). Ninety-five percent confidence intervals in 

parentheses, n = number of groups recorded. 

Taxa 
a
 Relative woody vegetation canopy cover (visibility strata) 

 <30 m 

(253 segments) 

30–80 m (291) 80–150 m 

(232)  

>150 m 

(333) 

Cattle 59 (47–75) 66 (52–84) 65 (49–88) 73 (59–90) 

n 185 172 121 99 

Steenbok, jackal 38 (14–106) 35 (21–61) 47 (41–53) 57 (48–68) 

n 29 67 85 93 

Kori bustard, black korhaan, red-crested korhaan 57 (47–71) 56 (48–67) 55 (48–64) 43 (0–16,863) 

n 67 97 104 493 

Pale chanting goshawk 44 (30–64) 62 (46–83) 48 (38–61) 63 (50–79) 

n 17 48 46 77 

a 
Size-classes: (i) cattle (large-bodied ungulates), (ii) steenbok and jackal (medium-sized mammals), (iii) three bustard species (large 

ground birds) and (iv) pale chanting (perching birds). Cattle data used owing to inadequate sample sizes for large-bodied wild ungulates, 

and suffices as evidence that similar-sized wildlife ungulates are detectable without bias regardless of vegetation density. Pale chanting 

goshawk was the only large perching bird for which a large sample size was available. 
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Appendix 3.4  

Vegetation zones and Normalised Difference Vegetation Index (NDVI) 

 

Segment-specific NDVI scores were extracted as area-weighted means computed using 

the extent of overlap between the 1-km
2
 resolution NDVI raster dataset and the straight 

line connecting the segment’s start and end points, buffered by 1-km. Area-weighted 

means were calculated using the Polygon-in-Polygon Analysis function in Hawth’s 

Tool ArcGIS Extension. 

Segment-level NDVI provided a proxy for the effects of cumulative localised 

rainfall on flush vegetation development (difference in accumulated biomass) between 

the start of the wet season in October 2008 and the end of the wet season in March 

2009. It was important to investigate whether NDVI also represented geographical 

variation in woody cover between vegetation zones, local variation in habitat structure 

as measured by the index of woody vegetation canopy cover, or localised cattle impacts 

close to boreholes (as may be expected if NDVI is influenced by bush cover). 

Thus, the relationship between NDVI and vegetation zone was examined, after 

combining a total of ten finer vegetation types (Weare & Yalala, 1971) mapped in the 

Botswana atlas into four broad vegetation zone classes based on similarities in 

physiognomy (Fig. S2): (1) Grassland landscapes (Lake Ngami Savanna Grassland; 

Fringing Pan Grassland, Delta Grassland, all on fluvisols), (2) Short shrub savanna 

(Southern Kalahari Bush Savanna; Central Kalahari Bush Savanna, both on arenosols), 

(3) fine-leaved tree savanna (Northern Kalahari Tree and Bush Savanna; Ghanzi Bush 

Savanna, on arenosols and luvisols respectively), and (4) broad-leaved tree savanna 

(Ngamiland Tree Savanna; Tree Savanna with Mophane; Mixed Mophane Tree and 

Bush Savanna, on various soils). The NDVI marginally increased along this gradient of 

increasing woody vegetation biomass, being generally greater in tree savanna (classes 3 

and 4) than in shrub savanna or grassland vegetation zones (Table S3, Fig. S2). 

However, the relationship between NDVI and vegetation zone was non-significant, with 

stronger support for the intercept-only model (Table S3). There was considerable 

variation in NDVI scores among segments within the same vegetation zone (Fig. S2). 

Contrary to expectation, however, NDVI was not related to local woody vegetation 

cover (as indexed by the woody canopy cover metric) or to borehole proximity, as again 

the intercept-only model received the strongest support (Table S3). Therefore, segment-
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specific NDVI was considered to primarily represent localised rain showers; local 

thundershowers are a common phenomenon in the study area (Nicholson & Farrar, 

1994). Furthermore, NDVI can be considered as independent of proximity to borehole 

in GLMMs exploring wildlife responses. 

 

 

Figure S2. Relationships between (a) physiognomy-based broad vegetation classes, (b) 

finer-class vegetation zones, and flush Normalised Difference Vegetation Index (NDVI) 

for 1109 individual 4-km segments. Mean NDVI scores were not statistically different 

across the vegetation zones (Table S3). Marks outside boxplots are outliers; numbers 

are sample sizes. Finer-class vegetation zones based on Weare & Yalala (1971), whose 

classification relies on species composition; the classification into four groups in this 

study was based on physiognomy. 
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Table S3. Segment-level Flush Normalised Difference Vegetation Index (NDVI) compared in relation to vegetation zone (grasslands, short 

shrub savanna, fine-leaved tree savanna and broad-leaved tree savanna), segment-level woody vegetation canopy cover index (Table 3.1) 

and borehole proximity, based on relative performance and parameter estimates of Generalised Linear Mixed Models (Normal error, 

identity link) that included grid-square as a random factor. Models consider either (a) effects of vegetation zone and woody vegetation 

canopy cover index (analysed across all land-use types) or (b) vegetation zone, local density of woody vegetation and also proximity to 

borehole, for only those segments within Wildlife Management Areas and unprotected areas.  

 

Model Model predictors 
a
 β ± SE t-value Log-likelihood AIC ΔAIC 

a) Effects of vegetation zone and woody vegetation canopy cover index (n = 1109 segments within n = 103 grid-squares)  

1 int   1909.695 −3813.39 0 

2 int + veg zone    1908.718  +7.953 

 int 0.26 ± 0.03 9.522    

 grasslands  0     

 short shrub savanna 0.03 ± 0.03 0.943    

 fine-leaved tree savanna  0.07 ± 0.03 2.437    

 broad-leaved tree savanna 0.08 ± 0.03 2.333    

3 int +woody veg cover   1902.154  +21.082 

 int 0.31 ± 0.007  44.706    

 <30 m visibility 0     

 30–80 m visibility −0.004 ± 0.004 −0.966    

 80–150 m visibility  0.009 ± 0.004 2.066    
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 >150 m visibility −0.0007 ± 0.004 −0.173    

4 int + veg + woody veg cover   1900.962  +29.465 

b) Effects of vegetation zone, woody vegetation canopy cover index and borehole proximity (n = 757 segments, n = 70 grid-squares)
 
 

5 int   1250.489 −2494.977 0 

6 int + veg zone   1250.095  +6.787 

7 int + BH   1246.400  +10.176 

 int 0.31 ± 0.01 31.043  

BH −0.003 ± 0.002 −1.540  

8 int + veg zone + BH   1245.829  +17.318 

9 int + woody veg cover   1243.424  +20.128 

10 int + veg zone + woody veg 

cover 

  1242.670  +27.638 

11 int + veg zone + woody veg 

cover + BH 

  1238.327  +38.323 

a
 int, intercept; BH, borehole proximity; veg, vegetation zone (relative to grassland as a reference category); woody veg cover, woody 

vegetation canopy cover index. 
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Appendix 3.5 

Table S4. The most important predictor variables driving wildlife species abundance. Shown are the highest ranked models (that account 

for cumulative Akaike weight ≥0.95), averaged model parameter estimates and lower and upper confidence intervals (in parenthesis, 

calculated using unconditional standard errors) based on predictor importance within the highest ranked models, as well as the number of 

predictors (K), AICc, AICc differences (ΔAICc) among ranked models, Akaike weights (ω) and cumulative Akaike weights (Σω). See 

Table 3.3 for model specification, error structures used and criteria for inclusion of habitat variables (distance to pan, altitude mean and 

altitude variance) in a model. 

 

 Model selection  Averaged-model β (lower CI–upper CI) 

Response  

 

Model K AICc ΔAICc ω Σ ω  Model
a
 Settlement 

proximity 

Borehole 

proximity 

NDVI 

Large-bodied 

grazers 

BH+Alt.mean 4 92.76 0.00    0.19 0.19  int+alt.mean 0.19  0.28 −2.20 

Settl+NDVI+Alt.mean 5  0.91 0.12 0.30   (−0.38–0.76) (−0.42–0.98) (−9.10–4.69) 

Settl+ Alt.mean 4  0.96 0.11 0.42      

BH+Settl+ Alt.mean 5  1.26 0.10 0.52      

BH+NDVI+Alt.mean 5  1.61 0.08 0.60      

NDVI+Alt.mean 4  1.90 0.07 0.67      

Alt.mean 3  1.94 0.07 0.74      

BH+Settl+NDVI+Alt.mean 6  2.51 0.05 0.80      

BH 3  2.54 0.05 0.85      

Settl+NDVI 4  3.08 0.04 0.89      

BH+NDVI 4  3.62 0.03 0.92      

NDVI 3  3.64 0.03 0.95      

Settl 3  3.86 0.03 0.98      

BH+Settl 4  4.05 0.02 1.00      

Medium−bodied 

browsers 

Settl+NDVI 4 556.11 0.00 0.73 0.73  int 0.36  −0.003  −6.85 

BH+Settl+NDVI 5  2.02 0.27 1.00   (0.13–0.59) (−0.09–0.08) (−10.70–−2.96) 

Steenbok Settl+NDVI+Pan 5 521.45 0.00    0.42 0.42  int+distpan 0.34 −0.003  −6.04  

 Settl+NDVI 5  0.02 0.42 0.84   (0.14–0.53) (−0.05–0.04) (−9.05–−3.02) 

 BH+Pan+Settl+NDVI 6  2.02 0.16 1.00      

Springbok Pan+NDVI  4 138.70   0.00  0.24 0.24  Int−distpan 0.07 0.05 −15.00  
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NDVI 3  0.18 0.22 0.45   (−0.25–0.39) (−0.25–0.35) (−25.80–−4.16) 

Pan+Settl+NDVI    5  1.33 0.12 0.57      

Settl+NDVI   4  1.49 0.11 0.69      

BH+Pan+NDVI    5  1.55 0.11 0.80      

BH+NDVI    4  1.76 0.10 0.89      

BH+Pan+Settl+NDVI   6  3.29 0.05 0.94      

BH+Settl+NDVI  5  3.45 0.04 0.98      

Pan 3  5.27 0.02 1.00      

Carnivore BH 3 158.43   0.00    0.37 0.37  int 0.01  0.35  −1.83 

BH+NDVI  4  1.13 0.21 0.58   (−0.16–0.18) (−0.20–0.89) (−7.50–3.83) 

BH+Settl   4  2.00 0.14 0.72      

NDVI 3  2.17 0.13 0.85      

BH+Settl+NDVI 5  3.15 0.08 0.93      

Settl+NDVI 4  3.16 0.07 1.00      

Jackal BH 3 140.65 0.00  0.41 0.41  int 0.04 0.29 −0.26 

BH+Settl 4  2.02 0.15 0.56   (−0.20–0.27) (−0.28–0.86) (−3.05–2.52) 

BH+NDVI 4  2.02 0.15 0.71      

Settl 3  2.20 0.14 0.85      

NDVI 4  2.93 0.10 0.95      

Settl+NDVI 3  4.00 0.05 1.00      

Pale chanting 

goshawk (Raptor) 

alt.mean+Settl    4 430.92   0.00 0.17 0.17  int−alt.mean 0.10 0.10 −0.66 

alt.mean+BH   4  0.71 0.12 0.29   (−0.14–0.34) (−0.17–0.37) (−3.09–1.77) 

alt.mean+Settl+NDVI  5  0.74 0.12 0.41      

alt.mean 3  1.20 0.10 0.51      

alt.mean+BH+Settl  5  1.42 0.09 0.60      

Settl 3  1.67 0.08 0.68      

alt.mean+BH+NDVI     5  2.06 0.06 0.74      

alt.mean+NDVI  4  2.07 0.06 0.80      

BH 3  2.29 0.06 0.86      

Settl+NDVI    4  2.41 0.05 0.91      

alt.mean+BH+Settl+NDVI  6  2.46 0.05 0.96      

BH+Settl 4  2.92 0.04 1.00      

Large ground birds Settl+Pan 4 845.34 0.00    0.55 0.55  int−distpan 0.35 −0.01  −0.14  

BH+Settl+Pan 5  1.72 0.23 0.78   (0.19–0.51) (−0.09–0.06) (−1.00–0.72) 

Settl+NDVI+Pan 5  1.83 0.22 1.00      

Ostrich Pan  3 169.56 0.00    0.28 0.28  int−distpan 0.05 0.08 −0.26 

BH+Pan 4  0.86 0.18 0.46   (−0.16–0.26) (−0.22–0.37) (−2.51–1.99) 

Settl+Pan 4  1.12 0.16 0.61      

NDVI+Pan 4  1.89 0.11 0.72      
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BH+Settl+Pan 5  2.68 0.07 0.79      

BH+NDVI+Pan 5  3.01 0.06 0.86      

Settl+NDVI+Pan 5  4.42 0.03 0.89      

BH 3  4.70 0.03 0.91      

BH+Pan+Settl+NDVI 6  4.79 0.03 0.94      

Settl 3  4.79 0.03 0.96      

NDVI 3  4.85 0.02 0.99      

BH+NDVI 4  6.26 0.01 1.00      

Kori Bustard Pan 3 144.25   0.00    0.18 0.18  int+distpan 0.03  0.22  1.05  

BH+Pan 4  0.07 0.17 0.34   (−0.17–0.23) (−0.34–0.78) (−3.61–5.71) 

BH+NDVI+Pan 5  1.38 0.09 0.43      

Settl+Pan 4  1.52 0.08 0.51      

NDVI+Pan 4  1.78 0.07 0.59      

BH 3  1.84 0.07 0.66      

BH+Settl+Pan 5  2.09 0.06 0.72      

Settl 3  2.22 0.06 0.78      

BH+NDVI 4  2.74 0.04 0.82      

NDVI 3  2.89 0.04 0.86      

Settl+NDVI+Pan 5  3.34 0.03 0.89      

BH+Settl+NDVI+Pan 6  3.39 0.03 0.93      

BH+Settl 4  3.57 0.03 0.96      

Settl+NDVI 4  3.79 0.03 0.98      

BH+Settl+NDVI 5  4.62 0.02 1.00      

Black Korhaan BH+Settl+NDVI+Pan+Alt.mean 7 664.49   0.00    0.29 0.29  int−alt.mean 0.59  0.15  −4.88  

BH+Settl+NDVI+Pan   6  0.42    0.23 0.52  −distpan (0.34–0.84) (−0.12–0.42) (−8.13–−1.62) 

Settl+NDVI+Alt.mean+Pan 6  1.54    0.13 0.65      

Settl+NDVI+Pan 5  1.77    0.12 0.77      

Alt.mean+BH+Settl+NDVI    6  2.07    0.10 0.87      

BH+Settl+NDVI     5  2.88    0.07 0.94      

Alt.mean+Settl+NDVI 5  3.46    0.05 0.99      

Red-crested 

Korhaan 

BH+Settl+NDVI+Pan 6 615.99 0.00  0.51 0.51  int−distpan 0.43  −0.20  1.84  

Settl+BH+Pan 5  0.91    0.32 0.83   (0.23–0.62) (−0.46–0.05) (−1.95–5.63) 

Settl+NDVI+Pan 5  2.54    0.13 0.96      

Settl+Pan 4  4.88    0.04 1.00      

Galliforms BH+NDVI 4 327.85 0.00    0.27 0.27  int −0.08  −0.24  4.02  

BH 3  1.10 0.16 0.42   (−0.35–0.19) (−0.74–0.27) (−3.80–11.80) 

Settl+NDVI 4  1.11 0.15 0.58      

BH+Settl+NDVI 5  1.26 0.14 0.72      

NDVI 3  1.39 0.13 0.86      
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BH+Settl 4  2.39 0.08 0.94      

Settl 3  2.92 0.06 1.00      

Helmeted 

Guineafowl 

NDVI 3 247.93 0.00   0.33 0.33  int −0.03  −0.19  3.81  

BH+NDVI 4  1.30 0.17 0.51   (−0.20–0.13) (−0.68–0.31) (−4.20–11.80) 

Settl+NDVI 4  1.31 0.17 0.68      

BH 3  1.71 0.14 0.82      

Settl 3  2.27 0.11 0.93      

BH+NDVI+Settl 5  3.02 0.07 1.00      

Crested Francolin BH 3 174.37 0.00    0.27 0.27  int −0.05  −0.42  3.24  

BH+NDVI 4  0.27 0.23 0.50   (−0.35–0.24) (−1.39–0.56) (−6.80–13.30) 

NDVI 3  1.21 0.15 0.65      

BH+Settl 4  1.81 0.11 0.75      

BH+Settl+NDVI 5  2.19 0.09 0.84      

Settl 3  2.31 0.08 0.93      

Settl+NDVI 4  2.60 0.07 1.00      
a 
Additional parameters: int, intercept; distpan, distance to nearest pan; alt.mean, mean segment altitude; alt.var, altitude variance along 

segment. +ve or – ve prefix shows direct of effect for the habitat variables 
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Abstract 

 

Although bush encroachment is recognised as a major change to the structure and functioning 

of African savannas, its causes remain debated, particularly the role of cattle. The 

juxtaposition of eight protected areas (PAs, 64,000 km
2
, cattle excluded), 15 Wildlife 

Management Areas (WMAs, 72,000 km
2
, separate zones for cattle-rearing and for wildlife), 

and unprotected areas (114,000 km
2
, cattle-rearing unregulated) in Botswana’s Kalahari 

Desert allowed us to examine the response of woody and herbaceous vegetation to gradients 

of cattle density. An index of woody vegetation cover was estimated for each of 1109 4-km 

long segments, sampled over 103 independent 25-km grid-squares. The relative influence of 

cattle density (indexed as borehole proximity), pan proximity, mean altitude, altitudinal 

variance along segment (all three influence soil properties), vegetation zone and flush 

Normalised Difference Vegetation Index (NDVI) on the index of woody vegetation cover 

was examined using Generalised Linear Mixed Models, within an information-theoretic and 

multi-model inference framework. Additionally, field measures of vegetation structure were 

compared across 91 independent sampling points spanning PAs, WMAs and unprotected 

areas. In unprotected areas, shrub density was 300% greater, overall canopy cover of woody 

vegetation 40% greater, canopy cover of encroaching Dichrostachys cinerea and Acacia 

mellifera 200–800% greater, and non-grass herbaceous cover 250% greater than in PAs and 

WMAs, which had similar cover. Canopy cover of shrubs <2 m in height and of Grewia 

flava, as well as grass cover and point frequency of grass bases, did not differ among land-use 

types. In contrast, the index of woody vegetation cover decreased along the gradient 

unprotected areas > PAs ≥ WMA livestock-rearing buffer ≥ WMA wildlife zone, with similar 

tree cover between WMA livestock-rearing and wildlife zones, and between WMA livestock-

rearing zones and PAs. The WMA wildlife zones successfully excluded cattle. Outside PAs, 

proximity to borehole was the most important predictor of woody vegetation cover (selection 

probability, 0.992), with greater woody vegetation cover within 10 km of boreholes. Other 

strongly supported predictors were positive effects of NDVI (0.838), and positive effects of 

pan proximity (0.598), vegetation zone (reflecting greater woody biomass: selection 

probability 0.520), and mean altitude (0.478). Borehole effects did not differ between 

vegetation zones, with the interaction between borehole proximity and vegetation zone not 

supported (selection probability 0.130, compared to a random null variate: mean 0.270, upper 

95th percentile 0.309). No effect of altitudinal variation was found (selection probability 
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0.266). Results suggest that on an ecoregion scale cattle are more important drivers of 

increased bush cover than suggested by continent-wide assessments, and that PAs and 

WMAs mitigate such cattle-induced vegetation structure changes. Based on the efficacy of 

zoning within WMAs to mitigate increased bush cover, results suggest that zoning of 

boreholes and cattle-rearing, coupled with habitat management where feasible, may help 

mitigate rangeland degradation and improve sustainability of cattle-based livelihoods within 

unprotected areas. 
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Introduction 

 

Bush encroachment, the increased density and canopy cover of indigenous woody vegetation 

and concomitant reduction in grass cover over time (Asner et al., 2004), is recognised as a 

rangeland degradation problem across semi-arid regions globally (Eldrige et al., 2011). This 

shrub dominance is particularly important in sub-Saharan Africa, where semi-arid savannas 

cover more than 50% of the land area (Du Toit & Cumming, 1999). Changes in the grass-tree 

balance affect ecosystem functioning through reduced fire frequency and intensity (Illius & 

O’Connor, 1999; van de Langevelde et al., 2003) and have cascading effects on faunal 

assemblages, plant communities and soil properties (Eldrige et al., 2011). Fire, herbivory, 

rainfall and nutrient availability are thought to have the largest influence on the grass-tree 

balance (Sankaran et al., 2004), but studies investigating their relative importance have 

mostly been at small spatial scales, in single (Prins & Van der Jeugd, 1993; Staver et al., 

2009) or non-replicated abutting land-use types (Roques et al., 2001; Wigley et al., 2010), 

reducing the ability to generalise to landscape or ecoregional scales. A recent synthesis 

(Sankaran et al., 2008), using data from 161 sites across Africa, concluded that rainfall was 

the most important driver of site-specific woody vegetation canopy cover, particularly in 

areas with a mean precipitation between 200–700 mm y
-1

; fire return interval, soil 

phosphorus, soil nitrogen, soil clay content, elephant biomass, browser biomass, and grazer 

biomass respectively had decreasing effects. However, sites considered by Sankaran et al. 

(2008) had excluded human use for more than ten years; therefore the relative importance of 

potential causative factors across extensive human-occupied savannas (as opposed to parks) 

remains poorly understood.  

Livestock grazing, primarily of cattle, is often regarded as an important driver of 

landscape-scale bush encroachment (van Vegten, 1984; Du Toit & Cumming, 1999, Riginos 

& Young, 2007), although alternative views exist (e.g. Ward, 2005; Wigley et al., 2010). It is 

important to determine the extent to which cattle may cause widespread bush encroachment 

because, as cattle-rearing is a dominant economic activity across many African savannas, any 

measures to regulate it need to be ecologically, economically, and socio-politically justifiable 

(Abel & Blaikie, 1989). Although advocated primarily to achieve synergistic goals of wildlife 

management and livelihood improvement (Du Toit, 2002; Child & Barnes, 2010), Wildlife 

Management Areas (WMAs) regulate cattle by designating separate zones for livestock-

rearing and for wildlife (hereafter, WMA livestock-rearing buffers and WMA wildlife zones, 
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respectively). Whether this zonation also offers a tool to mitigate cattle-grazing impacts 

remains uninvestigated. The juxtaposition of WMAs abutting unprotected pastoral areas and 

protected areas (PAs) also offers an experimental opportunity to examine the response of 

woody vegetation to gradients of cattle density.  

At localised scales, some understanding exists of the role cattle grazing plays in 

driving bush encroachment (e.g. Mace, 1991; Illius & O'Connor, 1999; Oba et al., 2000; 

Roques et al., 2001). Robust evidence exists that cattle reduce grass forage and increase tree 

cover, based on exclosure experiments (Skarpe, 1990, 1992), fence-line contrasts of sites with 

different stocking density (Roques et al., 2001), and vegetation conditions at frequently used 

sites, such as boreholes, relative to infrequently used sites (Perkins, 1996). However, lack of 

replication spatially and across different stocking densities precludes generalisation, so that 

presumed impacts of a given stocking rate are not transferable in space. Hypothesised 

mechanisms through which cattle cause bush encroachment are that the cattle’s preferential 

removal of grass allows trees to access more water and nutrients (the competition-based 

model: Sankaran et al., 2004), disrupting the grass-tree equilibrium (Skarpe, 1990). Ward 

(2005) suggests that this is more likely if grazing coincided with frequent and plentiful rains, 

which favours tree seedling germination and survival relative to grasses. Alternatively, it has 

been suggested through demographic-bottleneck models (Sankaran et al., 2004) that grass 

removal by cattle or other grazing herbivores reduces fuel-loads, with subsequent reduced 

fire impacts allowing increased woody vegetation recruitment and growth (van de 

Langevelde et al., 2003; Staver et al., 2009). Both models have some empirical support, but 

evidence increasingly supports the conclusion that disturbance-mediated (fire and herbivory) 

factors are more important than competition for resources (water and nutrients: Roques et al., 

2001; Sankaran et al., 2004).  

Using Botswana’s Kalahari ecoregion as a case study, the study’s first aim was to 

quantify associations between cattle density and degree of bush cover across replicate 

localities differing in cattle abundance, land-use, vegetation type, rainfall and terrain features 

(elevation and distance to pan). In the absence of concurrent locality-specific time-series 

dataset of the extent of bush cover and cattle stocking density, this study uses extensively 

spatially replicated estimates of the contemporary extent of bush cover across WMAs and 

unprotected landscapes that were historically subjected to the same land use (unprotected), to 

infer the relative importance of potential predictors of the observed bush cover, following 

Sankaran et al. (2005, 2008). By inference, if cattle are a key determinant of landscape-scale 

increased bush cover even after accounting for confounding climatic, land-use, vegetation 
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and terrain habitat variables, then the hitherto suggestions that cattle-grazing can significantly 

influence landscape-scale bush encroachment (e.g. Du Toit & Cumming, 1999) would be 

supported. The second aim was to test if WMAs are effective at spatially restricting cattle-

rearing, with the expectation that if they did, then cattle encounter rates should be greater 

within the livestock-rearing buffer and negligible in the wildlife zone. The third aim was to 

quantify the extent to which WMAs mitigate cattle-induced vegetation impacts as judged by 

vegetation conditions (shrub density, woody vegetation canopy cover, canopy cover of 

encroaching species and measures of herbaceous vegetation) in these landscapes compared to 

those of PAs and unprotected areas, and use the outcome to comment on options to mitigate 

rangeland degradation more generally. Botswana’s PAs successfully exclude livestock (e.g. 

Wallgren et al., 2009), so it was hypothesised that if cattle are an important driver of bush 

cover extent, and WMAs effectively spatially restrict cattle, then bush cover should be 

greatest in unprotected areas, reduced in WMAs and lowest in PAs.  

The extent to which bush encroachment affects cattle productivity is debatable (Abel & 

Blaikie, 1989; Illius & O'Connor, 1999; Angassa & Oba, 2008). However, a recent meta-

analysis of 244 studies worldwide showed that although the extent to which bush 

encroachment affects savanna structure and functioning (e.g. vascular plant species-richness, 

soil pH or soil moisture) is context-specific, grass cover consistently decreased in bush 

encroached areas (Eldridge et al., 2011). In this study, it was therefore assumed that Kalahari 

livestock-owners, who predominantly keep cattle (a grazer), would prefer savannas with 

more extensive grasslands than areas with greater bush cover.  

The study was conducted across a 250,000 km
2
 region spanning eight PAs, 15 WMAs 

and intervening unprotected areas, lying across four broad vegetation zones spanning a 300–

450 mm y
-1 

rainfall gradient. A total 103 independent 25-km grid-squares were sampled, 

within which transects were driven (total length 4030 km) and an index of woody vegetation 

cover estimated for each of 1109 segments (mean length = 3.63 km). In addition field-based 

measures of vegetation structure were taken at 91 independent points.  
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Methods 

 

Study site 

 

The sampling extent was the area described in Chapter 3 (20–24°S 22–26°E; Fig. 4.1). 

Vegetation is predominantly wooded grasslands and dense bushland, interspersed with low-

growing shrubs, mainly Grewia flava, G. flavescens, Dichrostachys cinerea and Ziziphus 

mucronata, and grass swards dominated by Aristida spp., Eragrostis spp., Schmidtia spp., 

Antephora pubescens and Heteropogon contortus (Weare & Yalala, 1971). 

 

Figure 4.1. Location of the study area in the Kalahari, showing positions of driven transects, 

land-use types (Government of Botswana, 2001) and vegetation zones (Weare & Yalala, 

1971). Protected areas within the sampling extent are (1) Nxai National Park, (2) Nata 

Sanctuary, (3) Makgadikgadi National Park, (4) Orapa Game Park, (5) Central Kalahari 

Game Reserve, (6) Dithopo Game Ranch, (7) Khutse Game Reserve and (8) Jwana Game 

Park. 
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Sampling grid layout 

 

The sampling extent covered three privately owned parks (Jwana Park, Orapa Park and Nata 

Sanctuary) and all five state-managed PAs in central Botswana (total area 64,000 km
2
), 15 

WMAs (72,000 km
2
), and intervening unprotected areas (114,000 km

2
). A 500-km square 

centred on the Central Kalahari Game Reserve was subdivided into 25-km grid-squares, the 

basic sampling units. Replicate and non-contiguous grid-squares, stratified by land-use (PAs, 

WMAs and unprotected areas), were sampled for cattle abundance and vegetation measures; 

some of the analyses pool WMA livestock-rearing buffers and WMA wildlife zones while 

others separate them (see below). Unprotected areas received the greatest sampling effort 

because the largest variation in the primary predictor variable, cattle abundance, was 

expected in this land-use type. The original plan to sample an equal number of grid-squares in 

PAs and WMAs, but this could not be achieved owing to the poor track network within 

WMAs. Sampling was restricted to grids with tracks, because substratum structure prohibited 

off-road driving. A total 103 grid-squares were surveyed (33, 18 and 52 in PAs, WMAs and 

unprotected areas respectively), between 15 April and 8 July 2009, within the dry season 

(spanning April–September: Nicholson & Farrar, 1994). 

 

Historical land-use in WMAs and PAs 

 

As WMAs were preferentially established in regions of low human density and thus of lower 

cattle density during the 1990s (Appendix 3.1), the current condition of savanna vegetation 

within these areas cannot solely be attributed to contemporary management; but reflects a 

combination of historical processes as well as effects of recent zoning. However, time-

periods since designation of PAs (≥30 years) and WMAs (≥15 years: Appendix 3.1) were 

nevertheless considered adequate for land-use-specific effects to become apparent.  

To test whether WMAs effectively restricted cattle to livestock-rearing buffers 

(typically within 20 km of WMA settlements), the mean number of cattle encountered along 

4-km long 100-m strip transect segments in PAs, WMA wildlife zones, WMA livestock-

rearing buffers and unprotected areas, were compared. 
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Habitat measures 

 

Vegetation measures were obtained within each grid-square using 40-km driven transects. 

Along each transect an index of woody vegetation cover was measured, and related to local 

explanatory variables, within consecutive 4-km segments. This scale was considered 

appropriate to capture gradients in cattle impacts close to and away from boreholes, following 

Perkins (1996). To ensure homogeneity within segments, if contrasting vegetation 

physiognomy was encountered before 4-km elapsed, a new segment was begun, with the 

boundary recorded using a handheld GPS. Mean segment length was slightly shorter in 

unprotected areas owing to greater landscape heterogeneity (PAs 3.7 km ± 1.0 SD; WMAs 

3.8 km ± 0.9; unprotected areas 3.5 km ± 1.0; F2, 1108 = 6.564, P = 0.001). For each segment, 

the predominant level of woody vegetation cover was assessed according to the relative 

openness and ease of visibility, using four ordinal categories: (1) very open (visibility >150 

m); (2) open (80–150 m); (3) partly closed (30–80 m); (4) closed (≤30 m) vegetation, 

hereafter referred to as the index of woody vegetation cover. 

To obtain field-based measures of vegetation characteristics from each land-use type 

woody vegetation and undergrowth structure were sampled at the midpoint of one randomly 

selected segment, within each of 91 transects, stratified by land-use type. These data, 

supplemented by similar field measures obtained from a further 51 transect segments (non-

independent, with some replicate segments within individual transects), were also used to 

calibrate and ground-truth the index of woody vegetation cover. At each of these 142 

sampling locations, the following variables were measured:  

1. grass frequency over one hundred equally spaced points along a 100-m transect (this 

was sampled directly away and at least 60–70 m from vehicle tracks);  

2. GPS coordinates;  

3. land form (pan or non-pan);  

4. recent evidence of grazing/browsing incidence by medium- or large-bodied 

herbivores (combining wild ungulates and domestic livestock), recording visible signs 

(single-set tracks, dung or pellet groups, tallying presence in a 10-m × 10-m quadrat) 

on a four-point ordinal scale as: 0, 1–5, 6–10 or ≥10;  

5. visual estimate of percentage ground cover (in 5% increments) of bare ground, grass 

cover and non-grass herbaceous vegetation;  
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6. canopy cover of all shrubs between 0.5 m and 2 m in height (to obtain a metric of 

woody biomass relatively easily accessible as browse forage to most herbivores, but 

also because shrubs ≤2 m directly affected ease of detecting sampled animals);  

7. canopy cover of three key invasive shrub species (Acacia mellifera, Dichrostachys 

cinerea and Grewia flava) in degraded Kalahari rangelands (van Vegten, 1984; 

Skarpe, 1990);  

8.  canopy cover of all shrubs and trees ≥0.5 m (to obtain a metric to relate site-specific 

total woody biomass to Normalised Difference Vegetation Index, NDVI); and  

9. density of all shrubs between 0.5 m and 2 m in height (to obtain a metric of 

abundance of relatively easily accessible browse resources, but also because shrubs of 

this height are more likely to directly affect the ease with which animals can move 

through a given habitat patch). 

Variables 2–5 were measured at the 100-m transect end-point; variables 6–9 were measured 

within variable radius sampling plots (Mueller-Dombois & Ellenberg, 1974) centred on the 

10-m quadrats. The placement of the quadrats was such that two of the sides laid parallel to 

the vehicle track. Canopy cover measures were estimated using Bitterlich gauges (Mueller-

Dombois & Ellenberg, 1974; Friedel & Chewings, 1988), with three observers standing at the 

same spot independently estimating canopy cover and their estimates averaged per sampling 

point. Bitterlich gauges are hand-held ‘T-shaped’ wooden apparatus (in this study, gauges 

with a crosspiece of 10 cm and a holding stick of length 50 cm were used). To use, an 

observer stands at the same place and in turn sights each tree along the holding stick, 

assessing whether its canopy cover is equal to or greater than the crosspiece. Each gauge has 

a percentage factor defined by the crosswire: holding stick ratio (with the dimensions of the 

gauges used in this study, the percentage factor was 1%, meaning that any canopy cover that 

was equal to or greater than the crosswire was equivalent to 1% cover; see Mueller-Dombois 

& Ellenberg [1974] for the theory and mathematical justification). Care is required for 

instance when estimating canopy cover of shrubs whose view is partially obscured by 

vegetation between the observer and shrub of interest; secondly, especially at high shrub 

cover, it is important to distinguish individual shrubs, particularly for species that grow in 

clumps (e.g. Acacia mellifera). These challenges cannot be completely eliminated, but after 

extensive trialling to ensure standardisation of measures by the field-team, these potential 

biases were considered negligible. Preliminary fieldwork tested the efficacy of Bitterlich 

gauges for the study site, recording error that was less than 15% of the mean, without 

directional bias, for canopy cover values of 10–30%; error was assessed relative to 
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independent cover measures by a range ecologist (M. Flyman) who was not part of the 

research team and also used a Bitterlich gauge of different dimensions to that used in this 

study. For the infrequent cases (<5% of all canopy cover estimates) when cover was outside 

this range, it was estimated visually in 5% increments (35, 40 or 45%, maximum).  

Shrub density was estimated as the mean of four point-centred quadrat measures 

(Mueller-Dombois & Ellenberg, 1974),with one taken from each corner of the 10-m quadrats, 

using a rangefinder for distances greater than 10 m and visual estimates for shorter distances; 

for shrubs farther than 1000 m (14 out of 91 points, mostly in pans), distances were recorded 

as 1000 m. Mean inter-shrub distance was consistently less than 10 m across all land-use 

types (PAs 3.7 m ± 3.0 SD; WMAs 4.3 m ± 3.8; unprotected areas 2.4 m ± 2.0; F2, 1115 = 

46.799, P < 0.0001); thus measures from the four quadrat corners do not represent replicate 

measures of the same individual trees.  

The index of woody vegetation cover was strongly correlated with canopy cover of all 

shrubs and trees (Fig. 4.2) and was therefore considered a robust proxy measure for shrub 

cover that could be collected with relative ease from a large number of replicate locations. 

The index of woody vegetation cover did not exhibit any spatial pattern across the sampling 

extent (Moran’s I = 0.258, P = 0.610); therefore vegetation measures from sampled points 

could be related directly to the distribution of land-use types (Appendix 4.1). 

 

Model predictors 

 

Segment scale woody vegetation cover index was related to the following predictors: (1) 

land-use designation (PA, WMA livestock-rearing buffer, WMA wildlife zone, unprotected); 

(2) segment proximity to borehole (a robust proxy measure for cattle density: see below); (3) 

proximity to mineral-rich pans; (4) mean altitude; (5) altitudinal variance along segment 

(estimated from Digital Elevation Models and hypothesised to affect segment-specific soil 

properties; see below); (6) Normalised Difference Vegetation Index (NDVI) between early 

and late rainy season, to provide a measure of local variation in rainfall (see below); (7) 

vegetation zone (four classes; see Table 4.1); and (8) an interaction between borehole 

proximity and vegetation zone (to test whether cattle effects varied across vegetation zones). 

All tests were based on square-root-transformed distance to borehole, because effects were 

expected to decrease non-linearly with distance. Predictors were obtained from remotely 

sensed data and statutory agencies (Table 4.1).  
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Figure 4.2. Relationships between (a) shrub density (rs = 0.432, P < 0.001), (b) canopy cover 

of all shrubs and trees (rs = 0.565, P < 0.001), (c) canopy cover of shrubs <2 m tall (rs = 

0.418, P < 0.001), and an ordinal index of segment-level woody vegetation cover for 142 

individual 4-km segments. Canopy cover was estimated at one sampling point per segment, 

while the index of woody vegetation cover was a composite assessment of perpendicular 

sighting distance along the segment, measured on a four-point ordinal scale, ≤30, 30–80, 80–

150 and >150 m. 
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Table 4.1. Explanatory variables considered as causal factors of greater landscape-scale bush cover in the Kalahari, showing spatial scale 

and data source. All variables extracted for each 4-km segment. 

 

Variable  Units Mean  SD Min Max Description  

Land-use designation 

PA, WMA or 

unprotected 

Nominal 

scale 1–3  

- - - - Botswana atlas (1-km
2
 resolution).  

Cattle impacts 

Distance to nearest 

borehole outside PA 

or WMA wildlife 

zone 

km 13 16 0.08 101 Measured relative to borehole GPS points (correct to less than 10 m) from Geological 

Surveys Department, Botswana.  

Ecological and environmental variation 

Vegetation zone Ordinal 

scale 1–4 

- - - - Ten vegetation zones (Weare & Yalala, 1971, Botswana atlas, 1-km
2
 resolution) pooled 

into four classes: grasslands (Lake Ngami Savanna Grassland; Fringing Pan Grassland; 

Delta Grassland, all on fluvisols), short shrubs (Southern Kalahari Bush Savanna; Central 

Kalahari Bush Savanna, both on arenosols), tall fine-leaved trees (Northern Kalahari 

Tree and Bush Savanna; Ghanzi Bush Savanna, on arenosols and luvisols respectively) 

and tall broad-leaved trees (Ngamiland Tree Savanna; Tree Savanna with Mophane; 

Mixed Mophane Tree and Bush Savanna, on various soils). In GLMMs, analysed as 

ordered factor: grasslands < short shrubs < tall fine-leaved trees < tall broad-leaved trees, 

based on estimated woody biomass gradient in vegetation zones. 

Flush NDVI: mean 

NDVI March 2009 

Index 

potentially 

0.51 0.08 0.03 0.52 Composites raster layer based on min and max NDVI over 10-day period (from the 

VEGETATION programme, www.free.vgt.vito.be; 1-km
2
 resolution raster data) overlain 
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minus mean NDVI 

October 2008  

ranges −2 

to +2 

on vector layer of segments buffered by 1-km, and area-weighted mean NDVI calculated 

based on the extent of overlap between NDVI raster dataset and the straight line 

connecting the segment’s start and end points. Flush NDVI potentially ranges from −2 to 

+2 because raw NDVI ranges −1 to +1. 

Mean altitude m a.s.l. 1043 93 900 1254 Mean altitude of segment (800-m grid-square polygon resolution; mean altitude error: 

±1.13 m (scrub habitats), NASA, www.asterweb.jpl.nasa.gov/gdem.asp).  

Altitudinal variance  m 13 45 0 699 Based on differences between the mean altitude along a segment, and the larger of the 

highest or lowest points along that segment.  

Distance to nearest 

pan 

km 6.18 6.56 0 45 Measured relative to nearest mapped pan ≥1 km
2
 (Botswana atlas, 1-km

2
 resolution 

polygons).  
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Analysis used proximity to the nearest borehole outside PAs and WMA wildlife zones 

as a proxy for cattle density; borehole density was correlated with independent data for cattle 

encounter rates along transect segments and the relationship between observed cattle density 

and borehole proximity was similar between unprotected areas and WMA livestock-rearing 

buffers, so that its use as a proxy across both was validated (Appendix 3.2 in Chapter 3).  

In arid savannas such as the Kalahari, soil moisture drives plant phenology and 

productivity (Nicholson & Farrar, 1994). However, the lack of weather stations in the study 

area precluded use of spatially referenced rainfall measures. NDVI was hypothesised to be a 

good proxy for differences in precipitation and therefore localised vegetation productivity, 

following Pettorelli et al. (2005). Differences in mean October 2008 NDVI and mean March 

2009 NDVI (‘flush NDVI’) were used as a proxy for differential segment-level rainfall 

between the start and end of the wet season, because for the Kalahari these months show the 

largest variation in NDVI (Nicholson & Farrar, 1994). In Generalised Linear Mixed Models 

(GLMMs) of segment-specific NDVI (considering n = 757 non-PA segments, modelled with 

normal error, identity link) that included grid-square as a random factor (n = 70) to account 

for non-independence of segments along a single transect, the intercept-only model was best-

supported, relative to poorly supported models that attempted to relate NDVI separately to 

vegetation zone (ΔAIC +6.787), localised habitat structure (index of woody vegetation cover, 

ΔAIC +20.128), or borehole proximity (ΔAIC +10.176). Therefore NDVI was considered to 

overwhelmingly represent the influence of localised rainfall events on flush vegetation 

productivity, rather than geographic gradients or local response to shrub density. Local 

thunderstorms are a common phenomenon in the otherwise arid Kalahari (Nicholson & 

Farrar, 1994). 

Finer-scale variation in vegetation between higher-elevation sand-dominated 

shrublands and lower-elevation grasslands is not captured by the coarse-scale vegetation 

zones. Therefore area-weighted mean altitude and altitudinal variance along each 1-km-

buffered transect segment were considered as candidate variables in models; altitude 

variation may lead to deposits of nutrient-rich or clay soils in valleys between sandy ridges 

and hills (Table 4.1). While pan soils tend to be more mineral-rich and with high clay 

content, favouring grasses over woody vegetation (Sankaran et al., 2008), it was hypothesised 

that cattle-rearing communities may have preferentially settled near pans due to resource 

availability (grasslands, salt licks and sometimes standing water) potentially increasing the 

likelihood for cattle-induced increased bush cover in these areas. Therefore, distance to the 
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nearest mapped pan in the Botswana atlas (Table 4.1) was considered an explanatory variable 

for correlates of bush cover extent.  

 

Statistical analysis 

 

Three sets of models were considered. First, the effects of land-use designation on field-based 

measures of vegetation structure (shrub and tree canopy cover, shrub density, canopy cover 

of encroacher species and herbaceous vegetation) were modelled using Generalised Linear 

Models (GLMs, with a Negative Binomial error term and a log link function) that controlled 

for vegetation zone; for these tests tall broad-leaved trees and grassland landscapes were 

pooled, as were WMA livestock-rearing buffers and wildlife zones, to increase sample sizes. 

The small sample size for vegetation measures in pans (n = 13, none in WMAs) precluded 

contrasts of vegetation characteristics among land-use types for this habitat; therefore 

analysis of vegetation structure across land-use types was restricted to non-pan locations. 

Second, the index of woody vegetation cover was compared among land-use types 

(PAs, WMA wildlife zone, WMA livestock-rearing buffer, unprotected area) using GLMMs 

that included grid-square as a random effect. Although the index of woody vegetation cover 

was recorded on an ordinal scale (as visibility bands: 1, very open >150 m; 2, open 80-150 m; 

3, partly closed 30-90 m; 4, closed <30 m) it was nonetheless modelled as a numeric count 

(1–4; with Poisson error term and a log link function) because parameter estimates and 

Akaike Information Criterion (AIC) inference based on count data and Poisson error are more 

robust than models of ordinal responses, within freely available statistical packages and the 

GLMM modelling framework (Bolker et al., 2009). GLMMs were fitted using the glmer 

function within the R package lme4, which calculates parameter estimates based on Laplace 

approximations (Bolker et al., 2009). 

Third, having examined the effects of land-use designation on the index of woody 

vegetation cover, the relative effects of variables representing possible underlying 

mechanisms for greater bush cover (borehole proximity, pan proximity, mean altitude, 

altitudinal variance, flush NDVI and vegetation zone) were then examined within an 

information-theoretic multi-model inference approach (Burnham & Anderson, 2002) using a 

reduced dataset comprising only segments in WMAs and unprotected areas because cattle 

were absent from PAs. Outside PAs (n = 757 segments), no predictors were strongly 

correlated (−0.106 < r < 0.195). The ‘dredge’ function within the MuMIn R package was 
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used to develop all possible combinations of candidate variables and to calculate AICc-values 

and model Akaike weights. Model-averaged parameter estimates, unconditional standard 

errors and confidence intervals were calculated based on the 95% model set (for which the 

cumulative Akaike weights were ≥0.95) following Burnham & Anderson (2002). Selection 

probabilities of candidate variables (summed for models in the 95% set) were compared to 

the mean and 95th percentile of the frequency distribution of selection probabilities of 1000 

iterations of a random normally distributed null variable (selected from the range 0–1) 

included with other variables in the multi-model inference procedure, following Boughey et 

al. (2011).  

Spatial autocorrelation in the index of woody vegetation cover and in GLMM 

residuals was examined using Moran’s I, based on Euclidian distances between all segments.  

The R software package (vers. 2.11.1; R Development Core Team, 2008) and ArcGIS 

9.2 (ESRI ArcMap 1999–2006) were used for all statistical and GIS analyses respectively. 

 

 

Results 

 

Influence of land-use on vegetation structure 

 

The segment-scale index of woody vegetation cover (n = 1109) differed among land-use 

types (Fig. 4.3). Index values were greatest in unprotected areas (GLMM unprotected area 

mean index = 1.03 ± 0.09 SE) and broadly similar among other land-uses (PA 0.71 ± 0.10; 

WMA livestock-rearing buffer 0.61 ± 0.12; WMA wildlife zone 0.53 ± 0.11; all pairwise 

comparisons significant, Tukey HSD, P < 0.05, except  WMA livestock-rearing buffers 

versus WMA wildlife zone, P = 0.666; WMA livestock-rearing buffers versus PAs, P = 

0.644). Controlling for land-use, the index of woody vegetation cover was unaffected by 

vegetation zone (GLMM vegetation zone z-value = −0.28, P = 0.782). 

Field-based measures of woody vegetation structure at the 78 non-pan sampling 

points differed among land-uses. Most measures were similar between PAs and WMAs (with 

wildlife zone and livestock-rearing buffer pooled), but differed significantly in unprotected 

areas (Fig. 4.4). In unprotected areas, shrub density was 300% greater (Fig. 4.4f), canopy 

cover of all shrubs and trees 40% greater (Fig. 4.4b), and canopy cover of the encroaching 

shrubs Dichrostachys cinerea (Fig. 4.4c) and Acacia mellifera (Fig. 4.4d) 200–800% greater, 
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relative to PAs and WMAs across which cover was similar. D. cinerea was not recorded in 

WMAs. In contrast, canopy cover of all shrubs <2 m and of Grewia flava did not differ 

among land-use types (Fig. 4.4a, 4.4e).  

Non-grass herbaceous cover was similar between WMAs and PAs but 250% greater 

at sampling points in unprotected areas (Fig. 4.4h). In contrast, the point frequency of grass 

bases (Fig. 4.4g) and grass cover (Fig. 4.4i) did not differ among land-use types. Contrary to 

expectation, the extent of bare ground was greatest in WMAs (Fig. 4.4j), 150% greater than 

at sampling points in unprotected sites, for which extent of bare ground did not differ from 

PAs.  

 

 

 

Figure 4.3. Proportion of segments with different scores of woody vegetation cover in each of 

the land-use categories: PA, WMA wildlife zone, WMA livestock-rearing buffer, unprotected 

area.  
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Figure 4.4. Mean (± SE) field-measured vegetation structure at non-pan sampling points in protected areas (n = 19, black bars), Wildlife 

Management Areas (n = 18, grey bars) and unprotected areas; (n = 42, white bars). Canopy cover of (a) shrubs <2 m tall, (b) all shrubs and trees, 

(c) Dichrostachys cinerea, (d) Acacia mellifera and (e) Grewia flava was estimated using Bitterlich gauges, shrub density estimated using point-

centred quadrats, mean grass bases estimated using the point transect method, and herbaceous cover and bare cover estimated visually in 10-m 

grid-squares at each sampling point. Results of Generalised Linear Models show Wald χ
2
 tests for land-use (Use) and vegetation zone (Veg). 

Significantly different estimated marginal means have different superscript letters (Sequential Sidak multiple comparison test, P < 0.05). 
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Cattle and wild herbivore presence across land-use types  

 

There was no evidence of herbivore droppings or hoof marks at 60%, 50% and 17% of 

sampled quadrats in PAs, WMAs and unprotected areas respectively (n = 91), suggesting that 

overall domestic livestock incidence in unprotected areas was much greater than wildlife 

incidence in PAs. Because herbivore markings were sampled away from tracks this index is 

not susceptible to differential avoidance of tracks by livestock relative to wild herbivores. In 

contrast, 15%, 17% and 24% of sampling points in PAs, WMAs and unprotected areas 

respectively showed signs of intensive use (Fig. 4.5).  

 

 

 

Figure 4.5. Grazing and browsing intensity (marks per 10-m grid-square sampling point) in 

protected areas (PAs), Wildlife Management Areas (WMA) and unprotected areas. 

 

Cattle encounter rates during field surveys differed among the land-use types, with lower 

encounter rates within the WMA wildlife zone than in WMA livestock-rearing buffers and 

unprotected areas (Fig. 4.6). Cattle were encountered within a PA and within a WMA 

wildlife zone on only two occasions (mean encounter rates PAs 0.006 animals km
-1

 ± 0.10 

SD; WMA wildlife zone 0.01 animals km
-1 

± 0.15, t448 = 0.711, P = 0.477). Encounter rates 
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were an order of magnitude greater in WMA livestock-rearing buffers (0.73 animals km
-1 

± 

2.88 SD) than in WMA wildlife zones, while encounter rate in unprotected areas (1.51 

animals km
-1 

± 6.28) was twice that in WMA livestock-rearing buffers. Encounter rates were 

significantly greater in unprotected areas (Fig. 4.6). 

 

Figure 4.6. Relationships between (a) mean cattle count per 4-km segment (animals km
-1

 ± 

SD; F3,1108 = 9.328, P < 0.0001) and (b) mean distance to the nearest livestock-watering 

borehole for sampled 4-km segments (km ± SD; F3,1108 = 209.428, P < 0.0001) in protected 

areas (n = 352), WMA wildlife zone (n = 98), WMA livestock-rearing buffers (n = 94), and 

unprotected areas (n = 565). Significantly different estimated marginal means across land-use 

types have different superscript letters (Tukey HSD P < 0.05). 
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Relative importance of borehole proximity, flush NDVI and terrain variables in 

driving greater bush cover 

 

Borehole proximity was the most important predictor of the segment-scale index of woody 

vegetation cover (Fig. 4.7; selection probability 0.992) with borehole effects most 

pronounced within 10 km of boreholes (Fig. 4.8b). Woody vegetation cover decreased farther 

from boreholes (Fig. 4.7, Fig. 4.8a), but increased with increasing NDVI, at greater distance 

to pan and at higher mean altitude (selection probabilities 0.838, 0.598 and 0.478 

respectively: Table 4.2, Fig. 4.7). Woody vegetation cover index was also greater in the more 

mesic vegetation zones with inherently greater woody biomass (selection probability 0.520: 

Fig. 4.7). Effects of altitudinal variance and a potential interaction between borehole 

proximity and vegetation zone were not supported, with similar or lower selection 

probabilities (0.266 and 0.130 respectively) than a random null variate (mean 0.270, upper 

95th percentile 0.309). No single model received overwhelming support. The best-supported 

model had an Akaike weight of 0.09, with eight other models within two AIC-units and with 

34 models within the 95% confidence model set (Table 4.2). However, all eight models 

within two ΔAIC-units of the best-supported model included borehole proximity and NDVI, 

again emphasising the importance of these factors (Table 4.2). The GLMM normalised 

residuals of the parameter-averaged model testing the relative importance of borehole 

proximity, NDVI and terrain variables on the tree cover index were not spatially 

autocorrelated (Moran’s I = −0.00611, P = 0.977). 
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Figure 4.7. Selection probabilities of variables in the best-supported models accounting for 

cumulative Akaike weights ≥0.95 of the averaged best model (Table 4.2) for key drivers of 

greater bush cover. –ve and +ve indicate direction of effect on woody vegetation canopy 

cover cover index (1 = very open, 2 = open, 3 = partly closed, 4 = closed). Null variable 

(  mean selection probability, 0.270;  95th percentile, 0.309; 1000 replicates, 

see main text). 

 

 

Discussion 

 

Of the factors considered in this study, cattle density had the strongest effect on 

contemporary levels of woody vegetation cover across the Kalahari. Findings from this study 

suggest that the impacts on vegetation of livestock-watering boreholes and associated high 

cattle stocking rates are not restricted to fenced-in areas, but can occur across large-scale 

communal pastoral areas. Although lower cattle encounter rates in the livestock-rearing 

buffers of WMAs relative to unprotected areas may partly reflect a historical legacy of 

preferential placement of WMAs in sparsely populated areas, zonation within WMAs has 

been effective at spatially restricting and mediating impacts of cattle on vegetation. Thus, 

cattle zonation can mitigate cattle-induced increases in bush cover. 
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Figure 4.8. Relationships between an index of woody vegetation cover (shorter sighting 

distances imply closed canopy cover) and distance to the nearest livestock-watering borehole 

for Wildlife Management Area and unprotected area segments only. (a) rs = −0.298, n = 757, 

P<0.0001, (b) n = 184, 154, 221 and 198 for index of woody vegetation cover <30 m, 30–80 

m, 80–150 m and >150 m respectively. 
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Table 4.2. The most important predictor variables driving woody vegetation canopy cover index in Wildlife Management Areas and unprotected 

areas segments only, calculated using Generalised Linear Mixed Models, incorporating a Poisson error term with a log link function, and 

including grid-square as a random effect (n = 70). The highest rank models (accounting for cumulative Akaike weight ≥ 0.95), and averaged-

model parameter estimates (± SE) and confidence intervals (CIs) of candidate variables based on this confidence set (Σωi ≥ 0.95) are shown, as 

well as AICc of best-supported model, AICc differences (ΔAICc), model Akaike weights (ω) and cumulative Akaike weights (Σω).  

 
Model Borehole 

proximity  

NDVI Pan 

proximity  

Vegetation 

zone 

Mean 

altitude 

Altitude 

variance 

Borehole 

/vegetation 

interaction  

AIC ΔAICc ω Σω 

1        331.4 0 0.09 0.09 

2         0.28 0.08 0.17 

3         0.71 0.06 0.23 

4         0.78 0.06 0.29 

5         0.79 0.06 0.35 

6         0.95 0.06 0.41 

7         1.11 0.05 0.46 

8         1.53 0.04 0.5 

9         1.82 0.04 0.54 

10         2.25 0.03 0.57 

11         2.57 0.02 0.59 

12         2.66 0.02 0.61 

13         2.68 0.02 0.63 

14         2.75 0.02 0.65 

15         2.76 0.02 0.67 

16         2.77 0.02 0.69 

17         2.77 0.02 0.71 

18         2.84 0.02 0.73 

19         2.99 0.02 0.75 

20         3.12 0.02 0.77 
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21         3.15 0.02 0.79 

22         3.16 0.02 0.81 

23         3.38 0.02 0.83 

24         3.56 0.02 0.85 

25         3.7 0.01 0.86 

26         4.03 0.01 0.87 

27         4.19 0.01 0.88 

28         4.5 0.01 0.89 

29         4.5 0.01 0.9 

30         4.55 0.01 0.91 

31         4.57 0.01 0.92 

32         4.59 0.01 0.93 

33         4.67 0.01 0.94 

34         4.8 0.01 0.95 

35         4.82 0.01 0.96 

Model 

average 

Borehole 

proximity 

 NDVI Pan 

proximity 

Vegetation 

zone 

Mean altitude Altitude variance Borehole/ 

Vegetation 

interaction 

Constant 

β×10
-1

 −0.80  7.24 0.04 0.30 0.0002  0.0005 −0.0005 5.60 

SE 0.03  0.52 0.005 0.05 0.0003  0.0002 0.005 0.38 

CIs −0.14–−0.02 −0.29–1.73 −0.006–0.01 −0.06–0.12 −0.0004–0.0009 −0.0003–0.0004 −0.01–0.009 −0.19–1.31 
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Can cattle-grazing induce greater bush cover at landscape-scales? 

  

Whether cattle-grazing can induce increased bush cover at landscape scales has been debated 

(Ward, 2005; Wigley et al., 2010), partly owing to the absence of empirical measures of bush 

cover along a gradient of cattle densities. However, outside Kalahari PAs, transect segments 

with greater woody vegetation canopy cover were nearer boreholes than can be explained by 

chance. Therefore, within an ecoregion with consistently low rainfall (300–450 mm y
-1

), 

grazers may be a more important driver of bush cover than suggested by continent-wide 

syntheses (Sankaran et al., 2005, 2008). In these studies grazer biomass had negligible effects 

and mean annual precipitation was the primary determinant of maximum woody cover 

(Sankaran et al., 2005) as well as actual site-specific cover (Sankaran et al., 2008).  

Similar to Roques et al. (2001), results from this study provide evidence that the 

relative importance of determinants of woody canopy cover is largely influenced by the 

historical legacy of land-use (e.g. heavier grazing in WMA wildlife areas before designation 

as livestock-free zones) and more contemporary stocking rates (e.g. lower stocking rates in 

WMAs overall, relative to unprotected areas). But, effects are also scale-dependent, possibly 

largely influenced by the spatial scales at which the landscape heterogeneity occurs. Within a 

landscape, the scale-dependency has at least three components: (1) the distance to which the 

cattle impacts are manifest around boreholes; (2) terrain characteristics such as pan proximity 

and altitude, which may influence distances over which the cattle forage, and (3) the mean 

and variance in prevailing rains across the sampling extent, which may influence patchiness 

and spatial heterogeneity of resources, particularly where isolated rain showers may be 

prevalent such as in the study area. Study findings also provide some support for hypotheses 

that herbivore-induced increases in bush cover may be more pronounced on sandy soils away 

from the nutrient-rich clayey soils (Sankaran et al., 2008), and at higher elevations, 

presumably with less fertile soils. Strong support for the positive effects of flush seasonal 

differences in NDVI is consistent with rainfall being an important variable in regulating 

woody cover across large spatial scales (Sankaran et al., 2008).  

 

Lessons for bush encroachment mitigation in communal rangelands 

 

Cattle encounter rates in WMA wildlife zones were negligible; this study presents the first 

evidence that WMAs restrict cattle. However, this effect of the WMA buffers is aided by the 
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lack of surface water in the Kalahari, which confines cattle-rearing to the vicinity of 

boreholes (Perkins, 1996). Boreholes historically operating within the wildlife zones of 

WMAs are now defunct. Thus, at a landscape scale, cattle effects in the Kalahari are a 

collection of localised disturbance points, and are most pronounced within 10 km of 

functional cattle-watering boreholes. In the study area the proportion of WMAs and 

unprotected area extent falling within 10 km of a borehole is approximately 10% and 70% 

respectively. Thus the impacts of cattle on bush cover can be expected to be particularly 

pervasive in non-protected areas. Because of the very low wildlife encounter rate in 

unprotected areas (see Chapter 3), the contribution of the wild ungulates to the ‘distance to 

borehole’ and bush cover is considered negligible. Findings from this study suggest that if a 

large proportion of the communally managed unprotected area is close to a borehole, then 

aggregations of the localised habitat changes around boreholes could have implications for 

broad-scale vegetation dynamics. Thus, although seemingly localised, borehole impacts have 

significant influence on surrounding vegetation; for instance, despite the uneven spread in 

sampled segments with respect to land-use, rainfall, soil types and vegetation zones, there 

was no spatial autocorrelation among neighbouring segments, suggesting very strong 

pressure from boreholes on local vegetation structure. Consequently, in regions which rely 

predominantly on boreholes to water cattle, extensive cattle-rearing in communal areas can 

still lead to widespread increased bush cover and range degradation, possibly through the 

same mechanisms that have been identified in small exclosures, where preferential grass 

removal by cattle or other grazers reduced fire frequency and intensity, favouring bush 

encroachment (Roques et al., 2001; van de Langevelde et al., 2003; Staver et al., 2009).  

Study findings suggest that strict regulation of borehole placement is critical to 

ensuring long-term sustainability of communal rangelands and cattle-based livelihoods, 

because borehole presence increases the likelihood of increased woody vegetation cover 

through long-term confinement of cattle pressure. The efficacy of the WMA buffers and 

restriction of cattle grazing impacts to within 10 km of boreholes suggest that zonation of 

communal unprotected lands to designate a borehole-free zone that all livestock-owners in a 

village can use to graze cattle, or ensuring large inter-borehole spacing, may abate further 

range-wide degradation. One option to regulate borehole spacing is for joint committees of 

livestock-owners and government officials to assess new application for borehole sinking, 

with the decision to grant permission guided largely by the prevailing stocking rates, rather 

than as done presently where only the physical inter-borehole distance but not stocking 

density is considered (Field, 1978). This model, however, demands for a greater role of 
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livestock-owners’ associations in managing their rangelands, rather than at present where 

rangelands are largely managed by the state. However, the creation of borehole-free grazing 

areas would require that the juxtaposition of existing boreholes has left large undrilled areas 

(perhaps because borehole placement followed dry riverbeds rather than being random across 

the landscape). Where there is presently high borehole density, perhaps compensation could 

be availed to entice livestock-owners to decommission their boreholes and relocate to 

mutually agreed (by the state and livestock-owners associations) localities, as was done when 

WMAs were created. All these policy options could prove controversial, but also predicate 

that there exist secure communal land tenure and credible livestock-owners syndicates to 

guide for example buffer demarcations, permissible stocking rates and any rotational grazing 

that may be imposed to ensure all of the grazing reserve is utilised to avoid localised 

overgrazing; these conditions (e.g. existence of cattle-keepers associations), are met to 

differing levels across the Kalahari.  

Importantly, harmonized use of the grazing zones with other user groups is crucial. 

For instance, whether the WMA livestock-rearing buffers impinge on other livelihood 

activities, and what the community perceptions are about the demarcations, is unknown. 

However, antagonistic attitudes, primarily caused by restrictions on use and harvesting of 

non-timber forest products such as thatching grass and wild fruits, have been reported in 

some Kalahari WMAs (Twyman, 2001). Many rural people probably also collect firewood, 

poles and bushes for making kraals from outside the WMA livestock-rearing buffers. It is 

unlikely that such subsistence collection promotes bush encroachment or significantly affects 

vegetation structural integrity because the use is often localised and relates to exploitation of 

individual species. Thus, the current restriction of human utilisation of vegetation resources 

to the WMA livestock-rearing buffers probably produces unwarranted antagonistic attitudes 

between the state and communities (Twyman, 2001).  

Reconciling the different use-values of savanna landscapes may be even more 

problematic in communal unprotected grazing lands. Because choice of domestic livestock 

and stocking levels is unregulated (Abel & Blaikie, 1989), while public perception of 

deliberate use of fire is different for each user group and may change with time (e.g. Angassa 

& Oba, 2008), investigations into how to achieve livelihood compromises that permit low 

grazing pressure and frequent fires―whose joint effects can reduce bush encroachment 

(Roques et al., 2001, van de Langevelde et al., 2003)―in unprotected areas, are an urgent 

priority. Whether fire frequency and intensity vary across the land use types is unknown, as is 

the differential influence of fire on vegetation conditions in PAs, WMAs and unprotected 
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areas; for example, PAs may suffer more extensive fires due to remoteness and a lack of 

human resources to control those fires, while unprotected areas and WMA livestock-rearing 

zones may suffer more frequent fires due to greater human use and thus increased chances of 

deliberate fires in these landscapes. Within Botswana, there is presently no policy for 

regulated use of fire to manage vegetation. But within unprotected areas, habitat 

management, particularly the use of fire, may be more pragmatic in landscapes that already 

have too many boreholes in close proximity, precluding mutually agreed decommissioning of 

some boreholes or designation of borehole-free grazing zones. 

 

Influence of predictor interaction and data resolution on observed patterns 

 

It was possible to develop a proxy for bush cover, and validate it with field-measures. 

Relating this proxy to possible causative factors within an information-theoretic framework 

enabled us quantify the relative predictor importance without assuming their interactive 

effects or other relationships. Thus, without explicit models of the mechanism through which 

cattle may be driving greater bush cover, this study nonetheless demonstrates a very strong 

positive association between increased cattle density and greater woody vegetation canopy 

cover in human-modified landscapes of the Kalahari. 

Field-based vegetation measures suggest rangeland degradation was most pronounced 

in unprotected areas, reduced in WMAs and lowest in PAs, as per the study’s expectations. In 

contrast, the woody cover index suggests bush cover was greatest in unprotected areas, 

reduced in PAs and lowest in WMAs. While this seemingly contradicts the expectation of 

greater bush cover in WMAs than in PAs, decreasing woody vegetation canopy cover index 

along the gradient unprotected area > PA ≥ WMA livestock-rearing buffers ≥ WMA wildlife 

zone lends support to the hypothesised links between a positive relationship between grazer 

biomass and the woody vegetation cover index. The greatest grazer abundance was expected 

in unprotected areas (due to high densities of cattle). On the other hand, PAs support greater 

ungulate abundance than WMA wildlife zones (Chapter 3). The inference therefore is that 

PAs probably support marginally greater herbivore abundance than the pooled livestock and 

wildlife abundance within WMA livestock-rearing buffers, suggesting that the coarse canopy 

cover index is robust. Moreover, it is plausible that PAs support greater abundance of 

browsers than WMAs, animals which could diminish the extent of woody vegetation cover at 

greater rates within PAs relative to WMAs; this would minimise the contrast in woody 
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vegetation cover between PAs and WMAs, but as the overall patterns of PA woody cover 

being greater than woody cover in WMAs have been retained, the results suggest disparity in 

bush cover between these land-uses is genuinely very large. Consequently, study findings are 

robust, but conservative; land-use contrasts would probably be more pronounced with finer-

resolution vegetation measures. First, a coarse index of woody vegetation cover, estimated 

over a 4-km segment, was used. Second, vegetation contrasts across land-use types were 

based on structural measures rather than species composition or proxies for plant quality, 

which are more sensitive to tests of vegetation differences (Illius & O’Connor, 1999). Thus, 

for instance, because grass was not categorised by quality or palatability, contrasts based on 

the point frequency of grass bases and mean grass cover did not differ among land-use types, 

although poor quality and less palatable grasses were probably more prevalent in the 

intensely grazed unprotected areas (e.g. Abel & Blaikie, 1989). However, greater cover of the 

encroacher species Dichrostachys cinerea and Acacia mellifera, greater shrub density, and 

greater cover of non-grass herbaceous plants in unprotected areas relative to the conservation 

areas were all indicative of more range degradation in the unprotected landscapes (van 

Vegten 1984; Skarpe 1990), reaffirming patterns suggested by the woody vegetation canopy 

cover index. Notwithstanding, WMAs had a much greater extent of bare ground. While this 

would ordinarily be interpreted as a sign of range degradation and perhaps greater soil 

erosion potential (e.g. Illius & O’Connor, 1999; Asner et al., 2004), within our sampling 

extent, this may partly be due to at least two factors that could operate independently of 

herbivore-grazing pressure. First, most sampled WMAs were in the drier south-west 

Botswana, and the lower rainfall (and therefore reduced plant-accessible soil moisture) in this 

region may intrinsically explain the low basal cover relative to other land-uses; for instance, a 

countrywide vegetation sampling transect running from south-west to north-east Botswana 

recorded the lowest percentage cover of both live and dead herbaceous vegetation in south-

west Botswana (Ringrose et al., 1998). Secondly, much of south-west Botswana is underlain 

by deep sandy-textured arenosols (Government of Botswana, 2001), and due to this soil type 

the vegetation predominantly comprises tufted grass and isolated rather than continuous 

herbaceous stands (e.g. Skarpe, 1986), which may account for the greater extent of bare 

ground at sampling points, most of which were within WMAs. 
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Conservation and management implications  

 

Both PAs and WMAs are effective models to mitigate cattle-induced increases in bush cover, 

relative to unprotected areas. The evidence from WMAs suggests that savanna ecosystem 

structure with greater grass cover than woody vegetation (presumably preferred by cattle 

owners) within communal grazing areas could be maintained through cattle zoning, but 

further investigations are required. To assure minimal cattle-induced increases in bush cover 

a recommendation from this study is that rangeland management should not focus only on 

stocking rates, but consider the spatial distribution of boreholes. With growing human 

populations resulting in increasingly sedentary cattle-rearing and greater reliance on 

livestock-watering boreholes across African savannas (Du Toit & Cumming, 1999), coupled 

with changing perceptions on possible mitigation measures of bush encroachment (Angassa 

& Oba, 2008), improved understanding of the best means to minimise adverse bush 

encroachment impacts on agricultural productivity and conservation goals remains crucial. 

New approaches are required.  
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Appendix 4.1  

Spatial distribution of transect segments, categorised by land-use type and by woody vegetation canopy cover index. 

 

(a) Geographic spread of transects categorised by land-use, (b) distribution of woody vegetation canopy cover index (ordinal scale: 1 = very 

open, 2 = open, 3 = partly closed, 4 = closed). There were significant differences in x,y coordinates for segments from the three land-uses (x-

coords F2,1108 = 153.759, P < 0.0001; y-coords F2,1108 = 77.997, P < 0.0001). All pairwise comparisons different (Tukey’s HSD, P < 0.0001) for 

y-coordinates, and for all of x-coordinates except between PAs and unprotected areas (P = 0.981). Despite uneven distribution of transects 

relative to land-use (and rainfall), and while woody vegetation canopy index differs between land-use types (Fig. 4.3), there was no spatial 

autocorrelation in the woody vegetation canopy cover index at the landscape-scale (Moran’s I = 0.258, P = 0.610). Thus, site-specific landscape 

correlates and borehole proximity are key explanatory factors of observed segment-level woody vegetation canopy cover (n = 1109 segments). 
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 Abstract 

 

Knowledge of what determines annual movement patterns, home range size and site-

fidelity is fundamental to the design of species conservation programmes. However, 

this information is unavailable for most bird species, particularly in dryland Africa. 

Drylands experience large spatial and temporal variation in food resources, forcing 

some species or populations to adopt patterns of movement or home range use that 

lessen the negative impacts of the stochastic resource availability. Using data from 

satellite transmitters deployed on six Kori Bustard Ardeotis kori in Botswana’s Central 

Kalahari Game Reserve during December 2008–March 2011, this study investigated 

the effects of season (wet, dry) on home range size, site-fidelity and association with 

pan (low-lying areas on mineral-rich clay soils) and non-pan habitats (upland sandy 

soils). Home range estimates were variable across individuals and for individual birds 

sampled over multiple periods of the same season. Across all birds, the largest home 

range over the entire sampling period (1580 km
2
, Minimum Convex Polygon, MCP; 

1619 km
2
, 95% kernel; 302 km

2
, 50% kernel) was respectively 13 times, 38 times, or 

50 times greater than the smallest (122 km
2
, MCP; 43 km

2
, 95% kernel; 6 km

2
, 50% 

kernel). The mean home range (measured over the entire sampling period for each 

individual) for the six birds was 528 km
2
 ± 574 SD (MCP), while 95% and 50% kernel 

estimates were 420 km
2
 ± 238 and 77 km

2 
± 112, respectively. Across all birds, 

seasonal home range size did not differ between wet (n = 12) and dry (n = 7) seasons 

based on MCP (wet 278 km
2
 ± 396 SD, dry 79 km

2 
± 44, t16 = 1.619, P = 0.125) and 

95% kernels (wet 356 km
2
 ± 628, dry 118 km

2 
± 144, t16 = 1.673, P = 0.114), but 50% 

kernels were marginally larger in the wet than the dry season (wet 65 km
2
 ± 120, dry 24 

km
2 

± 33, t16 = 1.930, P = 0.072), controlled for individual birds and number of 

telemetry fixes. However, differences in seasonal home range extent were up to an 

order of magnitude for some individuals; where this occurred, the wet season home 

range was consistently larger than the dry season home range. Birds were sedentary and 

did not exhibit any migratory tendencies. There was strong site-fidelity, with dry 

season home ranges largely confined within the boundaries of the wet season ranges, 

and with similar overlap of the MCP, 95% kernel and 50% kernel and regardless of the 

seasonal pairs (wet–wet, wet–dry, dry–wet, dry–dry) considered. Only one bird had a 

multi-modal home range, with seasonal home ranges separated by up to 30 km. Pan 
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habitats were not used more than expected by chance during the wet season or during 

the entire sampling period, given relative availability within the 95% kernel home 

ranges of individuals. However, during the dry season birds were more often located 

within pans than expected by chance (Wilks Λ = 0.545, t5 = −2.0436, P = 0.056). 

Findings suggest that food resource affects Kori movement patterns, home range size 

and site-fidelity, although sample sizes were modest. Improved understanding of 

habitat preference and use, disaggregated by sex and age, would enhance knowledge on 

the abiotic and biotic factors that may underlie the mechanisms accounting for the 

observed sedentary lifestyle, and establish whether Kori are likely to be sedentary 

throughout much of their geographic range. 
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Introduction  

 

Over 41% of the world’s land surface comprises drylands (Reynolds et al., 2007), 

characterised by an annual mean potential evapotranspiration at least 1.5 times greater 

than the annual mean precipitation (Safriel et al., 2005), and discontinuous vegetation 

cover with more productive patches largely restricted to watercourses. Four dryland 

subtypes of increasing aridity are recognised: dry sub-humid (predominant biome: 

woodland), semi-arid (semi-desert), arid (desert), hyper-arid (desert: Safriel et al., 

2005); all four can occur in savannas. The vegetation-patch patterns and erratic rains 

that drive the phenology of these ecosystems (e.g. Beatley, 1974) result in spatial and 

temporal variation in food resources for vertebrates, especially of seeds, fruits and 

invertebrates. In semi-arid and arid ecosystems in the tropics, many bird species 

undertake nomadic movements, as a mechanism to cope with this intermittent food 

supply (Dean, 2004); nomadism entails moving from one area to another and staying 

only long enough to utilise resources there and possibly breed before moving to another 

locality (Newton, 2008). In Africa and Asia, nomadic species are primarily sandgrouse 

(Pteroclididae), larks (Alaudidae) and sparrows, weavers and finches (Passeridae), while 

honeyeaters (Meliphagidae), parrots (Psittacidae) and crows (Corvidae) comprise the 

majority of Australia’s nomadic species (Dean, 2004). Nomadic species are 

predominantly seed-eaters (Dean, 2004), but other trophic groups are also frequently 

nomadic, including insectivores and raptors that prey on the smaller-bodied birds that 

congregate to exploit opportunistic food resources, or on small mammals whose 

abundance increases in response to plentiful resources (Newton, 2008). An 

understanding of the extent and ecological correlates of movement patterns, home range 

size, and site-fidelity is lacking for many tropical bird species. These knowledge gaps 

may compromise the effectiveness of conservation planning for species exposed to 

particular threats during extensive movements. 

Bustards (Otididae) are the largest-bodied flying birds in the semi-arid and arid 

tropical regions of Africa, Eurasia and Australia. The basic ecology of many bustards, 

especially African species, is unknown. For example, while widely recognised as 

omnivores (Collar, 1996), for most species the relative importance of various food items 

is unknown, making it difficult to gauge the extent to which bustards may move in 

response to rainfall-driven pulses in food resources. Although nomadism is more 
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influenced by diet than phylogeny (Newton, 2008), the positive relationship between the 

per capita energy cost of walking and body weight (Schmidt-Nielsen, 1972) suggests 

that the large-bodied bustards, which (like all Otididae) are strictly terrestrial, may more 

likely exhibit the alternative of a resident strategy rather than opportunistic nomadism, 

as long as occupied patches provide the minimum resources to meet basic energy needs 

throughout periods of resource scarcity. That even large-bodied bustards are capable of 

long distance migration if breeding habitats are unsuitable during winter periods is 

exemplified by the Great Bustard Otis tarda which migrates across much of its 

European range (Streich et al., 2006). The largest bustards are of the Ardeotis genus (A. 

arabs, A. australis, A. nigriceps, A. kori) with body weights ranging 4–12 kg (Collar, 

1996). Three of these bustards are thought to undertake long-distance nomadic 

movements in the non-breeding season: A. arabs (Nikolaus, 1987), A. australis 

(Ziembicki & Woinarski, 2007) and A. nigriceps (Dutta et al., 2010). However, only 

Ziembicki & Woinarski (2007) provide quantitative and objective evidence of large-

scale distribution and abundance changes synchronised with rainfall, based on mail 

surveys with landholders from much of the species’s range. In contrast, evidence of 

nomadism for A. arabs (Nikolaus, 1987) and A. nigriceps (Dutta et al., 2010) is based 

on apparent seasonal reduction in numbers at localised sites, mostly small parks. The 

extent to which these apparent reductions are attributable to seasonal changes in habitat 

use, decreased visibility when breeding season mating displays cease, variable observer 

effort or changes in detectability due to changed vegetation conditions at the same 

localities, is unknown.  

Kori Bustard A. kori has an extensive geographic range spanning much of 

southern and East Africa, although its numbers show evidence of decline (Senyatso et 

al., in review; Chapter 2). Kori movements are poorly understood (Collar, 1996). It has 

been suggested that the species undertakes long-distance movements in response to 

rainfall or food supply (Collar et al., 1986; Collar, 1996), largely based on anecdotes. 

For example, Nikolaus (1987) remarked that birds in south-east Sudan were local 

migrants that embarked on distinct seasonal movements, inferred from opportunistic 

sight reports in only some months of the year. Similarly, Britton (1980) opined that in 

Kenya Kori were probably resident, but with apparent visits to Tsavo East National 

Park by some birds interpreted as evidence for regular movements. Furthermore, 

apparent increases in Kori abundance on the eastern end of its range in South Africa 

were taken to suggest large-scale eastward movements during the non-breeding season 
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(Snow, 1978); however, most of these records are now thought to have been 

misidentified Denham’s Bustard Neotis denhami (Harrison et al., 1997). Based on atlas 

records from the former Transvaal Province in South Africa, Tarboton et al. (1987) 

suggested Koris undertake nomadic movements, as judged by their presence at some 

localities only after rains. By contrast, a widely held viewpoint in southern Africa is that 

Koris have no regular movements, based on Southern Africa Bird Atlas Project 

seasonality maps (SABAP; Harrison et al., 1997), where changes in the proportion of 

monthly records reporting a species across eight geographic zones in southern Africa 

were assumed to indicate movement across those zones. Moreover, Young et al. (2003), 

based on bi-annual coordinated counts across farmlands in South Africa, also suggested 

Kori do not undertake systematic movements. The latter two studies, however, were 

limited by small sample sizes and data pooled across large geographic areas within 

which seasonal movements might go undetected owing to the coarse spatial resolution. 

Moreover, Young et al. (2003) did not correct for observer effort, and both studies 

assessed movement based on population-level presence/absence trends, which may 

mask movements by individual birds.  

In contrast Osborne & Osborne (1999), reported seemingly nomadic and 

dispersive movements in Namibia, based on radio-telemetry and vehicle-based surveys. 

Even so, their results may be biased, owing to limitations of relocating birds in an area 

with a poor road network when radio transmitters are used (although they occasionally 

used aircrafts to search some parts of their study area). Osborne & Osborne (1999) also 

reported that home range sizes based on Minimum Convex Polygons (MCPs) were 

larger in the dry than the wet season; however this may also be biased because MCP-

based home ranges are sensitive to sample sizes (Laver & Kelly, 2008), and the low 

number of re-locations by Osborne & Osborne (1999) may not have been sufficient to 

reach asymptotes for Kori home ranges. Their home range estimates were typically 

based on 20–50 locational fixes for the entire year, for example, a mean 28 locations per 

bird for the period 1997–1998 (range: 11–55, n = 10 birds: Osborne & Osborne 1999). 

Satellite telemetry, which provides unbiased estimates of movement and home 

range extent, was used to study Koris in Botswana’s Central Kalahari Game Reserve 

using, with three main aims. The first was to determine home range size during both the 

wet (breeding) and dry (non-breeding) seasons; the hypothesis was that during the wet 

season, when food resources are plentiful, Koris should have less extensive movements 

and thus smaller home ranges. The second aim was to test for site-fidelity, and establish 
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whether Koris undertake long-distance seasonal movements between breeding and non-

breeding areas. The third aim was to examine the influence of pan habitats on seasonal 

movement patterns and home range use. Pans, which are low-lying areas on nutrient-

rich clay soils where moisture is retained longest, and which often therefore hold 

extensive grasslands, are key resource areas for many Kalahari ungulates (Wallgren et 

al., 2009), with recent work suggesting that greater Kori numbers are also recorded 

nearer these habitats (Chapter 3). It was therefore hypothesised that pans may provide 

patches with largely predictable and less fluctuating food resources compared to higher-

elevation sand-dominated shrublands, and that Kori with home ranges near or 

overlapping pans may become restricted to these habitats during periods of low resource 

availability (particularly during the dry season).  

The specific questions were: (1) How large are Kori home ranges and does the 

size change through the year?; (2) How much site-fidelity is there in Kori?; (3) Do Kori 

undertake long-distance seasonal or nomadic movements?; and (4) To what extent do 

Kori associate with pan habitats within their home ranges and is this season-dependent? 

 

 

Methods  

 

Study area 

 

The study area, calculated as the MCP enclosing all locational fixes, covered 3029 km
2
 

of the Central Kalahari Game Reserve (CKGR, 21–24°S 22–26°E; Fig. 5.1), within the 

Kalahari Desert, Botswana. The study site was located within the semi-arid Northern 

Kalahari Tree and Bush Savanna vegetation zone (Weare & Yalala, 1971), between the 

350 mm y
-1 

and 450 mm y
-1

 rainfall isohytes, with predominantly summer (October–

March) rainfall (Nicholson & Farrar, 1994, Fig. 5.2). The woody savanna comprises tall 

trees, predominantly Lonchocarpus nelsii, Terminalia serecia, Acacia erioloba and A. 

mellifera, interspersed with low-growing shrubs, mainly Grewia flava and G. 

flavescens, and on pan edges Cataphractes alexandri. Predominant grasses are Aristida 

spp., Eragrostis spp. and Schmidtia spp. (Weare & Yalala, 1971). Within this broad 

vegetation zone four habitat types were recognised (following Makhabu et al., 2002): 

fossil river valley and pan habitat predominantly comprising grasslands on low-
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elevation clay soils; gently undulating dune and interdunal (valleys between dunes) 

habitats, both comprising mosaics of woodland, shrublands and grasslands on sandy 

soils; and plain habitats comprising mixed shrubs and grasslands with few large trees on 

mainly loamy soils.  

Hunting has been prohibited since the park (55,000 km
2
) was established in 

1961 (Campbell, 1973), and the nearest human settlement was at least 40 km from the 

study area. CKGR is thought to support a large population of Kori (Tyler & Bishop, 

1998), but quantitative estimates are unavailable. However, driven DISTANCE surveys 

in December 2008–March 2009, covering 1211 km of line transects, recorded a total of 

245 birds, 86% of them on pans, 11% in dune and interdunal and 3% in plain habitats, 

with estimated densities of 1.71 Kori km
-2 

± 0.42 SE on pans and 0.24 Kori km
-2 

± 0.10 

in dune habitats, while observations from plains were too few to draw any biologically 

meaningful density estimate (Senyatso et al., unpublished data). 

 

Trapping and satellite tracking  

 

Birds (six females, two males) were caught during 8–11 December 2008 (four birds) 

and 4–6 August 2009 (four birds, Table 5.1), using vehicles to herd them into 100 m × 3 

m mono-filament gillnets hung on trees, following methods used elsewhere on Kori 

(Osborne & Osborne, 1999) and Bengal Florican Houbaropsis bengalensis (Gray et al., 

2009). Birds were fitted with back-pack harness-mounted satellite Platform Transmitter 

Terminals (PTTs), four with 105-g battery-powered GPS PTTs (Microwave Telemetry, 

USA) programmed to take one locational fix at 10:00 h GMT every day and four with 

65-g solar-powered GPS PTTs (North Star Telemetry, USA) programmed to take one 

fix every four hours. The initial decision to collect one fix per day was borne out of the 

need to maximise battery life. But, as these PTTs provided sporadic high resolution 

location fixes (see below), for the second batch, solar-powered PTTs were preferred, 

and a sampling regime that allowed a reading every four hours was employed so as to 

increase the likelihood of a dataset with a large number of location fixes. The PTTs 

weighed less than 2% of the Kori body weights, and were therefore considered to have 

negligible negative effects. Birds were released within 20 minutes of capture, and no 

capture-related myopathy, a common problem with captured bustards (Marco et al., 

2006), was recorded. However, two birds died within two months of capture, a male and 
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female: the male bird was shot, based on assessment of recovered PTT (C. Bykowsky, 

Microwave Telemetry, pers. comm.), while the female bird was a presumed mortality 

rather than transmitter failure because the PTT transmitted from a stationary point for 

several weeks, although the PTT was never recovered. These two birds are excluded 

from subsequent analysis owing to too few locational fixes. 

Locational fixes were obtained via satellites managed by the Argos CLS service 

(Argos, 2011). A total 4770 locations were retained for analysis, comprising GPS fixes 

(error <26 m), and Argos fixes (determined by satellite Doppler shift) of class 3 (error 

<250 m) and class 2 (error 250–500 m: Argos, 2011). Analysed data included Argos 

class 1 (error 500–1500 m) records for three birds, 84381 (64/138 records), 84382 

(21/139 records) and 84383 (83/159 records), to ensure a minimum sample size of 15 

location fixes per season; these records introduced minimal bias because for each bird 

they were all within an MCP delineated by the finer-scale records. In addition to 

removing from the dataset location fixes with large spatial error (classes 0, A and B: 

errors exceed 1500 m or unquantified, Argos, 2011), analyses also excluded (applicable 

to North Star PTTs only) location fixes obtained between 21:00 h and 05:00 h (GMT+2) 

when the birds were roosting and stationary, to avoid biasing home range estimates 

towards these spatially non-independent points. Thus all fixes analysed relate to diurnal 

activity. To filter potential spatially duplicated records in the remaining dataset, for each 

bird all location fixes within 30 minutes of each other were examined, and one random 

record (among those with the least spatial error) was retained. Thirty minutes was 

deemed sufficient for a Kori to have walked more than 1.5 km from a particular point, a 

distance exceeding the coarsest spatial error of the Argos fixes used, so records were 

considered spatially independent, following Rooney et al. (1998). However, the time 

interval required to achieve two non-autocorrelated successive locational fixes (Swihart 

& Slade, 1985) was neither statistically tested nor considered in this analysis because 

temporal autocorrelation does not affect home range estimators (De Solla et al., 1999; 

Kie et al., 2010), unlike spatial autocorrelation where duplicate or extremely close 

location fixes may result in non-convergence during the selection of smoothing factors, 

particularly for Least-Squares Cross Validation (Rodgers & Kie, 2010). 
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Figure 5.1. Location of the Central Kalahari Game Reserve within Botswana and predominant habitat types within parts of the reserve 

where Kori Bustards were caught, tagged and released. 
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Figure 5.2. Mean monthly rainfall in the vicinity of the study site, measured at Rakops 

(50 km NE), Maun (110 km NW) and Ghanzi (200 km SW) of study site (see Fig. 5.1). 

 

Home range estimates  

 

Location fixes were separated into wet seasons (October–March, corresponding to the 

Kori breeding season in southern Africa, Allan & Osborne, 2005) and dry seasons 

(April–September, non-breeding; Fig. 5.2), hypothesised to correspond to high and low 

resource availability respectively. Individual home ranges were estimated for each bird 

per season (hereafter ‘seasonal home ranges’) and for the entirety of the sampling 

period. Using simulations, Seaman et al. (1999) recommend that a minimum 30–50 

location fixes be utilised to obtain stable kernel-based home range, and because each of 

the six Kori considered had much greater total number of location fixes (median = 434, 

range: 139–1812, Table 5.1), available sample sizes were considered adequate to obtain 

stable home ranges over the entire sampling period. For each bird, season-specific home 

ranges were estimated for each season with more than 15 location fixes in that season, 

following Hingrat et al. (2004); a strong correlation between home range size and 

number of telemetry fixes can bias estimates if sample sizes are limited (Seaman et al., 
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1999; Laver & Kelly, 2008), but results from linear mixed models that related home 

range size to season, corrected for individual bird and number of telemetry fixes (see 

below) confirmed that using as few as 19 fixes per season (minimum seasonal sample 

size: Table 5.1) was not a concern in this study. To estimate home range size, three 

measures used in other bustard studies (e.g. Hingrat et al., 2004; Gray et al., 2009) were 

adopted to facilitate future comparisons: 100% MCPs, 95% kernel and 50% kernel 

(core) home range. 

Minimum Convex Polygons were constructed; although these have been 

criticised as an inaccurate measure of home range size (Laver & Kelly, 2008), MCP 

home ranges provide a measure of the maximum area over which a Kori may range, an 

important parameter for conservation planning. Home range kernels were modelled 

based on bivariate normal fixed-kernels, 100-m grid-cells, and with x, y data 

standardised to unit variances, using HOME RANGE TOOLS for ARCGIS (version 1.1; 

Rodgers & Kie, 2010). Selecting a smoothing factor (Kenward, 2001) by Least Squares 

Cross-Validation (hlscv) underestimated home ranges owing to over-smoothing and 

delineation of perforated home ranges (with several intermittent contours rather than a 

single one), or convergence to the reference smoothing factor (href). Therefore href  was 

used for all home range estimates, because this smoothing factor gave similar or better 

home range fit―based on extent of home range perforation―than proportions of href 

following an ad hoc approach that tested values from 0.2 to 0.95 times href in increments 

of 0.05 (Rodgers & Kie, 2010). Using a single smoothing factor rather than multiple 

factors also facilitates comparisons with other studies, as per Laver & Kelly’s (2008) 

recommendations. 

 

Home range overlap, seasonal movements and site-fidelity 

 

Whether Kori undertook seasonal movements was examined by calculating the extent of 

each bird’s home range overlap between consecutive wet and dry season (wet-to-dry 

and dry-to-wet transitions considered separately) for MCP, 95% and 50% kernel home 

range estimates. Static interactions—areal overlaps that do not account for the 

probability of use within a home range (Powell, 2000)— were used, because the 

primary interest was testing whether separate wet and dry season home ranges exist. 
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Table 5.1. Sex and age of tracked Kori Bustard, satellite transmitter identity (PTT ID), transmitter type, deployment date, tracking life and 

number of location fixes obtained. 

 

PTT ID
 
 Transmitter 

b
 Date released Sex Age  Tracking duration (months) No. of fixes per seasons tracked 

c
 

2009 2009/10 2010 2010/11 

Wet 1 Dry 1 Wet 2 Dry 2 Wet 3 

84381
 a
 MT 8 Dec 2008 F Subadult 11 37 53 48 – – 

84382
 a
 MT 8 Dec 2008 M Subadult 10 72 59 8 – – 

84383
 
 MT 9 Dec 2008 F Adult 23 22 27 46 19 45 

84384
 a
 MT 11 Dec 2008 M Adult 1 4 – – – – 

84385
 a
 NS 5 Aug 2009 F Adult 19 – – 584 357 871 

84386
 a
 NS 4 Aug 2009 F Adult 2 – – 15 7 – 

84884 NS 5 Aug 2009 F Subadult 16 – – 603 395 789 

84885
 a
 NS 6 Aug 2009 F Adult 15 – – 262 202 245 

 

a 
Mortality, none of the PTTs lost are assumed due to battery failure. 

b 
MT: Microwave Telemetry 105 g battery-powered GPS transmitter; NS, North Star 65 g solar-powered.

 

c 
Seasons based on total monthly rainfall, see Fig. 5.2. 
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Home range overlap, expressed in terms of overlap area relative to either dry season 

range or wet season range, was asymmetrical and therefore expressed as the mean 

percentage overlap between the two seasons. To obtain a pooled index across all birds, a 

mean overlap value was calculated by summing all overlap percentages within the 

period of interest, and dividing that sum by 2k, where k is the number of wet–dry season 

pairs, following Kenward (2001). This index of overlap quantifies intra-annual seasonal 

site-fidelity (Powell, 2000). Inter-annual site-fidelity between successive wet–wet or 

dry–dry seasons were also examined, using the same approach described above. 

 

Habitat associations 

 

For analysis of habitat association, dune, interdunal and plains habitat were pooled as 

‘non-pan habitat’ (due to their similar vegetation physiognomy) and their use compared 

to use of pans (hypothesised to be preferred). Habitat boundaries were based on maps 

from the Botswana atlas, which utilised 1-km
2
 resolution polygons (Government of 

Botswana, 2001); as the habitat map resolution was greater than the tracking resolution, 

and habitats were contiguous blocks rather than isolated patches (Fig. 5.1), it was 

considered that the mapping resolution introduced minimal bias in tests of habitat 

preference. Location fixes that were near the pan/non-pan habitat boundaries were 

included in analyses, to avoid too small sample sizes for birds 84381, 84382 and 84383, 

whose datasets were largely based on Argos fixes (at best error <250 m). Moreover, 

because pan habitats were narrow and elongated strips (at places only 1 km wide, Fig. 

5.1) exclusion of points near habitat boundaries may have underestimated use of pan 

habitats. Therefore all fixes were used, accepting that ability to detect differential use of 

pans may be reduced by location error, but that this error would be unbiased.   

Habitat association was examined by compositional analysis (Aebischer et al., 

1993) which, for pairs of habitats, considers the log ratio of differences in usage to 

differences in availability. The proportions of location fixes obtained within pan or non-

pan habitats relative to the proportional extent of these habitats within the 95% kernel of 

pooled telemetry data across all seasons for that individual were examined, 

corresponding to Johnson’s (1980) third-level of preference assessment, separately for 

three time-periods: entire sampling period, wet season and dry season. For the seasonal 

contrasts, location fixes from multiple repeat seasons were pooled. It was not possible to 
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test habitat association by examining home range placement within the overall study 

area (second-level of preference assessment: Johnson 1980) and whether home ranges 

were preferentially located in pans, because all birds were caught in pan habitats owing 

to the ease of catching Kori in these landscapes. 

 Compositional analysis was conducted in Microsoft EXCEL and the COMPOS 

ANALYSIS version 6.2 standard software add-on (Smith, 2005). Where habitat use was 

zero, the zero was substituted by 0.01, which was an order of magnitude less than the 

smallest non-zero value, following Aebischer et al. (1993). One thousand iterations of 

randomised data were drawn, with Student’s t used to examine if preferences differed 

significantly from zero, testing significance at the 0.05 level. Significant departures 

from random use of pan versus non-pan habitat were tested using Wilks’s Lambda.  

 

Statistical analysis 

 

Mean wet and dry home range extents for MCPs, 95% kernel and 50% kernels were 

compared using linear mixed models performed on log-transformed areas (to achieve 

homogeneity of variance); whether differences in the number of fixes affected seasonal 

home range sizes was tested by considering season (wet, dry) and number of fixes as 

fixed effects, and individual bird as a random effect. ArcGIS version 9.3 was used for 

geospatial analysis and SPSS version 16.0 for statistical analysis. Data are presented as 

mean ± SD. 

 

 

Results  

 

Based on data pooled across the entire sampling period for each bird, the mean MCP 

area for the six Kori was 528 km
2
 (± 574 SD), while the mean of the 95% kernels was 

slightly less at 420 km
2
 (± 238 SD) but was strongly correlated with MCP extent (r = 

0.91, P = 0.007). Mean extent of 50% kernel home ranges was 77 km
2
 (± 112 SD), just 

19% (± 5 SD, n = 19 seasonal home range estimates) of the 95% kernel home range 

extent, suggesting that birds spent half of their time in a small part of their home range. 

However, home range estimates varied greatly among individuals (Table 5.2, Fig. 5.3), 

with one individual having over the entire sampling period a home range of 1580 km
2
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(MCP), estimated as 1619 km
2 

using 95% kernel, which were 13 and 38 times greater 

respectively than the individual with the smallest home range extent (122 km
2
 and 43 

km
2
).  

Wet season home ranges were marginally larger than dry season home ranges (Table 

2). The number of fixes did not affect home range estimates or seasonal contrasts for 

MCPs (Table 2b). In contrast, the number of telemetry fixes per season affected area 

estimates of both 95% and 50% kernels (Table 2b); the negative parameter estimates for 

this covariate, suggesting that smaller home ranges were obtained as the number of 

telemetry points increased, was due to the better performance of the solar transmitters 

because they more often gave GPS location fixes rather than the less precise Argos 

fixes. Moreover, these more accurate GPS fixes were collected more regularly (multiple 

fixes per day) relative to the battery-powered PTTs (which often did not produce a 

location fix with less than 1,500 m error for several days). Controlling for these effects, 

differences between home range extent in the wet and dry seasons were still non-

significant (Table 2).  

Although an individuals’ home range in the wet and dry season could differ in extent 

by an order of magnitude, there was no consistent or significant difference in home 

range extent between wet and dry season, for either MCP, 95% kernel or core home 

ranges (Table 5.2). Dry season home ranges were largely confined within the 

boundaries of wet season ranges, except for one bird with a large multi-modal home 

range (Fig. 5.4). 

Tracked birds showed considerable home range fidelity, both for consecutive seasons 

(dry–wet and wet–dry) and intra-annual contrasts of repeat seasons (wet–wet and dry–

dry; Table 5.3). Percentage seasonal overlap of the 50% kernel was marginally larger 

than that for the 95% kernel and MCP regardless of the season pairs (wet–wet, wet–dry, 

dry–wet, dry–dry) considered. The extent of overlap when transitioning from dry-to-wet 

was 5–10% greater than that of wet-to-dry (Table 5.3), regardless of the home range 

estimate considered. Intra-annual overlap (between two consecutive seasons) was 

similar to inter-annual overlap for a consistent season. 
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Table 5.2. Wet (October–March) and dry (April–September) season and entire sampling period home range sizes (km
2
) based on Minimum 

Convex Polygons (MCP), 95% kernel and 50% kernel: (a) for individual birds, in parentheses is the number of wet and dry seasons over 

which the bird’s location fixes were obtained, and each row summarises a seasonal home range estimate. See Table 5.1 for the number of 

location fixes for each season, (b) mean (± SD) home range size averaged across the six birds, n = 12 wet and seven dry season home range 

estimates, with linear mixed models (based on log-transformed seasonal home range size) used to examine the effect of season (fixed 

factor) on home range size, controlling for number of telemetry fixes (covariate) and individual bird (random factor); table shows t-test 

contrasts of wet versus dry season; subscripts show parameter estimates (± SE) of model constant and covariate, in all cases calculated 

relative to dry season, whose parameters were set to zero.  

a)  

Bird MCP  95% kernel  50% kernel 

Entire sampling period Wet Dry  Entire sampling period Wet Dry  Entire sampling period Wet Dry 

84381 (2,1) 1580 139 62  1619 283 70  302 49 12 

  1355    2271    434  

84382 (1,1) 117 94 69  185 85 68  45 14 9 

84383 (3,2) 315 44 78  318 102 183  67 22 43 

  152 149   332 421   77 92 

  245    450    100  

84385 (2,1) 801 180 123  291 56 46  29 15 6 

  799    517    39  

84884 (2,1) 234 117 52  43 15 13  6 3 2 

  110    57    12  

84885 (2,1) 122 42 18  62 36 28  12 6 8 

  65    64    13  

b)  

MCP 
a
  95% kernel 

b
  50% kernel 

c
 

Wet Dry t16 P  Wet Dry t16 P  Wet Dry t16 P 

278 ± 396 79 ± 44 1.619 0.125  356 ± 628 118 ± 144  1.673 0.114  65 ± 120 24 ± 33 1.930 0.072 
a 

Constant 1.793 ± 0.168, t16 = 10.686, P < 0.0001; number of fixes 0.0002 ± 0.0004, t16 = 0.498, P = 0.625.
 

b 
Constant 1.969 ± 0.214, t16 = 9.183, P < 0.0001; number of fixes −0.0009 ± 0.0005, t16 = −1.882, P = 0.078.

 

c 
Constant 1.259 ± 0.202, t16 = 6.221, P < 0.0001; number of fixes −0.0011 ± 0.0004, t16 = −2.402, P = 0.029. 
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Table 5.3. Home range fidelity, showing mean percentage (± SD) overlap of home 

range (Minimum Convex Polygon, 95% kernel, 50% kernel) based on static volume of 

overlap between consecutive seasons (wet-dry or dry-wet) and inter-annual overlap for 

consistent season (wet-wet and dry-dry). See main text for computation details. In 

parenthesis are the minimum–maximum of the raw seasonal overlap. 

 

Home range 

estimate 

Seasonal contrasts 

Wet-dry Dry-wet Wet-wet Dry-dry 

MCP 55 ± 32 

(0,100) 

58 ± 31 

(4,100) 

58 ± 29 

(7,100) 

62 ± 28  

(43,82) 

95% kernel 59 ± 33  

(0,91) 

63 ± 30 

(9,100) 

62 ± 29 

(8,100) 

66 ± 38  

(41,93) 

50% kernel 66 ± 36 

(0,100) 

70 ± 33 

(3,100) 

71 ± 31 

(2,100) 

73 ± 38 

(47,100) 

Birds 6 5 5 1 

Seasonal pairs 7 6 7 1 

 

 

Birds showed no preference for pan habitat during the entire sampling period or for the 

wet season, relative to availability within their 95% kernel home ranges (Wilks Λ = 

0.975, t5 = 0.356, P = 0.698; Wilks Λ = 0.916, t5 = 0.676, P = 0.469, respectively). In 

contrast, during the dry season, location fixes tended to fall within pan habitats more 

often than expected by chance given relative areal extent (Wilks Λ = 0.545, t5 = 

−2.0436, P = 0.056). 
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Figure 5.3. Location and overlap of home ranges (a) Minimum Convex Polygons, (b) 

95% kernel, for six Kori Bustards in the Central Kalahari Game Reserve, also showing 

the extent of overlap with the three habitat types within the study area. Home range 

estimates based on all locational fixes detailed in Table 5.1. 
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Figure 5.4. Wet (October–March) and dry (April–September) season home range overlap (95% and 50% kernels; href, bivariate normal 

fixed-kernels, 100-m grid-cells, x, y data standardised to unit variances). Sample sizes of repeat wet or dry seasons and number of location 

fixes per season vary across individuals; see Table 5.2 for sampling periods and total number of location fixes. Note different scales for 

(a)–(c) and (d)–(e). 
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Figure 5.4 (continued).  
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Discussion 

 

Kori home ranges sizes were variable between and within individuals, with strong site-

fidelity and dry season home ranges largely nested within the wet season home range. 

During the dry season, telemetry locations were positively associated with pans. 

Findings suggest that the species adopts a strategy whereby the home range expands and 

contracts, rather than seasonally moving between spatially isolated patches, supporting 

the hypothesis that these large-bodied bustards may be sedentary rather than nomadic or 

migratory.  

 

Home range size, overlap and seasonal movements 

 

Previous research on Kori movement patterns and home range dynamics has been 

limited, with the extent of movements inferred from apparent patterns in seasonal 

abundance (e.g. Snow, 1978; Britton, 1980; Nikolaus, 1987; Harrison et al., 1997). The 

view widely reflected in the literature (Snow, 1978; Britton, 1980; Nikolaus, 1987) that 

Koris make long-distance seasonal movements was not supported by findings from this 

study, which indicated that within the Central Kalahari Game Reserve movements can 

be restricted, with birds exhibiting strong site-fidelity and largely overlapping wet and 

dry season home ranges.  

The mean MCP, 95% kernel and 50% kernel home range estimates for birds 

tracked continuously for a minimum six months were 528 km
2
, 420 km

2
 and 77 km

2
 

respectively. These estimates are broadly similar to findings in Namibia’s Etosha 

National Park, where Osborne & Osborne (1999) reported mean MCP-based home 

ranges spanning 2–413 km
2
 for 10 females tracked during 1997/1998. In that study, 

while females with chicks had the smallest ranges, those without moved up to 100 km 

from their release site during the non-breeding season, and males moved ‘several 

hundred kilometres’ from the breeding areas (MCPs: 45–6718 km
2
 for six males in 

1997/1998: Osborne & Osborne, 1999); examples of birds that utilised similar-sized 

home ranges at localities separated by nearly 100 km (3 of 8 females) suggested that 

Kori undertook nomadic movements. Moreover, sex-specific and breeding-status 

differences in home range size and extent of movements imply that movements were 

strongly driven by the breeding cycle, because differences in mean rainfall in Etosha 
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and in CKGR appear unlikely to explain differences in movement patterns between 

these regions; the long-term (1954–2001) mean annual total rainfall in Etosha, and 

during 1997/1998, exceeded 200 mm y
-1

 (ranging 279–436 mm y
-1

, de Beer et al., 

2006), while during this study the total rainfall was consistently below this level. This 

suggests that within Etosha, because birds retained similar-sized home ranges in 

different parts of the reserve, the separate home ranges could both meet energy demands 

and that long-distance movements between these seasonal ranges may have been 

breeding-related.  

By contrast, and with the strong proviso that sampled birds in this study 

consisted of females of unknown age and breeding status and one immature male, 

results suggest strong food resource-driven effects on home range size and site-fidelity, 

which could operate independently of breeding status. Dry season home ranges, which 

largely formed the core of the more extensive wet season home ranges, were associated 

with pan habitats, at least in female Koris. Owing to their greater soil water-retention 

capabilities and more fertile soils (Wallgren et al., 2009), pans presumably hold higher 

levels of food resources and are subject to less marked fluctuations in such resources 

than dunes, interdunal and plain habitats. Because there is a positive relationship 

between patch residence time and energy availability (Stephens & Krebs, 1986), longer 

residence times can be expected in habitats that provide the basic energy requirements 

with minimal search effort. Therefore the greater proportion of telemetry fixes on pans 

in the dry season was considered to indicate greater food availability in these landscapes 

than non-pan habitats. Preferential use of pan habitats during the dry season, when food 

resources are limited, supports the hypothesis that forage resource availability 

determines home range size and placement of the home range core.  

On the other hand, habitat use by bustards may be influenced by the distribution of 

conspecifics (e.g. Osborne et al., 2007). Effects of Kori socialisation on patch selection 

and use are unknown, but as the species is assumed to have a lek-based breeding system 

(Morales et al., 2001; Allan & Osborne, 2005), it is likely that the most pronounced use 

of conspecifics as cues would occur when birds aggregate in leks during the breeding 

season (September–March: Allan & Osborne, 2005), which coincides with the period 

designated as the wet season in this study. If birds congregated on CKGR pans and 

remained restricted to these areas owing to breeding-mediated behaviours, then wet 

season home ranges should have been smaller than those for the dry season, in contrast 

to the hypothesis of larger home ranges during the non-breeding season (Osborne & 
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Osborne, 1999). Moreover, because leks are presumably on open areas (Astley-

Maberly, 1937; Osborne & Osborne, 1999), the vegetation physiognomy of pans make 

them more likely candidates for lek sites, in contrast to dunes and plains; however, the 

lack of any selection for pans during the wet season (which would support the 

hypothesis of their use as leks) in this study could be because tracked birds were mostly 

non-breeding females, or that lekking may not be entirely restricted to pans. The study’s 

findings suggest that the apparently greater propensity for nomadism in Namibia 

(Osborne & Osborne, 1999) probably reflects the fact that lekking areas and localities 

providing food resources during the dry season may be spatially separated. In contrast, 

CKGR pans may serve the dual roles of a wet season lekking area and a key source of 

food in the dry season. 

Tracked birds in the CKGR were sedentary, but ranged over larger areas in the wet 

than in the dry season, with the small-scale movements presumably in response to 

resource availability. Therefore, although broadly in agreement with Harrison et al. 

(1997) and Young et al. (2003)’s findings of no regular seasonal movements, the 

coarse-scale of analysis in these studies may have masked genuine localised seasonal 

movements or seasonal contractions and expansions of range albeit with the range core 

largely overlapping the dry season home range. However, in both the wet and dry 

season, the mean home range size (MCP or 95% kernels) for the six Kori were an order 

of magnitude less than the 50-km (Botswana) or 25-km atlas grid-squares (South Africa, 

Namibia, Zimbabwe: Harrison et al., 1997). Moreover, Harrison et al.’s (1997) 

assessment of whether regular movement exist was based on data pooled within eight 

SABAP zones each spanning at least 8°-longitude × 5°-latitude, an area exceeding 440 

000 km
2
 and representing more than 270 times the size of the largest home range 

recorded in this study, even after pooling all data from the sampling period for each 

individual. Even then, most of the SABAP grid-squares were poorly sampled; for 

instance, 34% of the grid-squares in Botswana (n = 203) were visited fewer than four 

times in eight years (Penry, 1994). Findings from this study suggest that Kori 

conservation assessments, particularly correlates of movement, require datasets that are 

at finer scale than that collated by Harrison et al. (1997), presently the most extensive 

dataset on bird species distribution on the subcontinent.  

Results for bird 84381 suggest that small home ranges may not be universal, and 

some Kori may be more nomadic than others. It is unclear why this subadult female was 

the only bird that had a multi-modal home range and ranged more extensively over the 
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study area, but several plausible guesses can be made. Although this bird was caught 

and released on pan habitat, all its 37 location fixes from the first wet season were in 

non-pan habitats; however, there is no evidence of nesting (which could have been 

inferred from clustered location fixes) in the non-pan habitats that are presumably used 

for nests (Allan & Osborne, 2005). However, during the subsequent dry season, it 

migrated to near pan habitats at least four times the distance from the nearest pan where 

it was originally caught. Because other tagged birds stayed within the pan habitats in 

which they were caught, food was probably not limiting, and so perhaps bird 84381 

associated with other untagged birds whose dry season range was centred on the far-off 

pans; but this assumption cannot be tested until Kori socialisation is better understood. 

Because female Kori are generally not aggressive to each other, and may often associate 

in feeding groups (pers. obs.), it is unlikely that intra-specific competition would limit 

home range size. Similarly, as the only large-bodied bustard in the study area and in 

central Botswana, it is unlikely that home range sizes were limited by competition with 

other Otididae. However, sample sizes in this study were too small to investigate any 

sex- or age-dependent factors that may account for differential nomadic behaviours, and 

this remains an urgent research priority, including ascertaining the role that the species’s 

mating system may have in influencing seasonal home range size.  

 

Applicability to low-density and widespread species in arid environments  

 

It is important to acknowledge several design constraints that may limit direct 

transferability of the results to other widely distributed wildlife species in arid 

environments. 

First, sample sizes were modest, and having the birds’ home range largely 

overlap each other in a small geographic area further reduced the statistical power to 

generalise Kori habitat preferences, in contrast to home ranges spread across replicate 

localities within which Koris were randomly caught. However, the sample size of six 

birds met the minimum threshold for conducting Compositional Analysis (Aebischer et 

al., 1993). In contrast, the lack of spatial replication of where Koris were captured 

precluded testing home range placement in relation to available habitat types within the 

CKGR. Consequently, although the study demonstrates the importance of pan habitats 

in the dry season, further research is required to establish if home range size, seasonal 
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overlap and seasonal movement patterns would be similar if birds had home range cores 

centred on dune and plain habitats. 

 Second, it is unclear if the type, seasonal abundance and spatial distribution of 

potential food resources across the different habitat types within the study area are 

affected to the same extent by rainfall; how Kori would respond to such spatio-temporal 

resource variation in unknown. This study’s finding of a wet season home range larger 

than a dry season home range, contrary to expectation, is possibly linked to the 

differential habitat response to rainfall, which would affect the constituent vegetation 

and invertebrates of those habitats in particular ways; thus for example there may be 

particular food resources (either plants or animals) that the Kori tracks across the larger 

landscapes following rainfalls. In contrast, in the dry season, diet may be restricted to or 

dominated by the food items available on the pans. Better understanding of the bird’s 

diet and whether this changes seasonally is crucial. 

Third, interspecific relationships between Kori and co-occurring species, 

particularly predators, are unknown. If predation risk varies seasonally, then Kori 

movement patterns and seasonal home range use may be strongly coupled with these 

co-occurring species. For instance, there is probably a direct positive relationship 

between lion Panthera leo density and bustard mortality attributable to these carnivores: 

in 3134 hr of observation and 1443 km traversed following lion prides in Etosha 

National Park, lions made hunting attempts on 93% of all prey species encountered, 

including all six Kori encountered (Stander, 1992). Consequently Kori seasonal home 

range use may reflect a balance of localities that provide food, breeding opportunities 

and minimal predation risk. 

 

Conservation and management implications 

 

Findings suggest that pans are an important habitat type that may be critical for Koris 

particularly during the dry season, as is the case for the larger mammals in the Kalahari 

(e.g. Wallgren et al., 2009). It is plausible that the home range size, overlap and extent 

of long-distance movements (e.g. Osborne & Osborne, 1999) may in part be influenced 

by the proximity of pans.  

Moreover, the extent and pattern of home range overlap, with a large wet season 

centred on that from the dry season, provides strong circumstantial evidence for food-
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regulated home ranges dynamics, at least for females. Consequently, if conservation 

areas do not provide adequate areal extent of habitats and forage resources, movements 

may be more extensive and possibly increase mortality risk owing for instance to 

collision with anthropogenic structures, to which Koris are vulnerable (Martin & Shaw, 

2010).  

Nevertheless, the highly right-skewed distribution of home range sizes, with 

most birds having small home ranges and only one bird undertaking seemingly 

exploratory movements in an MCP exceeding 1500 km
2
, suggests it may be possible to 

target Kori conservation at a few strategic localities spanning only a modest spatial 

extent, perhaps targeting pan habitats within the landscape.  

Even so, the small home ranges and high site-fidelity suggest that the species 

may not be an ideal flagship for the conservation of extensive grasslands, as is widely 

promoted (e.g. Kemp & Begg, 2001); as an alternative, perhaps equally distinctive and 

widely distributed species such as secretarybird Sagittarius serpentarius may serve as 

more suitable alternatives, although their range-wide conservation status, movement 

patterns, home range size and main threats, which are largely unstudied (e.g. Boshoff & 

Allan, 1997), would need to be determined. As for Kori, the species is probably most 

responsive to finer-scale habitat conditions, and presumed threats from widespread 

rangeland degradation, including cattle-induced bush encroachment (e.g. Herremans, 

1998) may have been overestimated. Improved understanding of habitat preference and 

use, disaggregated by sex and age, would enhance knowledge of the abiotic and biotic 

factors that that may underlie the mechanisms accounting for the observed sedentary 

lifestyle, and establish more clearly just how sedentary Koris are likely to be. Such 

knowledge would help identify the factors that may account for population and range 

decline (Senyatso et al., in review, Chapter 2) across the species’s geographic range.  
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Synthesis & conservation implications 

 

General findings 

This study had five main aims: (a) to test if high cattle grazing pressure is associated 

with greater landscape-scale bush cover; (b) to examine the relative importance of cattle 

grazing and unregulated hunting as threats to a suite of savanna wildlife species; (c) to 

investigate the conservation effectiveness of PAs and WMAs in the Kalahari, based on 

the abundance of wildlife species in these management areas relative to unprotected 

landscapes; (d) to test a new methodology to assess the range-wide conservation status 

of a widely distributed low-density species despite a lack of quantitative and long-term 

population monitoring data; and (e) to test the extent to which home range size and 

placement of a savanna-inhabiting large ground bird are affected by season and habitat 

type. 

 These research objectives were largely achieved, with the thesis examining the 

conservation status of case study species at continent-wide (Kori Bustard) and 

landscape scales (21 medium- and large-bodied vertebrates in central Botswana), as 

well as study localised home range dynamics (Kori Bustard). These assessments, across 

a wide range of temporal (one season, Chapter 3; 2–3 wet and dry seasons, Chapter 5; 

146 years, Chapter 2) and spatial scales (3,000 km
2
, Chapter 5; 250,000 km

2
, Chapters 3 

and 4; 4,060,000 km
2
, Chapter 2), afford a unique opportunity to make a significant 

contribution towards understanding the conservation ecology of wide-ranging low-

density wildlife species. The study confirms the decline of Kori Bustard populations 

across its entire Africa range but without a proportionate loss of that range (although 

range-extent loss was greater in East Africa, Chapter 2), and documents what by 

comparison with similar savanna systems elsewhere appear to be low encounter rates of 

other medium- and large-bodied vertebrates across the Kalahari, including within 

strictly protected areas (PAs; Chapter 3).  

 Causal factors for the decline in Kori numbers and range extent across Africa are 

poorly understood, but persecution (Astley-Maberly, 1937; Porter, 1949) and impacts of 

rangeland degradation and shrub encroachment (Collar, 1996; Ash & Miskell, 1998; 

Herremans, 1998) have been suggested. Findings from central Botswana (Chapter 3) 

suggest that threats due to hunting (indexed as proximity to human settlement) are 

genuine, but the perceived threat from cattle-induced increases in bush cover (as 
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indexed by distance to borehole) may be overestimated. Encounter rate of Kori not 

showing any response to the local density of cattle, lends support to the finding that 

bushmeat offtake is a more important threat than the negative impacts of cattle (Chapter 

3). These results support a stronger influence on Africa-wide Kori trends from hunting 

(e.g. Astley-Maberly, 1937) than from livestock-induced habitat modification (e.g. Ash 

& Miskell, 1998).  

 At least female Kori in central Botswana were sedentary, contrary to the 

expectation of a tendency for extensive migratory movements to track the presumably 

stochastic resources within the arid Kalahari. Because WMAs are meant to buffer PAs 

by providing connectivity for migration between PAs (Rozemeijer, 2009), the 

implication then is that these sites are unlikely to offer long-term protection for the 

species, particularly as bushmeat offtake still persists. However, the sedentary nature of 

Kori also makes them less susceptible to extensive offtake; but this predicates that large 

populations persist in PAs. However, I acknowledge that data from the Kalahari are not 

directly transferable to the entire geographic range because (a) birds were preferentially 

caught in pan habitats, while (b) the roles of Kori sex and age and of co-occurring 

species in influencing Kori home range placement and size are unknown.  

 This study represents the first time that the independent correlates of bushmeat 

hunting and cattle-grazing have been tested in an African savanna. The stronger effect 

of hunting both for Kori and for other large-bodied vertebrates in the Kalahari, with no 

perceptible cattle-driven impacts, suggests that the greater conservationist 

preoccupation with livestock-rearing (Prins, 1992; Du Toit & Cumming, 1999) than 

with unregulated hunting (Milner-Gulland & Bennett, 2003) in African savannas may 

be misplaced. The two main mechanisms through which cattle are hypothesised to 

impact wildlife are direct competition for forage and water, and habitat modification 

through bush encroachment (Du Toit & Cumming, 1999). The present study 

demonstrates that high cattle densities are associated with greater woody vegetation 

cover at landscape scales (Chapter 4), and that Wildlife Management Areas (WMAs) 

buffers restrict cattle from WMA wildlife zones (Chapter 3). However, no evidence of 

detrimental effects of cattle was found for any of the species examined. Therefore, the 

finding of a much lower abundance of large-bodied vertebrates in WMAs (including 

within wildlife zones) than in PAs suggests that bushmeat offtake may also be the more 

important of the two threats in other African savannas, where researchers have only 

qualitatively commented on their relative importance (e.g. Homewood et al., 2001; 
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Fynn & Bonyongo, 2010; Craigie et al., 2010). Cattle-grazing has very probably been 

perceived as the greater threat because previous studies contrasting wildlife abundance 

in areas with and without cattle, and attributing any differences in wildlife abundance to 

cattle (e.g. Ogutu et al., 2005; Rannestad et al., 2006), were confounded by bushmeat 

offtake.  

 The findings of this study (Chapter 4) on the vegetation response to variable 

stocking density across the gradient of unprotected areas, WMAs and PAs are consistent 

with other work where greater stocking density directly increased the abundance of non-

grass herbaceous vegetation, shrub density and canopy cover of a few encroacher 

species (e.g. van Vegten, 1984; Skarpe, 1990; Asner et al., 2004). Reduced grass cover 

reduces fuel loads, reducing fire intensity and frequency, which facilitates woody 

vegetation invasion and with effects reinforced through positive feedback mechanisms 

(Roques et al., 2001; Sankaran et al., 2004; Staver et al., 2009). These structural 

changes to savannas may possibly narrow dietary options for wildlife species, but could 

be expected to favour browsers such as steenbok (e.g. Du Toit, 1993) over grazers. 

However, all browser species considered (and with species-specific models for 

springbok and steenbok) showed stronger negative association with human settlements 

and none showed a positive association with borehole proximity. The implication then 

is that while greater bush cover outside PAs may have been favourable for wild 

browsers, the negative effects of unregulated hunting are greater.  

 Africa’s savannas may be losing its currently widespread species, many of which 

may reach very low numbers without triggering any conservation alert, particularly if 

their population decline is decoupled from range extent loss. The lack of any strong 

contrasts between wildlife encounter rates inside and outside PAs for most of the 

species, coupled with the generally poor performance of Kalahari PAs relative to South 

African PAs (Chapter 3), suggests that current conservation approaches in Botswana 

where single PAs (or IBA: Fishpool & Evans, 2001) are managed on their own rather 

than as a network of conservation sites (albeit of varying protection status) is inadequate 

to ensure long-term conservation of the country’s currently widespread wildlife. In the 

short (several years) to medium (few decades) term, population declines may be 

apparent only for large-bodied species that aggregate in large mobile groups, such as are 

evidenced by population crashes of wildebeest in the Kalahari (Chapter 3) and 

elsewhere on the continent, e.g. Kruger National Park (Fynn & Bonyongo, 2010) and 

Serengeti (Sinclair, 1995; Homewood et al., 2001). However, even then, declines across 
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a single PA and its neighbouring unprotected areas are unlikely to trigger any global 

conservation attention, owing to the assumption that adequate numbers may persist 

elsewhere (Gaston & Fuller, 2008). However, the slow decline of the Kori Bustard 

range extent, 8% (southern Africa) and 21% loss (East Africa) in nearly 150 years, 

despite an extensive reduction in population numbers (Chapter 2), shows that the 

phenomenon of widespread species undergoing dramatic population declines while 

maintaining more or less intact range extent may be more widespread than suggested by 

the few studies that report this to date (e.g. Rodríguez, 2002; Turvey et al., 2010; Ogada 

& Buij, 2011). This is particularly worrying because the lack of systematic biodiversity 

monitoring across much of the continent (Chapter 2) means declines are not likely to be 

detected or trigger any alert.  

 Community-managed conservation areas are primarily created to expand the areal 

extent over which Africa’s wildlife enjoy pro-conservation attitudes. But, in the 

Kalahari WMAs do not appear adequate to curb the pervasive impacts of unregulated 

hunting (Chapter 3), and findings from this study raise several conceptual and practical 

concerns about this conservation model.  

 First, without any investment in anti-poaching patrols or internal community 

policing, it is unclear how this model of participatory wildlife management can deter or 

apprehend people involved in unregulated hunting. The extent to which Kalahari 

WMAs self-regulate and guard against resource exploitation appears weak because 

there does not seem to be any institutional means to prevent such individuals from 

receiving income from trophy hunting and tourism and concurrently carrying on with 

unregulated hunting. Any decision to desist from hunting is unlikely to be made out of 

fear of punishment, and although free will or peer pressure may be important the 

incentives for either appear lacking. This contrasts with the Zambian model, where 

significant investments were made in mitigating unregulated hunting by recruiting 

community members as wildlife scouts (Lewis et al., 1990). The assumption that 

strengthened linkage between livelihoods and resources will translate into improved 

resource conservation (Salafsky & Wollenberg, 2000) was not supported by this study, 

and direct investment in anti-poaching efforts within WMAs may be a requisite for 

effectively conserving wildlife species. 

 Second, there appears to be a strong mismatch between hunting quotas and 

sustainable offtake. Thus, although gemsbok encounter rates in WMAs were as low as 

in unprotected areas, this species was still the second most numerous on the hunting 
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quota issued to 11 of the 15 sampled WMAs during 2007–2009 (DWNP, unpublished 

data), while the smaller ungulates that responded positively to WMA designation made 

a small proportion of the quota. Perhaps owing to the perceived better taste of gemsbok 

meat than that of other large Kalahari ungulates (e.g. Verlinden, 1997), quotas for the 

species are set deliberately high to meet the culinary needs of communities and hunters. 

This raises the question of which considerations take precedence—social, economic or 

ecological—when WMA hunting quotas are drawn. Additionally, given the lack of 

systematic wildlife monitoring outside African PAs (Chapter 2), to what extent should 

community members participate in setting the quotas, as they may have particular 

traditional ecological knowledge that can help track population trends? Expert opinion 

has been shown to improve conservation assessment of huntable mammals (e.g. Irvine 

et al., 2009). Some successful localised community-based wildlife monitoring schemes 

exist in southern Africa, such as in Namibia where community members undertake 

driven or walked transects, with the data used to provide indices of species abundance 

outside PAs (Naidoo et al., 2011). But, the extent to which such monitoring systems 

work for widespread low-density species is unclear, and challenges are likely to include: 

(a) selection of sampling units that minimise bias (such as counts made at particular 

distances from settlements, or at sites known to be frequented by certain species); (b) 

obtaining adequate sample samples from localised surveys to inform trends at landscape 

scales; (c) creating incentives for sustained monitoring; and (d) ensuring reported trends 

are genuine, and not meant to mislead the quota issuing authority into issuing 

unsustainable trophy hunting quota. Ecologically informed practical guidelines on 

sustainable wildlife offtake limits at WMA- and national-level, building on theoretical 

models such as proposed by Du Toit (2002) are, at any rate, crucial. 

 Although they are not as effective as PAs at conserving large-bodied vertebrates, 

Kalahari WMAs mitigate cattle-induced increases in bush cover. However, owing to the 

context-specific impacts of increased bush cover on savanna structure and functioning 

(Eldridge et al., 2011) it is unclear whether this mitigation of greater bush cover 

delivers any ecosystem-wide benefits in the Kalahari. Nowhere in southern Africa is 

habitat conservation explicitly included in WMA management plans, a circumstance 

which possibly undermines the true contribution these landscapes could make to 

livelihoods.  

 Nonetheless, given global trends in land-use and management (Sala et al., 2000), 

it is highly probable that if the extent of Kalahari WMAs is maintained, these sites will 
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make a significant positive contribution towards wildlife and habitat conservation over 

the next 50 years or so. For instance, across much of Africa there has been significant 

expansion of the cattle-rearing frontier, aided in part by cheaper borehole drilling 

technology (e.g. Perkins & Thomas, 1993; Sinclair, 1995). At the same time, arable 

farming, primarily with land parcelled into small crop fields, has expanded into 

extensive pastoral and rangeland areas formerly used by wildlife outside parks (e.g. 

Homewood et al., 2001). Moreover, there is often strong political pressure to privatise 

land for cattle ranches (Abel & Blaikie, 1989; Perkins & Thomas, 1993). Three main 

findings from this study suggest that WMAs offer a viable approach to assure the entire 

Kalahari is not transformed into pastoral lands, which would support far less wildlife, 

based on wildlife encounter rates observed in unprotected areas in contrast to those from 

WMAs (Chapter 3). First, this thesis demonstrates that cattle density is positively 

associated with woody vegetation cover. Second, however, cattle-grazing impacts and 

greater woody vegetation cover are restricted to within 10 km of boreholes. Third, 

WMAs buffers can successfully restrict cattle, preventing cattle from within WMAs and 

from neighbouring unprotected areas reaching WMA wildlife zones. Although the 

extent to which WMA governance structures empower local communities in broader 

land-use decision-making processes was not studied in this study, experiences from 

elsewhere in southern Africa (e.g. CAMPFIRE; Child & Barnes, 2010) suggest that if 

communities managing WMAs derive sufficient economic returns from sustainable 

wildlife utilisation, they form an important pro-conservation constituency that can 

contest the expansion of human encroachment into wildlife areas. Particularly in the 

Kalahari, the expansion of cattle-rearing is more likely to be a greater threat than the 

expansion of arable farming, owing to the aridity of the landscape. Based on findings 

from this study, and predicated on Kalahari WMAs being perceived as beneficial by 

WMA communities, it is probable that WMAs may help spatially restrict the spread of 

the cattle-rearing frontier. But this assumes that WMA managers maintain authority 

over or can influence where new boreholes are drilled, and can themselves regulate 

stocking rates within WMA livestock-rearing buffers.  

 The aforementioned long-term future scenario assumes that the areal extent of 

strict PAs will remain unchanged, or that any degazettement of conservation areas 

would be of WMAs, although WMAs (along with other extractive/multi-use reserves) 

are forecast to expand over the next few years in place of strict PAs (Naughton-Treves 

et al., 2005). On the other hand, because PAs support greater wildlife abundance than 
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WMAs particularly for the large-bodied vertebrates that generate the most income for 

trophy hunting and tourism, if PAs are preferentially degazetted, WMA viability is 

likely to be greatly compromised. Although there is presently no evidence that 

populations of large-bodied vertebrates in WMAs are sustained by leakage from PAs, 

that these species are largely restricted to PAs suggests that if PAs were lost, Kalahari’s 

large vertebrates could suffer drastic population crashes particularly if unregulated 

bushmeat offtake persists within WMAs and unprotected areas. Thus, although not 

perfect, PAs remain an essential component of wildlife conservation in African 

savannas. 

 

Future directions 

 

This study has improved understanding of the conservation ecology of widespread low-

density species, and the role of PAs and WMAs in abating threats to these species. 

However, future studies could improve on several aspects, particularly ascertaining the 

assumptions made in this study. 

 First, the study uses a proxy for hunting pressure (proximity to human settlement), 

which needs to be tested quantitatively, as done in other parts of Africa (e.g. Muchaal & 

Ngandjui, 1999; Brashares et al., 2001). Due to a lack of bushmeat markets where direct 

observations could be made of species hunted (for example, as done in some countries 

in Central and West Africa: e.g. Brashares et al., 2001; Ogada & Buij, 2011), in 

Botswana, community focus groups and interviews could be used to establish the levels 

of hunting actually taking place in unprotected areas and WMA livestock-rearing buffer 

zones, as well as the mode of hunting and species targeted. Because hunting is 

prohibited within parks, one option to investigate the extent of unregulated hunting 

within these landscapes is through regular systematic searches for evidence of hunting 

(such as used bullet shells or snares, e.g. Muchaal & Ngandjui, 1999). Relationships 

between collated metrics of hunting pressure and human settlement could then be 

established. 

 Second, one of this study’s limitation was the lack of baseline data on the 

vegetation condition across the land-use types so that temporal trends in extent of bush 

cover, and thus the degree of bush encroachment, could be directly quantified and 

related to stocking rates. Consequently, historical analysis of indicators of rangeland 
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change with particular focus on shrubs and WMAs and unprotected areas is a priority. 

Data can come from aerial photographs (e.g. Wigley et al., 2010) or remote sensing 

(e.g. Homewood et al., 2001). However, a challenge may be obtaining locality-specific 

cattle and wildlife stocking rates to which vegetation conditions could be related to (e.g. 

Roques et al., 2001), because this data would probably be only available for ranched 

areas (e.g. Perkins & Thomas, 1993). Therefore, perhaps this research would be more 

robust if restricted to village-level assessment (rather than finer-scale segments as in this 

study), as historical village-level livestock estimates may be more readily available (e.g. 

Moleele & Perkins, 1998). 

 Third, although the study demonstrates that the WMA buffers do restrict cattle, 

the extent to which the buffers are adhered to for other livelihood activities (such as 

fuelwood collection) is unclear. Moreover, it has never been determined whether these 

demarcations compromise or improve the conservation of wildlife on which WMA 

trophy hunting and tourism depends. For example, because the WMA buffers may 

hinder other livelihood activities (for instance if they severed historical or future 

transhumance routes for WMA and non-WMA cattle owners), this may create 

antagonistic attitudes towards wildlife and WMAs.  

 Fourth, an important research aim is to ascertain perceptions of the communities 

within WMAs to the conservation approach, and whether they perceive themselves as 

benefiting from it. Additionally, if benefits are considered inadequate, perhaps WMA 

communities and their supporting agencies could explore possibilities for linking the 

conservation approach to innovate funding mechanisms, such as Payments for 

Ecological Services, although research to demonstrate what measurable conservation 

outcomes are being achieved would be required so that payments could be linked to the 

conservation of the resource. 

 Fifth, it remains unclear how large-bodied wildlife species, on which WMA 

financial and socio-political viability depends, influence or respond to changes in the 

woody vegetation cover and its cascading effects on the quality, quantity and 

composition of their food resource. This has important implications more generally, as 

conservationists need to demonstrate that bush encroachment does negatively affect 

biodiversity conservation and wider ecosystem benefits. 

 Lastly, the role of human culture and beliefs in influencing Kori Bustard trends 

across Africa and species-specific responses of large vertebrates in the Kalahari may be 

important. For example, in some tribes such as the Bushmen (Basarwa) in central 
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Botswana, only the elderly are allowed to eat Kori, while younger people are required to 

be ‘treated’ first as it is believed they would otherwise experience mental disorders 

(Sugawara, 2001). Similarly, Rockingham-Gill (1983) suggested that in the early 1980s, 

Zimbabwe’s Matebeleland region probably had more Kori because local tribes there did 

not hunt or eat the species, which they regarded as ‘magical’, unlike tribes in the 

Mashonaland region. In Tanzania, Magige et al. (2009) compared perceptions and 

extent of Kori poaching between the Maasai (east of Serengeti National Park) and 

Ikoma, Natta and Kurya tribes to the west of the park: the Maasai did not hunt Kori nor 

use any of its body parts, and although 90% (n = 59) of respondents from the Ikoma, 

Natta and Kurya tribes reported no use of the bird’s body parts, 10% had eaten it.  

 Study findings highlight the need for conservation assessments of widespread 

low-density species to consider range-wide as well as site-specific concerns. This is 

crucial because if only site-specific assessments are made, incorrect policy and 

management decisions could be made about whether these species are effectively 

conserved by PAs or community-managed areas, and whether anthropogenic impacts 

such as cattle-grazing and unregulated hunting have pervasive or site-specific impacts.  
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