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Response of stratospheric water vapour 
to warming constrained by satellite 
observations

Peer Nowack    1,2,3,4 , Paulo Ceppi    2, Sean M. Davis    5, Gabriel Chiodo    6, 
Will Ball    6,7,8,14, Mohamadou A. Diallo    9, Birgit Hassler    10, Yue Jia    5,11, 
James Keeble    12,13 & Manoj Joshi    1

Future increases in stratospheric water vapour risk amplifying climate change 
and slowing down the recovery of the ozone layer. However, state-of-the-art 
climate models strongly disagree on the magnitude of these increases under 
global warming. Uncertainty primarily arises from the complex processes 
leading to dehydration of air during its tropical ascent into the stratosphere. 
Here we derive an observational constraint on this longstanding uncertainty. 
We use a statistical-learning approach to infer historical co-variations between 
the atmospheric temperature structure and tropical lower stratospheric 
water vapour concentrations. For climate models, we demonstrate that 
these historically constrained relationships are highly predictive of the water 
vapour response to increased atmospheric carbon dioxide. We obtain an 
observationally constrained range for stratospheric water vapour changes per 
degree of global warming o f 0 .3 1 ±    0 .3 9 ppmv K−1. Across 61 climate models, 
we find that a large fraction of future model projections are inconsistent with 
observational evidence. In particular, frequently projected strong increases 
(>1 ppmv K−1) are highly unlikely. Our constraint represents a 50% decrease 
in the 95th percentile of the climate model uncertainty distribution, which 
has implications for surface warming, ozone recovery and the tropospheric 
circulation response under climate change.

The stratosphere is extremely dry. This was first realized by Alan Brewer 
in his pioneering analysis of balloon measurements in the 1940s, where 
he reported that the atmospheric water content is found to fall very 
rapidly just above the tropopause1. It is now well established that average 

stratospheric specific humidity is around 3–5 parts per million volume 
(ppmv) globally, with substantial daily to decadal variations driven by 
volcanic eruptions2,3, convective overshooting4, monsoonal circula-
tions5 and climate modes such as the El Niño-Southern Oscillation 
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atmospheric circulation22–26, but also because of its key role in shaping 
atmospheric chemistry and stratospheric ozone recovery27–29. Changes 
in the thickness of the ozone layer, in turn, affect the tropospheric 
photochemical environment, air quality, human health and ecology30,31.

Historically, tropical lower SWV observations show—if anything—a 
slight decrease over the last three decades (Supplementary Fig. 1; refs. 
15,32), at least until the recent Hunga–Tonga eruption33. In contrast, 
the majority of climate models show long-term increases in historical 
simulations (Supplementary Figs. 1 and 2; refs. 17,21). Given substan-
tial model biases in background concentrations and seasonal cycle  
representations of SWV and UTLS temperatures17,21, one might there-
fore ask if these models can reliably project SWV for future scenarios. 

(ENSO)6,7 and the Quasi-Biennial Oscillation (QBO)8,9. Brewer also 
already suggested that the dryness of the stratosphere can be explained 
by a large-scale stratospheric overturning circulation nowadays 
referred to as the Brewer–Dobson circulation (BDC)10, where air is freeze 
dried to very low concentrations as it enters the stratosphere through 
the cold tropical upper troposphere and lower stratosphere (UTLS).

The freeze-drying process is now better understood than ever, for 
example, using air parcel trajectory models of the tropical UTLS5,11–16. 
However, despite this qualitative understanding, there is still substan-
tial model uncertainty in projections of future changes in stratospheric 
water vapour (SWV)17–21. The uncertainty is a pressing concern, not only 
because SWV is a greenhouse gas affecting surface temperature and the 
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Fig. 1 | Sketch of the statistical-learning framework. a, Example ERA5 
reanalysis temperature (T) data from the European Centre for Medium-Range 
Weather Forecasts (ECMWF) for July 1994 at all five pressure levels used to predict 
tropical lower SWV (qstrat). b, Example of a temperature time series for the grid 
location highlighted in yellow on the 100 hPa map in a; the yellow dot indicates 
the July 1994 value. All 5° × 5° grid points within 60° N–60° S serve as predictors 
for qstrat(t), defining a temperature matrix T(t). c, The observational qstrat(t) time 
series. Using ridge regression, we learn predictive relationships between  
T covering all five pressure levels and qstrat, considering simultaneous and lagged 
temperature data (τmax = 2 months). This process is applied to 150 combinations 
of temperature reanalyses and versions of qstrat observations from 1990 to 2020 
(Methods). The result is an ensemble of predictive functions that are consistent 
with the observational record. We then learn equivalent functions from data 

produced by 27 climate models from the CMIP5/6 archives, that is, using data of 
the same spatial and temporal coverage for T and qstrat. d, For these CMIP models, 
the predictive skill of the functions can be evaluated under strong climate change 
scenarios. As illustrated here for four CMIP models, this is achieved by comparing 
the annually averaged predictions (red) with actual abrupt-4 × CO2 simulation 
results (grey). From these comparisons, a framework-related uncertainty is 
estimated characterizing imperfections in the statistical-learning predictions 
under 4 × CO2, which needs to be smaller than the model uncertainty to be 
constrained. To account for different levels of global warming simulated by each 
model, the qstrat response (in ppmv; here shown relative to average 1990–2020 
levels) is normalized by the change in global mean surface temperature (Tg). 
Colour-coded inset values for m represent the linear regression slopes (ppmv K−1) 
and r the correlation coefficients.
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In addition, it is unclear if models that better match observations17,18 
can be trusted more in their projections because past biases do not 
always translate into future projections21,34.

Here we introduce a statistical-learning framework to derive an 
observational constraint on these uncertain model projections. We 
estimate high-dimensional regression functions to predict tropical 
lower SWV from the UTLS temperature structure (Fig. 1), given the 
aforementioned link between UTLS temperatures and tropical dehy-
dration. UTLS temperatures integrate the effects of a large number of 
processes affecting air dehydration, either directly or indirectly8,15,18,35. 
Our primary interest therefore is to quantify known relationships 
between the UTLS temperature structure and tropical lower SWV9,36 
but in a novel way that allows these relationships to hold under strong 
climate change scenarios. This, in turn, will open up new pathways for 
estimating observational constraints on future projections. Our analy-
sis will not consider SWV production from changes in stratospheric 
methane concentrations, which gains importance in the middle to 
upper stratosphere37,38. To minimize such influences on our results, 
we focus on the tropical lower stratosphere at 70 hPa, that is, water 
vapour just above the tropical cold-trap region where air dehydration 
takes place39.

Learning predictive relationships from historical 
data
We aim to learn predictive functions f, ultimately characterized by 
their coefficients Θ

log (qstrat(t)) = f(ΘΘΘ,T; t, τmax) =
lat

∑
i

lon

∑
j

p

∑
k

τmax

∑
τ

Θijk,τdTijk (t − τ) (1)

which predict 30° N–30° S average, monthly and zonal mean SWV (spe-
cific humidity, in ppmv) at 70 hPa, mimicking frequently used indices 
characterizing water vapour entry rates through the tropical cold-trap 
region17,18,35. Hereafter, we will refer to this quantity as qstrat. dTijk is the 
standard-scaled monthly mean temperature (that is, zero meaned and 
scaled by its own σ over the training period) at 5° × 5° latitude–longitude 

grid points indexed by (i,j) within one of p = 5 atmospheric levels (250, 
200, 150, 100, 70 hPa) indexed by k, covering a latitudinal range of 
60° N–60° S (Fig. 1a).

f predicts qstrat at time t with high skill and we cross-validated  
its performance for various regression specifications (Extended  
Data Fig. 1). These tests included the choice of pressure levels, latitude 
range and number of time lags for T. Unsurprisingly, we found that 
predictive performance improves if we also consider temperature  
data from the two preceding months (that is, τmax = 2  months), being 
reflective of the slow vertical ascent of air through the tropical tropo-
pause layer12,35. We additionally apply logarithmic transformations  
to the qstrat data as to approximately account for nonlinearity in the 
T–qstrat relationships. A central concern when learning such 
high-dimensional regression functions from a relatively small number 
of (observed) monthly samples is to avoid overfitting. To manage  
this issue, we here use ridge regression40, similar to an approach 
recently applied successfully to constrain the global cloud feedback 
on climate change41.

We then learn different functions f from sets of T and qstrat time 
series from both observations and climate models (Fig. 1b,c). As proxies 
for observations, we use the Stratospheric Water and OzOne Satellite 
Homogenized (SWOOSH)42 qstrat dataset and three reanalysis products  
for temperature and remove months when qstrat observations are miss-
ing or unreliable (for example, related to the Mount Pinatubo eruption; 
Methods). The use of multiple reanalysis products and of SWOOSH 
uncertainty estimates allows us to incorporate the effects of measure-
ment uncertainty in our constraints. For climate model data, we use 
simulations covering the same historical period or slightly shifted 
(depending on data availability) from the Coupled Model Intercom-
parison Project phases 5 and 6 (CMIP5/CMIP6; Methods). We treat 
each CMIP dataset in the same way as SWOOSH by masking equivalent 
months. Many models do not achieve realistic amplitudes of qstrat vari-
ability17,21, leading to insufficiently clear signals for ridge regression to 
learn from. We therefore sub-select 27 models that at least approximate 
the SWOOSH variance (Methods). This selection is still meant to sample 
the model uncertainty in the Tijk and qstrat responses across CMIP models 
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Fig. 2 | Framework performance and the observational constraint. a, Red 
circles show abrupt-4 × CO2 simulation results (‘actual’) regressed against 
predicted changes in qstrat, both normalized by Tg, for 27 CMIP models. The 
multi-model mean is indicated as a black square; the one-to-one line in solid 
black. Dashed lines show the least squares regression fit (black) and the 5% 
to 95% prediction intervals (red). The probability distributions (red curves) 
on the axes represent the observational estimates. The distribution on top of 
the x axis indicates the spread in predictions based on combining functions 
learned from observations with the CMIP temperature responses. The final 
probability distribution, defining the observational constraint, is attached to 
the y axis and additionally accounts for the framework prediction uncertainty. 

b, The observational constraint (n = 4,050) relative to CMIP model uncertainty. 
Circles show Tg-normalized changes in qstrat for 27 CMIP5 models (red), 34 CMIP6 
models (blue) and their combination (black). The grey circles indicate the 
selected 27 models fulfilling the minimum variance criterion compared with 
SWOOSH used for the framework validation in a. The observational constraint 
(orange; Obs) is illustrated on the right with the horizontal black line indicating 
the 50th percentile (0.31 ppmv K−1). The thin and thick bars denote 90% (−0.09 
to 0.69 ppmv K−1) and 66% (0.08 to 0.54 ppmv K−1) confidence intervals, 
respectively. The CMIP mean (median) values are 0.67 (0.53) ppmv K−1 for CMIP5, 
0.55 (0.49) ppmv K−1 for CMIP6, 0.60 (0.52) ppmv K−1 for the combined set of 
CMIP5/6 and 0.63 (0.59) ppmv K−1 for the 27 selected models.
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so that our observational constraint will be based on better estimates 
for the learned parameters Θ.

We obtained high predictive skill for each f on historical time slices 
not used during training and cross-validation (typically r2 scores > 0.8). 
However, this is unsurprising given the central role temperature plays 
in setting present-day qstrat. More challenging is the aim to use the 
functions trained on historical data to predict qstrat responses under 
increased greenhouse gas forcing, that is, that the past relationships 
also hold in significantly warmer climates. Such climate-invariant 
functions open up new pathways to observationally constrain the qstrat 
response to climate change. We note that previous studies developed 
climate index-based multiple linear regression (MLR) methods to ana-
lyse SWV variability and trends in observations and models9,15,18,35,43,44. 
On the basis of small sets of indices, these valuable tools can explain 
large fractions of variance and have been used to infer drivers of  
SWV changes under climate forcing18. However, these MLR methods  
do not achieve the predictive performance of ridge regression  
under extrapolation (Supplementary Fig. 3), underlining the value 
of statistical learning for deriving our observational constraint. We 
further see advantages in exploiting only well-observed UTLS tempera-
tures as predictors, whereas index-based methods typically require 
BDC metrics that are not a widely available CMIP output, allowing for 
evaluation of a greater number of models.

The observational constraint
We evaluate the extrapolation idea in a perfect-model setting: the 27 
functions trained on historical CMIP data are used to predict qstrat under 
abrupt-4 × CO2 forcing, using the T4×CO2

 from the corresponding CMIP 
simulations as predictors. In Fig. 1d, we show four examples of such 
comparisons between statistical-learning predictions (red) and actual 
4 × CO2 simulation results (grey; Supplementary Figs. 4 and 5 provide 
all 27 model results). To enable comparisons across models with very 
different climate sensitivities, we normalize annually averaged qstrat 
trends by the model-specific changes in global mean surface temper-
ature (Tg), as is common in climate-feedback analyses, for example, 
ref. 41, resulting in qstrat trends per degree of global warming (ppmv K−1). 
This choice is justified by the close coupling between UTLS tempera-
tures and surface warming (Supplementary Figs. 4 and 5). However, as 
an alternative viewpoint, we provide equivalent results for a normali-
zation by zonal mean temperatures close to the cold-trap region 
(20° N–20° S, 100 hPa) in Supplementary Figs. 6–8.

Comparing the predictions to the actual CMIP results, we find 
excellent agreement across the multi-model ensemble (r = 0.90;  
Fig. 2a), indicating that the historical T–qstrat relationships also hold 
well under strong greenhouse gas forcing and opening up a path to an 
observational constraint in three steps: (1) Given three reanalysis data-
sets and n = 50 iterations of SWOOSH qstrat time series with varying 
added noise patterns (Methods; to estimate sampling and measure-
ment uncertainty), we arrive at 3 × 50 = 150 statistical-learning func-
tions fobs consistent with the observational record, each with its own 
set of coefficients Θobs. (2) Using these fobs, we combine the uncertainty 
contributions introduced due to spread in the Θobs and in the CMIP 
temperature responses T4×CO2

 (Methods), leading to a probability 
distribution for the observational prediction (shown along the x axis 
of Fig. 2a; solid red curve). (3) Finally, this distribution is convolved 
(Methods) with the framework-intrinsic prediction error evident from 
the scatter around the one-to-one line in Fig. 2a. The result is the prob-
ability distribution characterizing the observational constraint (shown 
along the y axis).

Figure 2a demonstrates the large spread across the CMIP qstrat 
responses (0.08 to 1.41 ppmv K−1), as compared to 0.31 ± 0.39 ppmv K−1 
(90% confidence interval) for our observational constraint. The large 
model uncertainty is illustrated even more clearly in Fig. 2b for 27 
CMIP5 models (red), 34 CMIP6 models (blue), the combined CMIP5/6 
ensemble (black) and for the selected 27 CMIP5/6 models (grey). Ten 

CMIP models simulate trends of approximately 1.0 ppmv K−1 or larger, 
that is, well outside the observationally plausible range (orange). While 
the median across all 61 CMIP models (0.52 ppmv K−1) is still within 
typical uncertainty bounds, a substantial number of models are highly 
likely to overestimate the qstrat feedback under global warming. Con-
sidering typical confidence intervals for our constraint with 0.08 to 
0.54 ppmv K−1 (17% to 83%), −0.09 to 0.69 ppmv K−1 (5% to 95%) and 
−0.17 to 0.77 ppmv K−1 (2.5% to 97.5%), we find that about one-fifth (13) 
of the models exceed even the 97.5th percentile of the constraint and 
almost half of the models (27) exceed the 83rd percentile (upper end 
of the thick orange bar in Fig. 2b).

Notably, the observational constraint includes small negative 
qstrat responses not seen in the models. It is probably unsurprising 
that negative feedbacks cannot be entirely ruled out given historically 
(rather) negative trends under global warming, limited sample size and 
possible external interferences not removed by data pre-processing 
(for example, remaining effects of volcanic eruptions). A negative SWV 
trend could also be driven by a strong BDC response, which would act 
to cool the tropical UTLS under CO2 forcing15,18,35. The fact that we find a 
robustly positive 50th percentile for the constrained response under-
lines our hypothesis that the framework does not merely reproduce 
historical trends but can indeed learn approximately climate-invariant 
T–qstrat relationships from internal variability (for example, related to 
QBO or ENSO) instead of being negatively impacted by it.

Emulation of the historical record and inference
We now ask if CMIP models are, in principle, able to reproduce observed 
qstrat variability. We use the 27 functions trained on CMIP data to emu-
late the historical record of qstrat anomalies, given temperature data 
from the reanalyses as predictors (Fig. 3 and Extended Data Fig. 2). 
These CMIP-based predictions of the historical record (black) are 
compared to SWOOSH (red). We find that the observed variations, 
including the sudden drop in qstrat in the year 2000 (refs. 25,45), are 
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Fig. 3 | CMIP-based predictions of past variability in tropical lower 
stratospheric water vapour. Black: monthly mean predictions of 
deseasonalized Δqstrat anomalies using the 27 CMIP-based functions provided 
with ERA5 reanalysis temperature data. We also show SWOOSH observational 
data for the same period (red). The blue line indicates average predictions 
conducted with the cross-validated functions learned from SWOOSH and ERA5, 
if ERA5 temperatures are used again as input. These predictions are highly 
correlated with SWOOSH (r2 score = 0.90; Pearson’s r = 0.96). The CMIP-based 
predictions also correlate well with SWOOSH but typically overestimate the 
amplitude of the undulations in line with their too-large sensitivities under 
climate change. Predictions with other reanalysis temperatures provide similar 
results (Extended Data Fig. 2).

http://www.nature.com/naturegeoscience


Nature Geoscience

Article https://doi.org/10.1038/s41561-023-01183-6

captured relatively well. The implication is that if provided with realistic 
UTLS temperature fields, most CMIP models would display the correct  
qstrat tendencies. However, we also highlight that the year-to-year  
variability of the statistical-learning predictions typically takes on 
amplitudes substantially larger than those observed, in agreement 
with our key result of overly sensitive T–qstrat relationships already seen 
in their abrupt-4xCO2 responses.

To detect the origin of these overestimated T–qstrat sensitivities, we 
highlight the use of the statistical-learning functions for understand-
ing model–observation discrepancies, for example, by visualizing the 
parameters Θ (Fig. 4 and Supplementary Figs. 9–11). This is possible 
because in ridge regression the absolute magnitude of each coeffi-
cient is proportional to its estimated prediction importance, that is, 

larger size coefficients imply greater importance. While interpreting 
these coefficient maps is non-trivial, we point out a few emerging 
patterns. For Θobs, independent of the reanalysis dataset used, we, 
for example, find at 100 hPa (Fig. 4a) and below features suggestive 
of influences by tropical circulation anomalies, possibly ENSO7,9,18, 
in particular around the Maritime Continent and above the Eastern 
Pacific. The largest coefficients occur in a narrow band across the 
inner tropics (10° N–10° S) from 100 hPa upwards in agreement with 
the well-understood slow vertical ascent of tropical air masses through 
this cold-trap region (Fig. 4a,b). Zonal mean latitude–height cross sec-
tions of Θ show a clear upward progression of predictive information 
over time (Fig. 4c,d), supporting the view that the functions correctly 
identify the main characteristics of the underlying coupling between 
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the large-scale circulation and tropical UTLS dehydration. Crucially, 
the CMIP multi-model mean Θ (Fig. 4b,d) strongly overestimates 
the inner tropical relationships between T and qstrat, underlining the 
over-sensitivity of CMIP models on average. For CMIP models, the peak 
positive inner tropical Θ (probably representing the tape-recorder 
signal36), additionally maximizes at 100 hPa without further growth 
with altitude, contrary to the Θobs. We speculate that this discrepancy 
could be caused by the low vertical resolution of many CMIP models 
around the tropical tropopause. The Θ maps also uncover a few other 
intriguing discrepancies, including a pattern of large negative Θobs at 
100 hPa across the North Atlantic, which is part of a general strong 
positive to negative, tropics to extratropics gradient in Θobs not repro-
duced in the CMIP mean. However, similar, or even clearer, patterns do 
occur in many individual models (Supplementary Figs. 12–15). A reason 
might be the modulating role of the subtropical jet streams and their 
induced mixing barriers on tropics–extratropics SWV exchange whose 
strength will also depend on UTLS temperature gradients. To test such 
hypotheses, and to distinguish significant patterns in the coefficients 
from noise, we below recommend future modelling experiments to 
design systematically perturbed datasets to train ridge regressions on.

Constraint on the radiative feedback and 
implications
In conclusion, we have derived an observational constraint for changes 
in tropical lower SWV per degree global warming of 0.31 ± 0.39 ppmv K−1 
(90% confidence interval). This constraint on current modelling uncer-
tainty has important implications for the stratospheric feedback 
onto climate change19,20,26 and for the recovery of the stratospheric 
ozone layer27–29. Indeed, our framework opens up new routes to the 
process-oriented evaluation of, and observational constraints on, 
state-of-the-art climate model projections. As such, we recommend 
its use as a complement to easily interpretable, but only analytically 
applicable, climate index-based regressions9,15,18,35,43.

Our observational constraint is possible only through a highly 
effective statistical-learning approach to estimate climate-invariant 
relationships between UTLS temperatures and SWV from the still 
very limited record of SWV observations. In a perfect-model setting, 
we have confirmed that these relationships also seem to hold under 
large CO2 forcing and are robust to the presence (or absence) of, for 
example, historical changes in aerosol and methane-related interfer-
ences. Our results reveal a widespread over-sensitivity in CMIP models 
of tropical lower SWV to changes in UTLS temperatures. In particular, 
our constraint implies that frequently modelled large increases per 
degree global warming > 1 ppmv K−1 are highly unlikely. Strikingly, 
around a quarter of CMIP models exceed even the upper 95th per-
centile of our constraint. Given the 90% range of model responses 
(0.18–1.41 ppmv K−1), our constraint represents a 50% decrease in the 
95th percentile of the climate model uncertainty distribution and a 
narrowing of 37% of the overall 90% range (which includes small nega-
tive responses not found in CMIP).

Whereas the 27 models exhibit a wide range of total radiative SWV 
feedbacks of 0.091–0.256 W m−2 K−1 (90% confidence interval, with a 
median of 0.18 W m−2 K−1; Methods and Supplementary Table 1), we 
can apply our constraint on tropical lower SWV to also constrain this 
uncertainty by 30% to 0.086–0.201 W m−2 K−1 (median = 0.14 W m−2 K−1; 
Extended Data Fig. 3). This estimate represents an uncertainty reduc-
tion of 0.05 W m−2 K−1, which is comparable to the effects of changes 
in biogenic volatile organic compounds or ozone (table 6.8 in ref. 46) 
and thus of relevance to policymakers. Our work further opens up new 
pathways for constraining the effects of changes in SWV on catalytic 
ozone-depletion cycles28,29, Arctic amplification, the North Atlantic 
Oscillation, the stratospheric circulation and the tropospheric jet 
streams24,26.

Finally, we highlight the urgent need to identify and address 
model-dependent root causes of the over-sensitivity, such as UTLS 

temperature biases7,17,21, atmospheric chemical feedbacks19, QBO influ-
ences on UTLS temperature variability8 or unrealistic diffusivity of 
water vapour across the tropical tropopause47. Such efforts might 
benefit from analyses of how a variety of stratospheric (de-)hydra-
tion mechanisms4,39 affect results within our novel observational con-
straint framework, for example, by learning from data produced in 
perturbed-physics ensembles or following targeted climate model 
tuning48,49. In particular, processes that might not (yet) be included in 
climate models pose potential blind spots to our perfect-model vali-
dation approach (Fig. 2a). We also highlight that our framework could 
be extended to address other key uncertainty factors in stratospheric 
climatology and atmospheric chemistry. A non-exhaustive list includes 
extratropical SWV trends, especially those in the radiatively important 
lowermost stratosphere2,20,50, and trends in lower stratospheric ozone19.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41561-023-01183-6.
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Methods
Water vapour observations and their uncertainty estimates
For SWV observations, we use the global Stratospheric Water and 
OzOne Satellite Homogenized (SWOOSH)42 dataset, which includes 
vertically resolved water vapour data from a subset of the limb-profiling 
satellite instruments operating since the 1980s. SWOOSH is designed to 
accurately reproduce monthly average variability present in the under-
lying data. We select the variable combinedanomfillh2oq at 68 hPa, 
which is an anomaly-filled zonal mean specific humidity field in parts 
per million volume (ppmv) at 10° latitude resolution. We spatially 
weight (cosine-weighting for latitudes) and average (latitude–longi-
tude) the field for points within 30° N to 30° S to obtain a representa-
tion of tropical lower SWV.

For our analysis, we consider SWOOSH v2.7 data covering the 
period from January 1984 to including December 2020. The version 
incorporates recent improvements in Earth Observing System Aura 
Microwave Limb Sounder (MLS) data51. However, before the availability 
of Aura MLS satellite data (September 2004–present), the SWOOSH 
dataset has a high number of missing data in the tropics. For the 
anomaly-filled version of SWOOSH, missing data were filled using a pro-
cedure that made 2D latitude–time linear interpolations for each month 
on deseasonalized anomalies using information from adjacent grid 
cells for which data existed; the seasonal cycle was added back on after 
filling in the latitude–time plane at each pressure level42. However, the 
interpolation was not evaluated for potential biases introduced by the  
procedure so that the use of the filled product for our statistical- 
learning approach introduces an additional uncertainty factor.

Here we make a first-order estimate of additional biases for the 
pre-MLS period by using the MLS period where sampling is high and 
effectively unbiased by latitude and time and masking these data as 
for the pre-MLS period. For each month for which at least one sample 
exists in the 30° S and 30° N latitude band in the pre-MLS period, we 
identify the month of that year in all Aura MLS data, mask the data as 
for the month of interest and estimate the bias introduced by inte-
grating, weighting by latitude over 30° S to 30° N where data exist, 
and by comparing with the ‘true’ unbiased MLS/SWOOSH value. From 
this, we estimate a mean and standard deviation of the bias assuming 
Gaussianity.

For our final uncertainty calculations, we dropped all months from 
the SWOOSH dataset for which there was not at least one sample meas-
ured within 30° S to 30° N, which reduces the total number of samples 
(months) considered from 444 to 315. In effect, this also removes all 
SWOOSH data before January 1990. For the remaining 315 months, we 
estimate the uncertainty introduced by the biases of the anomaly-filling 
method by sampling (in addition to the uncertainty provided by 
SWOOSH and assuming a normal distribution) from the standard 
deviation in the MLS bias estimates outlined above and adding this to 
a random normal sample from the standard error of the SWOOSH data 
itself, that is, σ/√N, latitude-weighted by the sum of the squared errors. 
Here N is the overall measured number of samples per monthly data 
point considered42. Adding these randomly drawn estimates for each 
month to the original filled SWOOSH time series yields sets of ‘sampled 
time series’. Here we use n = 50 such randomly drawn time series to 
estimate the effects of the sampling biases on our overall uncertainty 
estimates. We find that the effect of sampling biases are small to neg-
ligible for the overall uncertainty estimation but we still include these 
error estimates in our uncertainty analysis for completeness.

Temperature data
To approximate observations for UTLS temperatures, we use three 
different reanalysis datasets for temperature at 250, 200, 150, 100 and 
70 hPa over the same time period: ERA5 (ref. 52), MERRA-2 (ref. 53) and 
JRA-55 (ref. 54). For MERRA-2, we do not include the year 2020 as the 
corresponding data could not be found in the archive used at the time 
of writing (Data Availability). For learning the observational constraint 

functions, we combine each of the three reanalyses once with each of 
the n = 50 SWOOSH randomly drawn time series, resulting in 150 func-
tions overall. From these 150 functions, we derive a first observational 
uncertainty estimate on predictions under 4 × CO2 forcing by providing 
each function once with the modelled (and standard-scaled) monthly 
mean temperature profiles found under 4 × CO2 for the 27 selected 
CMIP models (steps also described in the main text).

CMIP data
We consider climate model data from both the CMIP5 (ref. 55) and 
CMIP6 (ref. 56) archives. In total, this amounted to 61 models for which 
we found data for all required scenarios:

•	 27 CMIP5 models: ACCESS1-0, ACCESS1-3, BCC-CSM1-1, 
BCC-CSM1-1-m, BNU-ESM, CanESM2, CCSM4, CNRM-CM5, 
CSIRO-Mk3-6-0, EC-EARTH, FGOALS-g2, GFDL-CM3, 
GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, GISS-E2-R, 
HadGEM2-ES, INM-CM4, IPSL-CM5A-MR, IPSL-CM5B-LR, 
MIROC5, MIROC-ESM, MPI-ESM-LR, MPI-ESM-MR, MPI-ESM-P, 
MRI-CGCM3, NorESM1-M.

•	 34 CMIP6 models: ACCESS-CM2, ACCESS-ESM1-5, AWI-CM-1-
1-MR, BCC-CSM2-MR, BCC-ESM1, CAMS-CSM1-0, CanESM5, 
CESM2, CESM2-WACCM, CNRM-CM6-1, CNRM-ESM2-1, E3SM-
1-0, EC-Earth3-Veg, FGOALS-f3-L, FGOALS-g3, GFDL-CM4, 
GFDL-ESM4, GISS-E2-1-G, GISS-E2-1-H, HadGEM3-GC31-LL, 
HadGEM3-GC31-MM, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, 
MIROC6, MIROC-ES2L, MPI-ESM1-2-HR, MPI-ESM1-2-LR, 
MRI-ESM2-0, NESM3, NorESM2-LM, NorESM2-MM, 
SAM0-UNICON, UKESM1-0-LL.

An overview of all CMIP models, including individual model refer-
ences and Tg-normalized qstrat feedback values, is provided in Supple-
mentary Table 2. Equivalent results for normalization by 20° N –20° S 
temperature at 100 hPa are tabulated in Supplementary Table 3. For 
each model, we used variable output for 30° S–30° N average zonal 
mean specific humidity (hus) at 70 hPa and air temperature (ta) at 250, 
200, 150, 100 and 70 hPa. To train the ridge regressions, we combined 
atmosphere–ocean-coupled historical simulations from 1 January 1984 
onwards with Representative Concentration Pathway 4.5 (RCP4.5)/
Shared Socioeconomic Pathway 3–7.0 (SSP3–7.0) scenarios. The future 
RCP scenarios were selected as to maximize the number of models for 
which we could match the observed period within either CMIP archive 
given that scenario differences across the period 2005 (end of histori-
cal simulations for CMIP5) to 2020 (end of observed period used here) 
are negligible for our calculations. The same two variables plus surface 
air temperature (tas) were extracted for the same set of models for the 
abrupt-4 × CO2 simulations. In all cases, we use only the first available 
ensemble member for each model.

It is well known that tropical UTLS water vapour variability is not 
represented well in many atmospheric models, both in terms of the 
timing and amplitude of the seasonal cycle and/or variations relative 
to it17,21 (Supplementary Figs. 1 and 2). A concern of particular impor-
tance for the statistical-learning process employed here are cases 
where variability is substantially underestimated, because this will 
reduce the ability of ridge regression to learn meaningful T–qstrat rela-
tionships, especially if the goal is to extrapolate potentially very large 
abrupt-4 × CO2 responses41,57,58. We therefore include only CMIP models 
that represent at least 95% of the observed variance found for SWOOSH 
across the 315 potential training samples in our calculations (Fig. 2a) 
in the main text. These 27 models are:

•	 Six CMIP5 models: ACCESS1-0, ACCESS1-3, GFDL-CM3, 
MPI-ESM-LR, MPI-ESM-MR, MPI-ESM-P.

•	 21 CMIP6 models: ACCESS-CM2, ACCESS-ESM1-5, AWI-CM-
1-1-MR, CAMS-CSM1-0, CanESM5, CESM2, CESM2-WACCM, 
FGOALS-f3-L, GISS-E2-1-G, GISS-E2-1-H, HadGEM3-GC31-LL, 
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HadGEM3-GC31-MM, INM-CM4-8, INM-CM5-0, MPI-ESM1-
2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, NESM3, NorESM2-LM, 
NorESM2-MM, UKESM1-0-LL.

Analyses equivalent to the one shown in Fig. 2 but for other choices 
of percentage of observed variance thresholds (0%, 50%, 80%, 90%) are 
provided in Supplementary Fig. 16.

For a few of the selected models, the relevant SWOOSH period 
( January 1990 to December 2020) could not be matched with a consist-
ent set of simulations. Instead, we sampled equivalent months from 
their historical simulations only. For CMIP5, this concerns MPI-ESM-P 
for which we considered the period 1968–2004, amounting to the 
same number of samples (note that, for example, the period 1984 to 
1990 is excluded according to the data mask derived from SWOOSH). 
For CMIP6, the following selected models are affected: CESM2, 
FGOALS-f3-L, GISS-E2-1-H, HadGEM3-GC31-LL, HadGEM3-GC31-MM, 
INM-CM4-8, INM-CM5-0, MPI-ESM1-2-HR, MPI-ESM1-2-LR, NESM3, 
NorESM2-LM, NorESM2-MM. For these CMIP6 models, we instead 
used data covering the period 1977–2013. To keep consistency with the 
SWOOSH record as close as possible, we applied the mask representing 
SWOOSH data gaps to each model dataset from 1984 onwards, which 
includes masking of the period immediately following the Mt. Pinatubo  
eruption in 1991, which could otherwise have been considered an  
unusual event in the CMIP data not characterized by SWOOSH42.

Statistical-learning framework
For each CMIP model and SWOOSH/reanalysis pair of specific  
humidity and temperature data, we train a predictive function f (see 
equation (1)). The exclusion of lags or the addition of time lags longer 
than τmax = 2  months do not further improve the performance 
(Extended Data Fig. 1). To quasi-linearize the T–qstrat relationships,  
we apply the natural logarithm to the specific humidity data, which 
also improves the overall predictive performance of the learned func-
tions, in particular, under extrapolation (Extended Data Fig. 1c).

Here we use temperatures within 60° N–60° S at each of the five 
atmospheric pressure levels as predictors. Our set-up is constrained 
by our empirical results that extending the area of predictors to the 
polar regions did neither improve the predictive performance on his-
torical test data nor on the abrupt-4 × CO2 simulations (Extended Data  
Fig. 1d,e). However, in particular for observations, we received the best 
cross-validation results on historical data when using 60° N–60° S 
instead of only tropical (30° N–30° S) temperatures. In a classic 
statistical-learning set-up of training, cross-validation and separate 
testing, we therefore chose the best performing configuration for 
the historical cross-validation data also for the abrupt-4 × CO2 ‘test’ 
scenario. We also explored the sensitivity of the extrapolation results 
to a longer training period (Extended Data Fig. 1f) and to the number of 
pressure levels at which temperature is considered as predictor (seven/
three/one in Extended Data Fig. 1g,h,i). As another simplification and 
to speed up the learning process, we interpolated the temperature 
data for each CMIP model and reanalysis dataset to a common 5° × 5° 
(latitude × longitude) grid. This coarser spatial resolution also allows 
us to homogenize the predictor resolution for all temperature data-
sets, which is necessary to later combine different sets of temperature 
predictors and ridge coefficients Θ for the observational constraint.

To estimate the coefficients Θ, we use ridge regression40, which 
here minimizes the cost function

Jridge(ΘΘΘ) = ∑
t

(log (qstrat,t) − ∑
i,j,k,τ

Θijk,τdTijk(t − τ))
2

+ α ∑
i,j,k,τ

Θ2
ijk,τ (2)

over 315 monthly mean samples indexed by t. The total number M  
of temperature predictors is 25,920 (5 levels × 24 latitudes × 72  
longitudes × 3 months for maximum lag τmax = 2). This large number 

of predictors, especially given the limited length of the observational 
record, would lead to overfitting using multiple linear regression 
(MLR). Next, to avoiding overfitting, ridge regression is also known for 
its good performance in managing ill-posed problems with many col-
linear predictors41,57. Note that the first term in equation (2) is the MLR 
least squares error, which, as discussed, tends to overfit the data given 
large M. Ridge regression addresses overfitting through the second 
l2-norm regularization term, which penalizes large absolute values for 
Θ, modulated by the choice for the regularization parameter α. To 
approximate optimal α, we use fivefold cross-validation searching over 
α ∈ [0.0001, 0.0003, 0.1, …, 1 × 109] and evaluate according to the r2 
scores (coefficients of determination; ref. 58 provides a detailed expla-
nation) as defined by Python’s scikit-learn package59 across the histori-
cal validation sets. This general search range for α was determined 
incrementally following tests showing that larger and smaller values 
for α would never be selected during cross validation. As mentioned 
above, we standardize temperature time series at each grid point to 
zero mean and unit standard deviation (over the historical period)  
to ensure that they are considered equally and so that the absolute 
magnitudes of the resulting sensitivities are reflective of their  
relative physical importance57. When combining Θ derived from 
SWOOSH/reanalysis pairs with CMIP temperature responses under 
4 × CO2, we therefore re-scale the temperature fields according to the 
grid point σ values of the reanalysis dataset to represent the relative 
amplitude of the CMIP modelled temperature anomalies consistently. 
Due to the standard scaling of temperatures and our focus on the  
SWV response per degree warming, we do not carry over baseline  
model biases in mean values of temperature and humidity into our 
observational constraint.

Calculation of framework-related uncertainty
We follow a similar approach to Ceppi and Nowack41, in which the 
uncertainty in the constraint is calculated in several steps. First, we 
obtain a probability distribution of the observational prediction (x axis 
of Fig. 2a; solid red curve) by combining the uncertainties in Θobs, 
denoted σΘ, with those due to the different CMIP 4 × CO2 temperature 
responses, σT. For this, we first linearly combine all of the 150 estimates 
of Θobs with each of the 27 CMIP T4×CO2

 fields, leading to 4,050 obser-
vationally constrained Tg-normalized qstrat predictions. To obtain σΘ, 
we first take the multi-model mean over all predictions made using the 
same set of observed coefficients and subsequently calculate  
the standard deviation of these 150 samples. We follow the same  
procedure for σT but now averaging estimates involving the same  
UTLS temperature response, calculating the standard deviation of  
the resulting 27 estimates. These uncertainties are then combined in 
quadrature, σp = √σΘ2 + σT2 , to yield the uncertainty for the observa-
tional prediction qstrat,p.

Next, this observational prediction uncertainty is convolved with 
the prediction error, calculated via standard least squares regression 
formulas60, whose 5–95% interval are represented by dashed red curves 
in Fig. 2a. This yields a probability distribution for the actual normalized 
qstrat response qstrat,a on the y axis of Fig. 2a:

P(qstrat,a) = ∫
+∞

−∞
P(qstrat,a|qstrat,p)P(qstrat,p)dqstrat,p (3)

where the conditional probability P(qstrat,a∣qstrat,p) represents the predic-
tion error. P(qstrat,a) is calculated numerically by Monte Carlo sampling, 
with a sample size of 107, and we apply a Gaussian kernel smoother to 
the result with a standard deviation of 0.01 ppmv K−1 to obtain the final 
probability distribution.

Stratospheric water vapour feedback calculation
We approximate the implications of our tropical lower SWV constraint 
for also constraining the overall SWV radiative climate-feedback 
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parameter20,46. This is justified by our empirical finding that the qstrat 
metric is highly correlated with SWV feedback parameters estimated 
from radiative transfer calculations (Pearson’s r = 0.85; Extended Data 
Fig. 3). For this purpose, we combined the feedback parameters for 
the six selected CMIP5 models calculated by Banerjee et al.20 and ran 
additional calculations for the 21 selected CMIP6 models. We then 
followed the same regression approach as taken for the observational 
constraint in Fig. 2a but replacing the variable along the y axis by the 
SWV feedback parameters. With this procedure, we obtain an observa-
tionally constrained 90% confidence interval for the feedback param-
eter of 0.086–0.201 W m−2 K−1, equalling an uncertainty reduction of 
0.05 W m−2 K−1 over the 90% confidence interval (0.091–0.256 W m−2 K−1) 
for the 27 CMIP models. We computed the SWV feedback for the CMIP6 
models using the Parallel Offline Radiative Transfer programme61 and 
following the procedure outlined in Banerjee et al. Briefly, for each 
model we computed the SWV change between the abrupt-4 × CO2 
and pre-industrial control simulations, based on the last 50 years of 
each simulation. We input these water vapour fields into the Parallel 
Offline Radiative Transfer programme to compute the stratospheri-
cally adjusted net tropopause radiative flux change for each model 
individually using the fixed dynamical heating approximation. Then, 
the SWV feedback (in W m−2 K−1) is computed by dividing the tropopause 
radiative flux change by the global mean surface temperature change 
(again, averaged over the last 50 years of each simulation).

Data availability
All observational, reanalysis and climate model datasets used in this 
study are publicly available. SWOOSH data can be found at https://csl.
noaa.gov/groups/csl8/swoosh/. CMIP data were obtained from the UK 
Center for Environmental Data Analysis portal (https://esgf-index1.
ceda.ac.uk/search/cmip6-ceda/). MERRA-2 data were obtained from 
the Collaborative REAnalysis Technical Environment (CRE-ATE) pro-
ject (https://esgf-node.llnl.gov/search/create-ip/). JRA-55 data were 
downloaded from the National Center for Atmospheric Research/
University Corporation for Atmospheric Research Research Data 
Archive (https://rda.ucar.edu/datasets/ds628.1/). ERA5 data were 
downloaded from the Copernicus Climate Data Store (https://doi.
org/10.24381/cds.f17050d7). In addition, pre-processed versions of the 
data used to run the calculations and source data to produce the figures 
in the manuscript are archived on figshare (https://doi.org/10.6084/
m9.figshare.22335712).

Code availability
Python Jupyter notebooks used for the data analysis and production 
of figures are available on the Github webpage of P.N. at https://github.
com/peernow/SWV_Nature_Geoscience.
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Extended Data Fig. 1 | Framework performance depending on regression 
settings. As Fig. 2a, that is red circles show abrupt-4xCO2 simulation results 
(’actual’) regressed against predicted changes in qstrat (here abbreviated as qs), 
both normalized by Tg, for 27 CMIP models. The multi-model-mean is indicated as 
a black square; the one-to-one line in solid black. Dashed lines show the least 
squares regression fit (black) and the 5 to 95% prediction intervals (red). The 
one-at-a-time differences are that in a no lagged temperature data was 
considered as predictors; in b one additional time lag (τmax = 3) was considered; 

in c we did not take the natural logarithm of qstrat; in d temperature predictors at 
all latitudes were considered; in e temperature predictors only within 30∘N - 30∘S 
were considered; and in f 444 samples (months covering all years from 1984 to 
2020) were used for training the CMIP functions, instead of the 315 months used 
in the main paper. In g, temperature data at seven pressure levels (300, 250, 200, 
150, 100, 70, 50 hPa) were considered as predictors, whereas in h only three levels 
(200, 150, 100 hPa) and in i temperature only at 100 hPa was considered.
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Extended Data Fig. 2 | CMIP-based predictions of past variability in tropical 
lower stratospheric water vapour using two other reanalysis temperature 
datasets. Black: monthly mean predictions of past Δqstrat anomalies (relative to 
the respective seasonal cycles), using the CMIP-based functions provided with a 
MERRA-2 and b JRA-55 temperature data. We also show SWOOSH observational 
data for the same period (red), with the dots indicating the timing of the 315 
months used in our calculations. The same months were selected from MERRA-2/
JRA-55 for the CMIP-based qstrat predictions. The blue dashed line indicates the 

averaged predictions using the cross-validated ridge functions learned from the 
50 combinations of SWOOSH and MERRA-2/JRA-55 data, if MERRA-2/JRA-55 is 
used again as the consistent input. The comparison with the SWOOSH time series 
(red) itself underlines that these ridge regressions represent a large fraction of 
the SWV variance, as evident from high r2 scores of 0.89 for a and 0.79 for b (see 
for example ref. 58 for a detailed explanation of this time series performance 
metric) and Pearson correlation coefficients of 0.96 and 0.90, respectively.
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Extended Data Fig. 3 | Constraint on the stratospheric water vapour feedback 
parameter. a Correlations of the radiative feedback parameters for the 27 
models also used in Fig. 2a in the main text against the qstrat metric, yielding a 

high correlation. b As Fig. 2a, but again with the radiative feedback parameters 
instead, leading to an observational constraint. The final distribution is shown 
along the y-axis.
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