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 Abstract 26 

Floods are among the most frequent and costliest natural hazards. Fluvial flood losses are expected to 27 
increase in the future, driven by population and economic growth in flood-prone areas, and exacerbated in 28 
many regions by effects of climate change on the hydrological cycle. Yet, studies assessing direct and 29 
indirect economic impacts of fluvial flooding in combination with climate change and socio-economic 30 
projections at a country level are rare. This study presents an integrated flood risk analysis framework to 31 
calculate total (direct and indirect) economic damages, with and without socio-economic development, 32 
under a range of warming levels from <1.5°C to 4°C in Brazil, China, India, Egypt, Ethiopia and Ghana. 33 
Direct damages are estimated by linking spatially explicit daily flood hazard data from the Catchment-34 
based Macro-scale Floodplain (CaMa-Flood) model with country and sector specific depth-damage 35 
functions. These values input into an economic Input-Output model for the estimation of indirect losses. 36 
The study highlights that total fluvial flood losses are largest in China and India when expressed in 37 
absolute terms. When expressed as a share of national GDP Egypt faces the largest total losses under both 38 
the climate change and climate change plus socio-economic development experiments. The magnitude of 39 
indirect losses also increased significantly when socio-economic development was modelled. The study 40 
highlights the importance of including socio-economic development when estimating direct and indirect 41 
flood losses, as well as the role of recovery dynamics, essential to provide a more comprehensive picture 42 
of potential losses that will be important for decision makers. 43 

  44 

  45 

Keywords 46 

fluvial flooding, economic impacts, climate change, socio-economic development 47 

  48 

  49 

  50 

  51 

  52 

  53 

  54 

  55 



3 
 

 1. Introduction 56 

Floods are among the most frequent and costliest natural hazards. Globally, floods have affected more 57 
than 3.8 billion people and caused direct economic damages of ~826 billion US$ between 1960-2019 58 
(EM-DAT 2020). Fluvial flooding accounts for two thirds of these direct economic damages (ibid.). The 59 
Intergovernmental Panel on Climate Change (IPCC) report that since the mid-20th century socio-60 
economic losses from floods have been increasing, mainly due to greater exposure and vulnerability of 61 
affected populations (Jiménez Cisneros et al. 2014). The impacts of fluvial floods are expected to increase 62 
in the future, predominantly driven by population and economic growth in flood-prone areas (Jongman et 63 
al. 2012; Tanoue et al. 2016). The intensification of the global hydrological cycle due to climate change 64 
will further increase future flood risks (Alfieri et al. 2017), exacerbating flood damages and posing a 65 
threat to future generations. Therefore, it is imperative to assess fluvial flood risks under scenarios of 66 
climate change and socio-economic development, to support decision-making regarding flood risk 67 
management and adaptation strategies. 68 

Past efforts have largely focused on estimating future populations exposed to fluvial flooding (e.g. 69 
Hirabayashi and Kanae 2009; Hirabayashi et al. 2013; Arnell and Lloyd-Hughes 2014) and the estimation 70 
of direct damages (usually to urban areas) (e.g. Winsemius et al. 2013, 2016; Ward et al. 2013, 2017; 71 
Alfieri et al. 2017), under different scenarios of climate change and/or socio-economic development. 72 
Direct flood damages are typically assessed by linking physical properties of the hazard such as flood 73 
depth and area; exposure, in terms of the location of assets or land-use type; and vulnerability, derived 74 
from depth-damage functions that denote the damage that would occur at a given flood depth for a given 75 
asset or land-use type. Floods can also cause indirect damages, including reduced business production of 76 
affected economic sectors; the spread of these losses towards other initially non-affected sectors through 77 
inter-sectoral linkages; and the costs of recovery processes (Koks and Thissen 2016). Indirect damages 78 
may continue to be felt after the flood event has ended, reflecting the full time dimension of the event, as 79 
well as negatively and positively affecting regions outside of the original event (Carrera et al. 2015). Due 80 
to these factors indirect losses can be high, or even exceed direct damages (Koks et al. 2015). The scale 81 
and duration of indirect losses will be dependent on the severity of the event, the pre-existing state of the 82 
economy, and the ability of individuals, businesses and markets to adapt and recover. Yet, in terms of 83 
flood risks, indirect impacts and their wider macro-economic effects are still poorly understood (Carrera 84 
et al. 2015), and detailed estimation of joint direct and indirect flood-induced economic impacts are 85 
relatively rare (Sieg et al. 2019). 86 

Given the potential scale of indirect losses, it is important to consider them alongside direct damages to 87 
provide a more complete picture of the economic consequences of flood events (Koks et al. 2019). 88 
However, only a limited number of studies assess the total economic impacts of future fluvial flooding in 89 
combination with climate change and socio-economic projections. Dottori et al. (2018) carried out a 90 
global fluvial flood risk assessment by estimating human losses, and direct and indirect economic impacts 91 
under a range of temperature and socio-economic scenarios. However, they only considered welfare or 92 
consumption losses as a proxy of indirect impacts, ignoring changes in sectoral outputs. Willner et al. 93 
(2018) assessed the economic losses from climate change-related fluvial floods in the near future (2035), 94 
mainly in China, the US, and the European Union, but with fixed socio-economic conditions. Koks et al. 95 
(2019) evaluated the total economic consequences of future fluvial flooding at a sub-national scale for 96 
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Europe, including indirect impacts and regional economic interdependencies for five aggregated sector 97 
groups. However, the authors noted the relatively simple approach to estimate the initial reduction in 98 
production capacity following a flood, from which indirect damages were calculated. This was based on 99 
the value of exposed assets per sector divided by the total asset value for each sector, assuming each 100 
sector needed a certain stock of assets to produce outputs. Furthermore, the study excluded damages to 101 
residential buildings, which are a significant part of direct flood impacts. 102 

In addition, flood risk analysis is usually performed at a global, continental or aggregated multi-country 103 
level. Single-country analysis is less common, particularly studies that consider both direct and indirect 104 
losses under future scenarios of climate change alongside scenarios of socio-economic development. This 105 
is particularly true for developing countries in Africa, Asia, and Latin America, where rapid growth in 106 
population and economic activities is forecast to take place, driving large increases in flood exposure and 107 
economic losses (Jongman et al. 2012; Dottori et al. 2018) (see SM1.1 for a review of literature on the six 108 
countries covered in this study). Where country level studies do exist they often focus on specific cities or 109 
river basins only and are disparate, using different climate models, levels of global warming, economic 110 
and population data etc., hindering comparison. 111 

Lastly, existing flood risk projections do not always cover the plausible range of global warming, 112 
especially higher warming levels such as 3°C or above. Since the global mean temperature increase 113 
implied by countries’ Nationally Determined Contributions (NDCs) under the Paris Agreement is 114 
estimated to be in the range of 2.7°C to 3.5°C by 2100 (Gütschow et al. 2018), it is important to examine 115 
a wide range of climate change impacts on flood risk. Likewise, an accurate understanding of the drivers 116 
of future fluvial flood risk is critical to help adopt effective risk reduction measures, but few studies have 117 
integrated both climate and socio-economic drivers (Muis et al. 2015; Winsemius et al. 2016). Winsemius 118 
et al. (2016) performed the first global fluvial flood risk assessment that separated the effects of climate 119 
change and socio-economic growth, but only estimated direct urban damages. 120 

This study is novel in that it presents an integrated flood risk analysis focused on direct and indirect 121 
economic damages caused by floods, both with and without the inclusion of socio-economic 122 
development. A broad range of warming levels from <1.5°C to 4°C are considered. The framework is 123 
applied to six developing countries: Brazil, China, India, Egypt, Ethiopia and Ghana. This demonstrates 124 
the flexibility of the method to be applied to multiple countries, to facilitate regional comparison, and 125 
reflects a range of different climate impacts, geographies and levels of development.  126 

2. Data and methods 127 

2.1 Climate forcing and flood hazard data 128 

The daily streamflow and flood inundation depth are simulated at 0.25° spatial resolution by using a 129 
physical model cascade, the Hydrologiska Byråns Vattenbalansavdelning (HBV) model and Catchment-130 
based Macro-scale Floodplain (CaMa-Flood) model. The WATCH daily bias-adjusted reanalysis dataset 131 
(Weedon et al. 2014) for 1961-1990 was used as the climate forcing data for the baseline period (1961-132 
1990). The climate forcing data for the future period (2086-2115) were generated by combining monthly 133 
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observations, daily reanalysis data, and projected changes in climate from General Circulation Models 134 
(GCMs). The projected changes in climate for the specific warming levels considered here are <1.5°C, 135 
<2°C (which denote aiming to stay below 1.5°C and 2°C in 2100, respectively, with 66% probability), 136 
exactly 2.5°C, 3°C, 3.5°C and 4°C relative to pre-industrial levels (see Warren et al. (2020) of this special 137 
issue). To sample the uncertainty in regional climate change projections we use patterns of change 138 
simulated by five GCMs obtained from the Climate Model Intercomparison Project Phase 5 (CMIP5). A 139 
river discharge corresponding to a 1 in 100-year flood in the baseline period was selected as the hazard 140 
indicator, in line with several previous studies (e.g. Hirabayashi and Kanae 2009; Hirabayashi et al. 2013; 141 
Arnell and Lloyd-Hughes 2014; Arnell and Gosling 2016). Whilst adaptation is not modelled, the 1 in 142 
100-year event is often used as a hazard indicator given flood protection works are often designed for this 143 
return period (with some exceptions e.g. the Netherlands). The time series of the simulated annual 144 
maximum daily river discharge in the baseline period for each grid, GCM and scenario were fitted 145 
respectively to a Gumbel distribution function using the maximum likelihood method. The magnitude of 146 
river discharge having a 100-year return period in the baseline was then calculated. The economic risks 147 
associated with the projected changes in flood hazard were calculated in the modelled inundation areas in 148 
which annual maximum discharge in the future period exceeds the baseline 1 in 100-year threshold. 149 
Details of climate forcing and flood hazard data used in this study are described in He et al. (2020) of this 150 
special issue. 151 

2.2 Model experiment design 152 

Projected changes in average annual economic damages for the future period (2086-2115) are compared 153 
to the baseline period (1961-1990). Two sets of model experiments are conducted: a “climate change 154 
only” experiment (CC), in which socio-economic conditions are kept constant at the baseline level for the 155 
six warming scenarios; and a “climate change and socio-economic development” experiment (CC+SE), 156 
which considers both climate change and socio-economic growth in parallel. The differences between the 157 
estimates can reflect the effect of socio-economic development alone on future flood risks. Here, socio-158 
economic development refers to each country’s population, labour force, gross domestic product (GDP) 159 
and capital stock. The socio-economic data used to calculate the direct and indirect losses for both the 160 
baseline and future scenarios are described below. 161 

2.3 Direct damages 162 

For each flood event direct damages are calculated for agricultural, residential, commercial and industrial 163 
land-use sectors by linking the simulated flood depth and area with country and sector specific depth-164 
damage functions and maximum damage values from Huizinga et al. (2017) and land cover maps from 165 
the European Space Agency Climate Change Initiative (ESA CCI) land cover product at 10-arcsec 166 
resolution (ESA 2017). The depth-damage functions provide estimates of the fractional damage (damage 167 
as a percentage of the associated maximum damage value) for a given flood depth per land-use class. 168 
Since it is difficult to establish depth-damage functions for the future, this study uses the same set of 169 
functions for both the baseline and future periods as in other studies (e.g. Alfieri et al. 2017; Dottori et al. 170 
2018). 171 
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The land cover map from 1992, the earliest year available in the ESA CCI’s product, is used for the 172 
baseline period and the map of 2015 for the future period, assuming a constant land cover after 2015. 173 
Employing two sets of land cover maps from the same data source means they are produced with the 174 
same approach and ensures consistency between estimates. Using different years can also account for the 175 
effect of land cover change, especially urban expansion, in the real world. This is beneficial as many 176 
studies do not allow for urban expansion (e.g. Rojas et al. 2013; Winsemius et al. 2013, 2016; Ward et al. 177 
2017), which will be a key driver of increased future flood risks (Muis et al. 2015). 178 

For the agricultural land-use sector, the cropland area is obtained directly from the ESA CCI land cover 179 
maps, then aggregated at the resolution of the flood hazard maps (0.25°). However, the global land cover 180 
data represents urban land as a single class and does not differentiate between residential, commercial, 181 
and industrial sectors. Therefore, the urban land class is disaggregated into these three sub-classes. In 182 
terms of the occupation of residential, commercial and industrial urban land-use sectors in cities, several 183 
previous studies assume uniform percentages across the globe (e.g. Dottori et al. 2018), ignoring 184 
differences between individual countries. Huizinga et al. (2017) suggest that the percentages that 185 
commerce and industry contribute to national GDP could be used to downscale the single urban land 186 
class. However, the contribution of a sector to national GDP does not necessarily relate to the land surface 187 
it occupies. In this case, the population in a sector would be more relevant to the occupied land area. 188 
Therefore, in this study the residential population and employment in commercial and industrial sectors 189 
are used as proxies to downscale the single urban land class. It is assumed that the percentages of 190 
occupation of each sector within cities are equivalent to those of the population in each sector. Population 191 
data from the World Bank World Development Indicators are used (World Bank 2019). To be consistent 192 
with the land cover maps, population data from 1992 and 2015 per country are used to calculate the 193 
country-specific percentages for the baseline and future scenarios respectively. Lastly, the estimated 194 
direct economic damages per sector are aggregated at a country level for estimating the indirect losses. 195 
All economic damages are expressed in 2010 US$ values. 196 

2.4 Indirect damages 197 

The method for estimating indirect damage from fluvial floods is based on the existing Flood Footprint 198 
model presented in Mendoza-Tinoco et al. (2020). The Flood Footprint model draws on the Adaptive 199 
Regional Input-Output (ARIO) model (Hallegatte 2008), a widely used model to calculate indirect 200 
economic impacts of disaster events. Other methods, such as Computable General Equilibrium (CGE) 201 
models (e.g. Rose and Liao 2005), are also used in this field. While CGE models are good at reflecting 202 
the inter-industry links, they require many parameters to be calibrated and tend to be overly optimistic 203 
about market flexibility (Carrera et al. 2015; Kajitani and Tatano 2017). In contrast, Input-Output models 204 
not only include sectoral interdependence, but also maintain a level of simplicity which makes them 205 
popular in indirect economic impact evaluation of disaster events (Okuyama and Santos 2014; Koks et al. 206 
2016), and permits easy integration with external models and data (Galbusera and Giannopoulos 2018). 207 
For further review of recent modelling approaches focused on the indirect damage from fluvial floods see 208 
Mendoza-Tinoco et al. (2020). 209 
 210 
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Below we present an overview of the key model components and the modelling process regarding the 211 
CC+SE experiment. For a full description of the model please see SM1.2 and Mendoza-Tinoco et al. 212 
(2020).  213 
 214 
The Flood Footprint model is run at a monthly time-step. The economy is initially in equilibrium, with 215 
total supply and demand balanced as follows1: 216 
 217 

 0 0 0 0
,

1

n

i i i j j i
j

x im a x fd


     (1) 218 

 219 

 0 0 0 0 0
i i i i ifd hc gc inv ex     (2) 220 

 221 

Where 0
ix , 0

iim  and 0
ifd  are output, imports and final demand of products in sector i in the pre-flood 222 

equilibrium (month before flooding 0t  ). ,i ja  reflects the ith row and jth column element of the input 223 

coefficient matrix derived from the IOTs, reflecting the intermediate demand for product i required to 224 
produce one unit of product j. n represents the number of industrial sectors. Thus, the left-hand side of 225 
equation 1 represents the total supply of product i, while the right-hand side denotes its total demand. 226 
 227 
Final demand consists of: 1) household consumption ( 0

ihc ), divided into basic demand ( 0
ibd ) and other 228 

consumption ( 0
iohc ): 0 0 0

i i ihc bd ohc  ; 2) governmental expenditure ( 0
igc ); 3) fixed capital formation 229 

or investment ( 0
iinv ); and 4) exports ( 0

iex ). 230 

 231 
Following a flood event supply and demand become imbalanced and the economy is no longer in 232 
equilibrium. On the supply side, direct flood damage to industrial capital and labour reduce the 233 
production capacity of affected sectors. Equations 3 and 4 show the industrial capital available for 234 
production in each month following flooding. 235 
 236 

 
t

t i
i t

i

k

k
 

  (3) 237 

 238 

 1 1
,(1 ) ( )t t t t

i i i j i
j

k k ra       (4) 239 

 240 

Here t
i  is the proportion of damaged capital in sector i during month t and t

ik  is the direct damage to 241 

the capital stock (as estimated in section 2.3). t
ik  is the available capital of sector i  at the beginning of 242 

month t . Available capital is defined as the remaining capital following a flood plus any recovered 243 

 
1 In this paper, we use bold capital letters to represent matrices (e.g. I  and A ), italic bold lowercase letters for vectors (e.g. 
x ), and italic lowercase letters for scalars (e.g. n ). Vectors are column vectors by default, and the transposition is denoted by 

an apostrophe (e.g. x' ). The conversion from a vector to a diagonal matrix is expressed as italic bold lowercase letters with a 

circumflex (e.g. α̂ ). 
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capital during the previous month. t
jira  is the element of an n n  recovery matrix tRA , which denotes 244 

the investment from sector j to restore capital in sector i in month t. 245 
 246 
Capital production capacity, t

ixk , is assumed proportional to available capital, t
ik , in each month, relative 247 

to the pre-flood level: 248 
 249 

 0
0

t
t i
i i

i

kxk x
k

   (5) 250 

 251 
Damaged physical capital includes industrial and residential capital. Available residential capital is 252 
calculated in the same manner as industrial capital above, but has no effect on production capacity as it is 253 

not involved in the production process2. Similarly, labour availability, tl , can change in the aftermath of a 254 
flood reflecting casualties and transport disruptions which may delay or impede travel to work. In the 255 
model it is assumed that labour can flow freely across different industrial sectors, so that during each 256 

month the labour production capacity, t
ixl , in each sector experiences the same percentage change as the 257 

total labour supply (a full description of labour availability and its recovery parameters are provided in the 258 
SM 1.2). 259 
 260 
The available production capacity of sector i in month t, t

ixcap , is determined by the minimum capacity 261 

of labour and capital in that month, where ‘min’ is the minimum value between t
ixk  and t

ixl : 262 

 263 

 min( , )t t t
i i ixcap xk xl  (6) 264 

 265 
The importing capacity, t

iimcap , is assumed to be constrained by the surviving capacity of the transport 266 

sector, t
tranxcap . If the remaining capacity of the transport sector ‘tran’ declines by %x  in month t , then 267 

the imports will contract by the same percent relative to the pre-flood level, 0
iim . 268 

 269 

 0
0

t
t tran
i i

tran

xcap
imcap im

x
   (7) 270 

 271 
Demand fluctuations are also incorporated in the Flood Footprint model. A new type of final demand 272 
arises due to the need for reconstruction and replacement of damaged physical capital, including 273 

industrial and residential capital. For example, ,
t
i jrd is the element of an n n  reconstruction demand 274 

matrix tRD  , which denotes the investment that is needed for sector i  to support the capital 275 

reconstruction of industrial sector j : 276 

 277 

 
2 Although damage to residential capital can have indirect effects on the production process as its recovery results in a non-
negligible part of the total reconstruction demand, competing with industrial capital for reconstruction resources. 
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1

1
,

1

max (1 ) ,0
t

t t t m
i j s j j j i

m

rd r k k rasto d






           
  (8) 278 

Where ‘max’ is the maximum, sr  is the targeted growth rate of capital stock, and 
1

1

t
m
j

m

rasto



  is the 279 

accumulative capital under construction before month t . Capital under construction does not contribute to 280 
a productivity increase until it is fully recovered. Therefore, the demand for capital reconstruction in 281 

sector j reflects the gap between the capital target,   11 t
s jr k   and the actual amount of capital minus 282 

the capital already under construction. Such demand is allocated to sector i  according to the contribution 283 

of that sector to capital reconstruction, which defines id . Reconstruction demand of the residential sector, 284 

,
t
i resrd , is defined in the same way.  285 

 286 
Furthermore, strategic adaptive behaviour in the aftermath of floods can also drive people to ensure a 287 
continued consumption of basic commodities, such as food, clothes and medical services (Mendoza-288 
Tinoco et al., 2017). The coexistence of reconstruction and basic demand delimits the boundary of final 289 
demand in the model (see SM 1.2 for further details). 290 
 291 
Given disruptions to both the supply and demand sides, industrial sectors choose their optimal production, 292 

,*t
ix , and imports, ,*t

iim , under production, import and consumption constraints, to maximize the total 293 

economic supply each month during the post-flood recovery. This in turn determines the amount of final 294 

demand, ,*t
ifd , that could be satisfied: 295 

 296 
 ,* ,* ,* ,*

,
t t t t
i i i i j i

j

fd x im a x     (9) 297 

The remaining final products, after satisfying the basic demand, are then proportionally allocated to the 298 
reconstruction demand and other categories of final demand. Capital is recovered through reconstruction, 299 
while labour is recovered exogenously (see SM 1.2 for further details). This iterative process continues 300 
until the total supply and demand of the economy are in equilibrium and the economic output recovers to 301 
the targeted growth trajectory.  302 

Total indirect economic damage is calculated as the loss of monthly GDP compared to its potential:  303 

 ,* ,* ,*
,

1

n
t t t
i i j i i

j

va x a x


    (10) 304 

 305 

   0 ,*

1 1

1
n nt t

g i i
t i i

IndirectDamage r va va
 

      
    (11) 306 
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Here ,*t
iva  refers to the value added of sector i in month t, which is the extra value of final products 307 

created above intermediate input. Summation of value added in all sectors, ,*

1

n
t
i

i

va

 , constitutes the 308 

national GDP for month t , where gr  is the targeted growth rate of national GDP. The total indirect 309 

damage is the accumulative losses of GDP over all months. This reflects the method for the CC+SE 310 
experiment, whereby the economy can recover to a target level above the pre-flood level, based on the 311 
exogenous growth trajectory. However, in the CC only experiment economic recovery is constrained to 312 
the pre-flood level. Constraints on physical capital, labour, output and imports are set so that they cannot 313 

grow larger than the pre-flood level. In this case gr  is set to zero, which indicates no economic growth. 314 

Economic data used for the indirect damage estimation includes information on national Input-Output 315 
tables (IOTs), GDP, capital stock and labour force (see SM Table S1 for an overview of data used to 316 
calculate the flood-induced indirect damages in the baseline and future periods for the CC and CC+SE 317 
experiments). For each of the countries IOTs are obtained from their national statistical websites, 318 
providing information on intermediate demand, final demand, value-added, output, imports and exports at 319 
the country level. For each country, the earliest version IOT available is used to approximate the economy 320 
during the baseline period. For the CC experiment, the same IOT is used for both the baseline and future 321 
periods. Under the CC+SE experiment the economic structure is assumed to vary in the future. This 322 
variance is represented by using the same IOT as used in the CC only experiment in the baseline but the 323 
most recent version of the IOT available for each country in the future period (see SM Table S2 for 324 
country specific details on the IOTs used). This, to some extent, reflects the structural change from the 325 
baseline economy to the future one, given difficulties in projecting IOTs for 2100. The IOTs also provide 326 
data on the sectors involved in capital reconstruction from the investment column contained in the final 327 
demand block. The share of each sector investing in fixed capital formation indicates its contribution to 328 

the reconstruction process, namely the values of id . The annual IOT data is lastly divided by twelve to 329 

represent a monthly value. 330 

Industry data from the IOTs are aggregated to ten sector groups per country: Agriculture (AGR), Mining 331 
(MIN), Food Manufacturing (FDM), Other Manufacturing (OTM), Utilities (UTL), Construction (CON), 332 
Trade (TRA), Transport (TRA), Public services (PUB) and Other Services (OTS) (see also SM Table S2). 333 
Where sectoral-level data is not available, such as for capital stock, it is disaggregated to the ten sector 334 
groups based on their proportional contribution to national GDP. 335 

In line with the direct damage estimation, data on GDP, population and labour force are derived from the 336 
World Bank World Development Indicators (World Bank 2019). Data on capital stock is from the 337 
Investment and Capital Stock (ICSD) dataset from the IMF (IMF 2015). Capital stock is divided into 338 
industrial and residential capital based on land use from the land cover maps (ESA 2017). Under the CC 339 
experiment data on GDP, population, labour force, and capital stock are set as constant to restrict any 340 
socio-economic change. In the CC+SE experiment these data are dynamic. For the baseline scenarios this 341 
reflects reported trends in data from 1961-1990. For the warming scenarios, trends in data are based on 342 
the SSP2 projections whereby social, economic, and technological trends do not shift markedly from 343 
historical patterns (Riahi et al. 2017). 344 
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The shock of the flood event is represented by data on physical damage to capital assets (section 2.3) and 345 
labour loss. While the same depth-damage functions are used for the estimation of direct losses for both 346 
baseline and future periods, the calculated direct damages are scaled prior to use in the I-O model, based 347 
on the baseline and projected GDP per capita, according to the power law functions provided by Huizinga 348 
et al. (2017). Exponents in the power law functions are smaller than one, indicating that direct damage is 349 
not proportional to GDP per capita and grows slower than GDP per capita. The scaled damage is 350 
disaggregated into specific industrial sectors in proportion to their capital stock. 351 

Population exposure to fluvial flooding for each country is provided by He et al. (2020) of this special 352 
issue. Affected labour is derived by multiplying the exposed population by the labour participation rate, 353 
from the World Bank (World Bank, 2019). The number of affected employees during each flood are 354 
divided into four categories: the dead, the heavily injured, the slightly injured, and others affected by 355 
flood-induced traffic disruptions. The ratios between these categories are determined based on the 356 
historical average of recorded floods for each country from the EM-DAT Dataset (EM-DAT 2020). This 357 
data feeds into the labour calculations in the I-O model (described in SM 1.2). 358 

3. Results 359 

3.1 Direct and indirect fluvial flood damages 360 

Figure 1 presents estimates of direct and indirect economic damage for each country and climate scenario, 361 
under the CC and CC+SE experiments (results are plotted on the same axis to compare risk, see SM Figs 362 
S1 and S2 for results plotted on separate axis per country for more detail). The results reflect the 363 
underlying data provided from the flood hazard model, highlighting increasing economic damages, above 364 
the baseline, in line with the increasing warming scenarios. For Egypt, the largest increases in average 365 
damage occur up to scenario 3: 2.5°C, after which damages continue to increase albeit at a smaller rate. 366 
This reflects the findings of He et al (2020), who note that the proportional area of the Nile River Basin 367 
that experiences a decrease in the return period of a 1 in 100-year event (increase in flood frequency) 368 
changes little from scenario 1: <1.5°C to 6: 4°C. 369 

Under the CC experiment, direct damages under scenario 1: <1.5°C are 399 (+95%, relative to baseline, 370 
Brazil), 1,713 (+80%, China), 427 (+13,783%, Egypt), 54 (+341%, Ethiopia), 11 (+255%, Ghana) and 371 
719 (+435%, India) million US$ per year. Direct damages increase to 4,267 (+1,979%, relative to 372 
baseline, Brazil), 5,759 (+506%, China), 1,495 (+48,508%, Egypt), 147 (+1,108%, Ethiopia), 79 373 
(+2,401%, Ghana), and 7,888 (+5,767%, India) million US$ per year under scenario 6: 4°C. The indirect 374 
damages, though much lower than direct damages, display similar trends (Figure 1). The Economic 375 
Amplification Ratio (EAR), defined as the ratio of total costs to direct costs (Hallegatte et al. 2007), is 376 
relatively constant across the warming scenarios for each country. As an average across the warming 377 
scenarios the EAR is 1.23 (Brazil), 1.15 (China), 1.61 (Egypt), 1.36 (Ethiopia), 1.22 (Ghana) and 1.26 378 
(India). 379 

Under the CC+SE experiment the magnitude of direct damage increases significantly for all countries, 380 
reflecting the increasing population and economic assets at risk. Under scenario 1: <1.5°C direct damages 381 
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range from 0.13 billion US$ per year (Ghana) to 42 billion US$ per year (China). Losses increase to 1.12 382 
billion US$ per year (Ghana) and 129 billion US$ per year (China) under scenario 6: 4°C. The magnitude 383 
of indirect damages not only increase but also surpass the direct damages (Figure 1). Indirect losses range 384 
from 1.7 billion US$ per year (Ghana) to 51 billion US$ per year (China) under scenario 1: <1.5°C, 385 
increasing to 12 billion US$ per year (Ghana) and 256 billion US$ per year (China) under scenario 6: 386 
4°C. As an average across the warming scenarios the EAR increases to 10.97 (Brazil), 2.36 (China), 387 
16.21 (Egypt), 12.05 (Ethiopia), 12.94 (Ghana) and 6.62 (India).  388 

The increase in direct damage under the CC+SE experiment reflects the steady growth in capital stock, 389 
population and GDP under the SSP2 trajectories, resulting in larger flood exposure in the future period 390 
compared to the baseline. Indirect losses are significantly larger than direct losses as indirect losses in the 391 
CC+SE experiment accumulate over time and reflect the potential for a continuous slowdown in 392 
economic growth from the projected growth trajectory if no floods occurred. In other words, the indirect 393 
flood damages presented here do not only result in a short-term impact on economic output, but have the 394 
potential to restrict longer-term economic growth (discussed further in section 3.4, Figures 4 and 5). Thus, 395 
the inclusion of socio-economic development results in large increases in total losses when compared to 396 
the equivalent CC experiment run; for example, under scenario 6: 4°C, the total losses will increase by 397 
3,613% (Brazil), 5,670% (China), 5,265% (Egypt), 6,095% (Ethiopia), 13,447% (Ghana) and 5,503% 398 
(India). 399 

Figure 1 also illustrates that there is a large range in uncertainty, shown as the ensemble maximum and 400 
minimum values, which also increases under higher warming levels. This reflects the variance seen in the 401 
flood model outputs, representing differences in climate change patterns projected by the five GCMs.  402 

[Figure 1] 403 

3.2 Percentage change to national GDP 404 

Figure 2 presents the average annual indirect economic damage as a share of national GDP. Under both 405 
the CC and CC+SE experiments Egypt suffers the largest reductions to national GDP, reaching 2.3% and 406 
3.0% under scenario 6: 4°C, respectively. This highlights the high population density and the fact that 407 
most economic activities, including agriculture, take place in the Nile Valley (Aliboni 2012). While flood 408 
risk was low in the baseline period in Egypt this increases in the future, driven by increased precipitation 409 
upstream in Sudan and Ethiopia which increases river flows and flood risk along the Nile (He et al. 2020). 410 

Under the CC experiment, Ethiopia and India face the next largest impacts to GDP, after Egypt, equating 411 
to 0.73% and 0.76% of GDP respectively, under scenario 6: 4.0°C. However, for Ethiopia losses decline 412 
from the baseline (1.09% of GDP) when socio-economic development is included, ranging from 0.09% to 413 
0.28% of GDP under scenarios 1 to 6. This reflects the different baseline and future projections of socio-414 
economic growth in Ethiopia, which makes the country appear more resilient when viewed in relative 415 
terms, to the costs of fluvial floods under future projections of climate change (see also SM Fig S3 and 416 
S4). A similar trend is seen in China when considering socio-economic development. Winsemius et al. 417 
(2016) also highlight how socio-economic change can be a driver for reduced future flood risk, in relative 418 
terms, particularly in higher income countries. 419 
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Brazil faces the lowest indirect damages of all countries as a proportion of GDP under the CC experiment 420 
(0.16% under scenario 6: 4°C), but the second largest losses under the CC+SE experiment (1.80% under 421 
scenario 6: 4°C). Whilst losses as a proportion of GDP initially decline at lower warming levels, increases 422 
are seen from scenario 3: 2.5°C onwards. A similar trend is seen for India and Ghana. For India, indirect 423 
losses as a proportion of GDP initially decline from the baseline at lower levels of warming, before 424 
increases are seen from scenario 4: 3°C onwards, suggesting a tipping point where increasing flood risk 425 
outweighs any relative benefits of socio-economic development. Similar trends in direct flood damage 426 
were reported by Dottori et al. (2018) for several regions in the world, with damage as a share of GDP 427 
declining with warming, particularly for fast growing economies, although the trend was reversed when 428 
damages were reported in absolute terms (as in Figure 1 above). Hence, it is important to consider 429 
changing socio-economic characteristics such as population change, land-use change and economic 430 
growth trajectories, alongside climate change. 431 

[Figure 2] 432 

3.3 Sectoral distribution of fluvial flood damages 433 

A further benefit of the methodology is that it allows sectoral disaggregation of flood damages. Figure 3 434 
shows a subset of the results for the six countries, split by direct and indirect losses (see SM Fig S5 for 435 
full results). Direct and indirect losses to sectors increase in line with increasing warming scenarios. As 436 
above, they are significantly higher, with a greater share of indirect losses, under the CC+SE experiment. 437 

Under the CC experiment the agricultural sector (AGR) faces some of the largest losses in China, 438 
Ethiopia, Egypt, Ghana and India, as well as other manufacturing (OTM) and public (PUB) and other 439 
services (OTS). This is similar to findings of Dottori et al. (2018) who found pronounced agricultural 440 
losses in low-income regions with a higher share of agricultural GDP. In Brazil, the largest impacts are 441 
felt by other manufacturing (OTM), public (PUB) and other services (OTS), whilst Ethiopia also sees 442 
large losses to its food manufacturing (FDM) sector. Whilst the losses increase from scenario 1: <1.5°C to 443 
6: 4°C, the sectoral distribution of losses in each country remains similar. However, under the CC+SE 444 
experiment the results also reflect underlying changes in the economic structure of the countries, 445 
including the expansion of service sectors of the economy. For example, there are increasing losses to 446 
public services (PUB) and other services (OTS) under scenario 6: 4°C for countries such as India and 447 
Ghana, who predominantly saw losses to the agricultural sector (AGR) under the CC experiment. 448 

[Figure 3] 449 

3.4 Recovery Dynamics 450 

When calculating indirect damages under the CC experiment it is assumed that the economy recovers to 451 
the pre-flood level (section 2.4). Figure 4 illustrates the dynamic percentage change of monthly GDP for 452 
each country, under the baseline and six warming scenarios, relative to the pre-flood level. The 453 
fluctuations highlight each occurrence of flooding and the post-flood recovery period. Fluvial flood losses 454 
to monthly GDP range from up to 2.9% in Ethiopia (Baseline) and up to 15.2% in Egypt (scenario 6: 455 
4°C). For all countries, it usually takes several months for GDP to recover to pre-flood levels. The 456 
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frequency of events, scale of losses, and recovery time increase in severity in line with the increasing 457 
warming levels.  458 

In terms of flood frequency, it can be seen that during the 30-year baseline, in large countries which have 459 
some of the world’s largest rivers (e.g. China, Brazil and India), there will be more than 25 years with 1 in 460 
100-year floods. Although flood-induced damages are aggregated to the national scale, these floods may 461 
occur in different areas of the country, particularly for countries with more than one major river. During 462 
the future period, a flood exceeding the baseline 1 in 100-year threshold will no longer be a 1 in 100-year 463 
flood, thus extreme flood events from the baseline perspective become more frequent in the future under 464 
the warming scenarios. 465 

Focusing on the dynamics of individual flood events over time, and their indirect losses, is beneficial as it 466 
highlights the different magnitude of impacts between flood events. It also highlights the potential impact, 467 
in terms of the magnitude of losses and duration for recovery, of successive flood events that may occur 468 
while the country is still in a recovery period, as shown in China and Egypt around month 50. 469 

[Figure 4] 470 

Under the CC+SE experiment the economy can recover to a level above the pre-flood economy based on 471 
the exogenous growth data used within the I-O model (2086-2115 for the climate scenarios, and 1961-472 
1990 for the baseline scenario). In this case, the level of recovery required to re-establish the pre-flood 473 
trajectory is larger (Figure 5). Consequently, indirect impacts can continue to accumulate over time as 474 
they also account for the overall slowdown in the growth rate of the economy from its potential trajectory, 475 
highlighted by the downward sloping trends in Figure 5. Fluvial flood losses to monthly GDP range from 476 
up to 1.5% in Egypt for scenario 1: <1.5°C and up to 4.7% in Egypt for scenario 6: 4°C. Indirect damage 477 
as a share of monthly GDP is generally lower than under the CC experiment given the future economic 478 
growth trajectories (see Fig S3). Yet, although the impact of individual flood events, in terms of the 479 
potential loss to monthly GDP, is more severe under the CC experiment, when totalled over time the 480 
accumulated impacts are higher under the CC+SE experiment. 481 

[Figure 5] 482 

Figure 5 also shows how the trajectory of trends under the baseline period (i.e., navy blue lines) differ to 483 
those of the climate scenarios, ranging from 0.6% in Egypt up to 4.8% in China. The differences reflect 484 
the different frequency and intensity of flood events, with the economy able to recover fully between 485 
events in many instances. Typically, when absolute economic growth continues over time full economic 486 
recovery is impossible, as the growth continues at a slower rate than under the pre-flood economy. Full 487 
recovery usually occurs in periods of economic recessions (Fig. S4) when other constraints (e.g., droughts 488 
and famine) become more severe than flood constraints and dominate economic trajectories. These 489 
deviations result in spikes, or downward trends, in Figure 5 when displayed as a percentage change in 490 
monthly GDP from the pre-flood economy. These periods of economic recession reflect that the baseline 491 
is based on historical growth data and these time series do not always follow a smooth trajectory. In 492 
contrast, the future scenarios are based on deviations from projected growth data between 2086-2115 493 
from the SSP2 scenario. These trajectories do follow a smooth pathway hence another reason for the 494 
difference in the baseline trajectories when compared to the climate scenarios in Figure 5. Thirdly, while 495 
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absolute losses increase under the warming scenarios, in relative terms losses to GDP may appear smaller 496 
in the future given the level of projected economic growth, as seen in China when comparing the baseline 497 
to future scenarios (Figure 2). This is consistent with the results of Dottori et al. (2018), which implies 498 
that some economies grow faster than flood-induced direct damage with warming. 499 

4. Discussion and Conclusions 500 

The above analysis provides an assessment of the direct and indirect economic impacts of fluvial flooding 501 
in six countries under future scenarios of climate change and socio-economic development. It covers a 502 
range of climate scenarios reflecting ambitious targets as well as higher levels of warming. The study 503 
demonstrates the importance of including socio-economic development when projecting direct and 504 
indirect flood losses, and the implications of this for damage estimates. Population change, land-use 505 
change and economic growth can be just as, or more, important than climate change in terms of 506 
understanding the future dynamics of fluvial flood risk (Dottori et al. 2018). The methodology considers 507 
direct and indirect economic impacts, providing a more comprehensive assessment of total damages at the 508 
national level, while facilitating comparison across countries. 509 

Results highlight the potential for large increases in flood related losses under future warming scenarios. 510 
Absolute fluvial flood losses are largest in China and India. However, as a share of national GDP Egypt 511 
faces the most serious consequences, under both the CC and CC+SE experiments. The magnitude of 512 
indirect losses also varies largely when comparing between the CC and CC+SE experiments, becoming 513 
particularly severe in Egypt, Ghana and Ethiopia under the CC+SE experiments. 514 

The method is also beneficial in that dynamic recovery is considered. This provides valuable insights into 515 
the role of recovery dynamics in influencing losses, and paves the way for further research in this area, 516 
particularly important given the past knowledge gap in considering such dynamics in I-O models (Meyer 517 
et al. 2013). The results highlight the potential lost opportunity costs, in terms of economic development, 518 
due to fluvial flooding in the future. The baseline CC+SE results also emphasise the importance of other 519 
exogenous constraints (such as droughts and famine) that may be felt in successive years or in 520 
combination with flooding constraints, causing different recovery dynamics and loss estimates. 521 

In terms of validating results, the lack of empirical data on the dynamics of business recovery (Koks et al. 522 
2019), and documented economic data on the indirect costs of flooding makes comparison difficult. 523 
Direct damage estimates for the baseline period under the CC+SE experiment can be compared with data 524 
from the EM-DAT database (EM-DAT 2020). Total direct damages for the baseline period modelled here 525 
are 6,640 (Brazil), 25,123 (China), 87 (Egypt), 215 (Ethiopia), 86 (Ghana), and 4,050 (India) million 526 
US$. Damages reported by EM-DAT during the same period are 4,185 (Brazil), 10,219 (China), 14 527 
(Egypt), 0.92 (Ethiopia), 75 (Ghana), and 5,744 (India) million US$. For Brazil, Ghana and India the 528 
estimates are comparable to those reported by EM-DAT (around 15-60% difference). For the other three 529 
countries the estimates are much larger than reported data. This likely reflects the underreporting of 530 
economic damages in the EM-DAT database, particularly for developing countries in past decades 531 
(Kundzewicz et al. 2014).  532 
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Regarding the percentage change in direct damages relative to the baseline, results can be compared with 533 
Alfieri et al. (2017). Their estimates were made under three warming scenarios (1.5°C, 2°C, and 4°C), 534 
assuming constant socio-economic conditions and using the same set of depth-damage functions as this 535 
study (Huizinga et al. 2017). Estimates presented here under the CC experiment for Brazil, China and 536 
India are in good agreement with those reported by Alfieri et al. (2017). However, the estimates for the 537 
three African countries in this study are much larger. This discrepancy is also noted by He et al. (2020) 538 
when comparing population exposure to flooding with that of Alfieri et al. (2017). Consequently, the 539 
higher estimates for the three African countries in this study likely reflect higher increasing flood 540 
occurrences projected by the flood hazard model. 541 

However, as with any economic impact study of climate change it is extremely challenging to capture all 542 
aspects of the subject within a single framework. Several studies highlight that flood risk assessments are 543 
sensitive to the choice of GCMs or climate driving datasets (Sperna Weiland et al. 2012; Ward et al. 544 
2013; Alfieri et al. 2015). However, in this study, the overall patterns seen with increasing warming levels 545 
are consistent among the five GCMs, which sample a reasonable proportion of the overall uncertainty in 546 
modelled precipitation in the wider CMIP5 (He et al. 2020). 547 

The study also focuses on economic losses relating to floods whose magnitude exceeds a baseline 1 in 548 
100-year return period. Smaller events, which may still have an economic effect, are not considered, 549 
leading to a potential underestimation of losses. Conversely, as the flood data from CaMa-Flood does not 550 
consider flood protection (He et al. 2020), focusing on a 1 in 100-year flood event can reduce the 551 
potential of overestimating risks given many flood protection defences are designed at protection levels 552 
lower than the 100-year return period. While beyond the scope of this study, more recently available 553 
global flood defence data could be used to investigate the role of adaptation further in the future 554 
(Scussolini et al. 2016).  Winsemius et al. (2016) found that including improvement in flood protection 555 
levels over time would significantly reduce economic damages, although this extension to the modelling 556 
has its own limitations in terms of the availability and accuracy of data for this parameter (Tanoue et al. 557 
2016). 558 

There is also uncertainty associated with the depth-damage functions used. Dottori et al. (2018) employed 559 
the same set of functions in their study and claimed that the associated uncertainty would exceed ±50%, 560 
as also noted by Huizinga et al. (2017). Given there are no alternative, globally consistent databases 561 
available, it is not feasible to assess the effect of the depth-damage functions used in this study. 562 
Nevertheless, the database of depth-damage curves used in this study is beneficial as it accounts for 563 
heterogeneity across the six countries as well as facilitating a country comparison. 564 

This study also assumes a constant land cover after 2015 in the CC+SE experiment. When socio-565 
economic growth is modelled with constant land cover the exposure value per unit area increases more in 566 
the model than in reality where the area constructed on will grow. Though predicted future land cover 567 
maps exist (e.g. van Vuuren et al. 2017), they are often at a coarser resolution and subject to several 568 
assumptions (ibid) which can introduce further uncertainty into the economic calculations. 569 

Lastly, there are uncertainties arising from the underlying data, parameterisation of the I-O model and 570 
assumptions on recovery dynamics used for the estimation of indirect losses, which would benefit from 571 
future research. For example, the IOTs used for the baseline and future analysis were dependent on the 572 
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latest years of data available for each country, which differed, with the classification of certain sectors 573 
varying for some countries (SM Table S2). However, modelling the future structure of an economy, 574 
particularly when applied to multiple countries, is always difficult (Koks et al. 2019). 575 

Nonetheless, the analysis presented here is beneficial in many aspects as discussed at the start of this 576 
section. Going forwards, the provision of more comprehensive estimates of fluvial flood risk, that account 577 
for both the effects of climate change and uncertainty under a range of warming scenarios, and the role of 578 
socio-economic development, will provide important insights to support decision-making regarding flood 579 
risk management, and in terms of investment needs for adaptation (Mokrech et al. 2015). Being able to 580 
apply the analysis at a country level is important for future research as economic losses will be related to 581 
the level of development of the specific society, and could capture any flood prevention measures in place 582 
which can differ regionally and overtime as income levels rise (Jongman et al. 2015). And, as noted by 583 
other authors (e.g. Koks et al., 2019), the study also contributes to the objectives of the Sendai 584 
Framework for Disaster Risk Reduction to better understand disaster risk (UNDRR, 2015), essential to 585 
help inform and support the development of post-disaster recovery and adaptation strategies. 586 

Acknowledgement 587 

This paper was funded by the UK Government, Department for Business, Energy and Industrial Strategy. 588 

References 589 

Alfieri L, Feyen L, Dottori F et al (2015) Ensemble flood risk assessment in Europe under high end 590 
climate scenarios. Glob Environ Change 35:199–212. https://doi.org/10.1016/j.gloenvcha.2015.09.004 591 

Alfieri L, Bisselink B, Dottori F et al (2017) Global projections of river flood risk in a warmer world. 592 
Earth’s Future 5:171–182. https://doi.org/10.1002/2016EF000485 593 

Aliboni R (2012) Egypt’s Economic Potential (RLE Egypt). Routledge, London & New York 594 
Arnell NW, Gosling SN (2016) The impacts of climate change on river flood risk at the global scale. 595 

Climatic Change 134:387–401. https://doi.org/10.1007/s10584-014-1084-5 596 
Arnell NW, Lloyd-Hughes B (2014) The global-scale impacts of climate change on water resources and 597 

flooding under new climate and socio-economic scenarios. Climatic Change 122:127–140. 598 
https://doi.org/10.1007/s10584-013-0948-4 599 

Carrera L, Standardi G, Bosello F et al (2015) Assessing direct and indirect economic impacts of a flood 600 
event through the integration of spatial and computable general equilibrium modelling. Environ 601 
Modell Softw 63:109–122. https://doi.org/10.1016/j.envsoft.2014.09.016 602 

Dottori F, Szewczyk W, Ciscar J-C et al (2018) Increased human and economic losses from river flooding 603 
with anthropogenic warming. Nat Clim Change 8:781–786. https://doi.org/10.1038/s41558-018-0257-604 
z 605 

EM-DAT (2020) EM-DAT: The Emergency Events Database - Université catholique de Louvain (UCL) - 606 
CRED, D. Guha-Sapir - www.emdat.be, Brussels, Belgium. Accessed 7 Feb 2020 607 

ESA (2017) Land Cover CCI Product User Guide Version 2. Technical Report. UCL-Geomatics, 608 
Belgium 609 



18 
 

Galbusera L, Giannopoulos G (2018) On input-output economic models in disaster impact assessment. Int 610 
J Disast Risk Re 30:186–198. https://doi.org/10.1016/j.ijdrr.2018.04.030 611 

Gütschow J, Jeffery ML, Schaeffer M et al (2018) Extending near-term emissions scenarios to assess 612 
warming implications of Paris Agreement NDCs. Earth’s Future 6:1242–1259. 613 
https://doi.org/10.1002/2017EF000781 614 

Hallegatte S (2008) An adaptive regional input-output model and its application to the assessment of the 615 
economic cost of Katrina. Risk Anal 28:779–799. https://doi.org/10.1111/j.1539-6924.2008.01046.x 616 

Hallegatte S, Hourcade J-C, Dumas P (2007) Why economic dynamics matter in assessing climate change 617 
damages: illustration on extreme events. Ecol Econ 62:330–340. 618 
https://doi.org/10.1016/j.ecolecon.2006.06.006 619 

He Y, Manful D, Warren F et al (2020) Quantification of impacts between 1.5°C and 4°C of global 620 
warming on flooding risks in six countries. Climatic Change This Special Issue: In review 621 

Hirabayashi Y, Kanae S (2009) First estimate of the future global population at risk of flooding. Hydrol 622 
Res Lett 3:6–9. https://doi.org/10.3178/hrl.3.6 623 

Hirabayashi Y, Mahendran R, Koirala S et al (2013) Global flood risk under climate change. Nat Clim 624 
Change 3:816–821. https://doi.org/10.1038/nclimate1911 625 

Huizinga J, de Moel H, Szewczyk W (2017) Global flood depth-damage functions. Methodology and the 626 
database with guidelines. Publications Office of the European Union, Luxembourg 627 

IMF (2015) Investment and Capital Stock Dataset. International Monetary Fund. 628 
https://data.imf.org/?sk=1CE8A55F-CFA7-4BC0-BCE2-256EE65AC0E4 629 

Jiménez Cisneros BE, Oki T, Arnell NW et al (2014) Freshwater resources. In: Field CB, Barros VR, 630 
Dokken DJ et al (eds) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global 631 
and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the 632 
Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United 633 
Kingdom and New York, NY, USA, pp 229–269 634 

Jongman B, Ward PJ, Aerts JCJH (2012) Global exposure to river and coastal flooding: long term trends 635 
and changes. Glob Environ Change 22:823–835. https://doi.org/10.1016/j.gloenvcha.2012.07.004 636 

Jongman B, Winsemius HC, Aerts JCJH et al (2015) Declining vulnerability to river floods and the global 637 
benefits of adaptation. Proc Natl Acad Sci USA 112:E2271–E2280. 638 
https://doi.org/10.1073/pnas.1414439112 639 

Kajitani Y, Tatano H (2017) Applicability of a spatial computable general equilibrium model to assess the 640 
short-term economic impact of natural disasters. Econ Syst Res 30:289–312. 641 
https://doi.org/10.1080/09535314.2017.1369010 642 

Koks EE, Bočkarjova M, de Moel H et al (2015) Integrated direct and indirect flood risk modeling: 643 
development and sensitivity analysis. Risk Anal 35:882–900. https://doi.org/10.1111/risa.12300 644 

Koks EE, Carrera L, Jonkeren O et al (2016) Regional disaster impact analysis: comparing input–output 645 
and computable general equilibrium models. Nat Hazards Earth Syst Sci 16:1911–1924. 646 
https://doi.org/10.5194/nhess-16-1911-2016 647 

Koks EE, Thissen M (2016) A Multiregional Impact Assessment Model for disaster analysis. Econ Syst 648 
Res 28:429–449. https://doi.org/10.1080/09535314.2016.1232701 649 

Koks EE, Thissen M, Alfieri L et al (2019) The macroeconomic impacts of future river flooding in 650 
Europe. Environ Res Lett 14:084042. https://doi.org/10.1088/1748-9326/ab3306 651 

Kundzewicz ZW, Kanae S, Seneviratne SI et al (2014) Flood risk and climate change: global and regional 652 
perspectives. Hydrolog Sci J 59:1–28. https://doi.org/10.1080/02626667.2013.857411 653 



19 
 

Mendoza-Tinoco D, Guan D, Zeng Z et al (2017) Flood footprint of the 2007 floods in the UK: the case 654 
of the Yorkshire and The Humber region. J Clean Prod 168:655–667. 655 
https://doi.org/10.1016/j.jclepro.2017.09.016 656 

Mendoza-Tinoco D, Hu Y, Zeng Z et al (2020) Flood footprint assessment: a multiregional case of 2009 657 
Central European floods. Risk Anal 40:1612–1631. https://doi.org/10.1111/risa.13497 658 

Meyer V, Becker N, Markantonis V et al (2013) Review article: assessing the costs of natural hazards – 659 
state of the art and knowledge gaps. Nat Hazards Earth Syst Sci 13:1351–1373. 660 
https://doi.org/10.5194/nhess-13-1351-2013 661 

Mokrech M, Kebede AS, Nicholls RJ et al (2015) An integrated approach for assessing flood impacts due 662 
to future climate and socio-economic conditions and the scope of adaptation in Europe. Climatic 663 
Change 128:245–260. https://doi.org/10.1007/s10584-014-1298-6 664 

Muis S, Güneralp B, Jongman B et al (2015) Flood risk and adaptation strategies under climate change 665 
and urban expansion: a probabilistic analysis using global data. Sci Total Environ 538:445–457. 666 
https://doi.org/10.1016/j.scitotenv.2015.08.068 667 

Okuyama Y, Santos JR (2014) Disaster impact and input-output analysis. Econ Syst Res 26:1–12. 668 
https://doi.org/10.1080/09535314.2013.871505 669 

Riahi K, van Vuuren DP, Kriegler E et al (2017) The Shared Socioeconomic Pathways and their energy, 670 
land use, and greenhouse gas emissions implications: an overview. Glob Environ Change 42:153–168. 671 
https://doi.org/10.1016/j.gloenvcha.2016.05.009 672 

Rojas R, Feyen L, Watkiss P (2013) Climate change and river floods in the European Union: socio-673 
economic consequences and the costs and benefits of adaptation. Glob Environ Change 23:1737–1751. 674 
https://doi.org/10.1016/j.gloenvcha.2013.08.006 675 

Rose A, Liao S-Y (2005) Modeling regional economic resilience to disasters: a computable general 676 
equilibrium analysis of water service disruptions. J Regional Sci 45:75–112. 677 
https://doi.org/10.1111/j.0022-4146.2005.00365.x 678 

Scussolini P, Aerts JCJH, Jongman B et al (2016) FLOPROS: an evolving global database of flood 679 
protection standards, Nat Hazards Earth Syst Sci 16:1049–1061. https://doi.org/10.5194/nhess-16-680 
1049-2016, 2016 681 

Sieg T, Schinko T, Vogel K et al (2019) Integrated assessment of short-term direct and indirect economic 682 
flood impacts including uncertainty quantification. PLoS ONE 14:e0212932. 683 
https://doi.org/10.1371/journal.pone.0212932 684 

Sperna Weiland FC, van Beek LPH, Kwadijk JCJ et al (2012) Global patterns of change in discharge 685 
regimes for 2100. Hydrol Earth Syst Sci 16:1047–1062. https://doi.org/10.5194/hess-16-1047-2012 686 

Tanoue M, Hirabayashi Y, Ikeuchi H (2016) Global-scale river flood vulnerability in the last 50 years. Sci 687 
Rep 6:36021. https://doi.org/10.1038/srep36021 688 

UNDRR (2015) Sendai Framework for Disaster Risk Reduction 2015-2030. UNISDR, Geneva 689 
van Vuuren DP, Stehfest E, Gernaat DEHJ et al (2017) Energy, land-use and greenhouse gas emissions 690 

trajectories under a green growth paradigm. Glob Environ Change 42:237–250. 691 
https://doi.org/10.1016/j.gloenvcha.2016.05.008 692 

Ward PJ, Jongman B, Aerts JCJH et al (2017) A global framework for future costs and benefits of river-693 
flood protection in urban areas. Nat Clim Change 7:642–646. https://doi.org/10.1038/nclimate3350 694 

Ward PJ, Jongman B, Sperna Weiland F et al (2013) Assessing flood risk at the global scale: model setup, 695 
results, and sensitivity. Environ Res Lett 8:044019. https://doi.org/10.1088/1748-9326/8/4/044019 696 



20 
 

Warren R, Hope C, Gernaat DEHJ et al (2020) Global and regional aggregate economic damages 697 
associated with global warming of 1.5 to 4°C above pre-industrial levels. Climatic Change This 698 
Special Issue: In review 699 

Weedon GP, Balsamo G, Bellouin N et al (2014) The WFDEI meteorological forcing data set: WATCH 700 
Forcing Data methodology applied to ERA‐Interim reanalysis data. Water Resour Res 50:7505–7514. 701 
https://doi.org/10.1002/2014WR015638 702 

Willner SN, Otto C, Levermann A (2018) Global economic response to river floods. Nat Clim Change 703 
8:594–598. https://doi.org/10.1038/s41558-018-0173-2 704 

Winsemius HC, Aerts JCJH, van Beek LPH et al (2016) Global drivers of future river flood risk. Nat 705 
Clim Change 6:381–385. https://doi.org/10.1038/nclimate2893 706 

Winsemius HC, van Beek LPH, Jongman B et al (2013) A framework for global river flood risk 707 
assessments. Hydrol Earth Syst Sci 17:1871–1892. https://doi.org/10.5194/hess-17-1871-2013 708 

World Bank (2019) World Development Indicators. The World Bank Group, Washington, D.C. 709 
 710 
  711 

  712 

  713 

  714 

  715 

  716 

  717 

  718 

  719 

  720 

  721 

  722 

 723 

 724 

 725 

  726 



21 
 

Figure Captions 727 

Fig. 1 Average annual direct and indirect fluvial flood damages calculated across the 30-year time period 728 
for the baseline and six warming scenarios in each country. Damages in panel A are expressed in million 729 
US$/yr for the CC experiment and in panel B in billion US$/yr for the CC+SE experiment. Bars represent 730 
the five model ensemble average, with whiskers indicating the ensemble maximum and minimum. 731 

Fig. 2 The average annual indirect economic damage as a share of national GDP (%) (model ensemble 732 
average) caused by fluvial flooding for the baseline and future scenarios in the six countries. 733 

Fig. 3 Loss in million US$/yr, under the 1.5°C and 4°C climate scenarios with (CC+SE) and without 734 
(CC) socio-economic change for the six countries. The bars represent total losses, with the share of direct 735 
and indirect losses indicated by the shading. Results are presented for ten sectors: Agriculture (AGR); 736 
Mining (MIN); Food Manufacturing (FDM); Other Manufacturing (OTM); Utilities (UTL); Construction 737 
(CON); Trade (TRD); Transport (TRA); Public Services (PUB); Other Services (OTS). 738 

Fig. 4 Percentage change in monthly GDP (%) due to fluvial flooding for the baseline and climate 739 
scenarios under the CC experiment. Lines represent the five model ensemble average. 740 

Fig. 5 Percentage change in monthly GDP (%) due to fluvial flooding from the pre-flood economy for the 741 
baseline (based on actual exogenous growth data between 1960-1993) and climate scenarios (based on 742 
projected exogenous growth data between 2085-2118). 743 
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