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Abstract 23 

CRUTEM5 (Climatic Research Unit temperature, version 5) is an extensive revision of our land 24 

surface air temperature dataset. We have expanded the underlying compilation of monthly 25 

temperature records from 5583 to 10639 stations, of which those with sufficient data to be used 26 

in the gridded dataset has grown from 4842 to 7983. Many station records have also been 27 

extended or replaced by series that have been homogenized by national meteorological and 28 

hydrological services. We have improved the identification of potential outliers in these data to 29 

better capture outliers during the reference period; to avoid classifying some real regional 30 

temperature extremes as outliers; and to reduce trends in outlier counts arising from climatic 31 

warming. Due to these updates, the gridded dataset shows some regional increases in station 32 

density and regional changes in temperature anomalies. Nonetheless, the global-mean timeseries 33 

of land air temperature is only slightly modified compared with previous versions and previous 34 

conclusions are not altered. The standard gridding algorithm and comprehensive error model are 35 

the same as for the previous version, but we have explored an alternative gridding algorithm that 36 

removes the under-representation of high latitude stations. The alternative gridding increases 37 

estimated global-mean land warming by about 0.1C over the course of the whole record. The 38 

warming from 1861–1900 to the mean of the last 5 years is estimated as 1.6C using the standard 39 

gridding (with a 95% confidence interval on individual annual means of -0.11 to +0.10C in 40 

recent years), while the alternative gridding gives a change of 1.7C.  41 

 42 
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1 Introduction 47 

CRUTEM (Climatic Research Unit temperature) is a gridded dataset of monthly near-48 

surface air temperature anomalies over the land surfaces of the world, running from 1850 to the 49 

present. We have undertaken the fifth major update (CRUTEM5.0) of this dataset since it was 50 

first published in the 1980s, and here we describe the changes since the previous version 51 

(CRUTEM4.0) was published in 2012 (Jones et al., 2012). This is a collaborative project 52 

between the Climatic Research Unit (CRU), the Met Office Hadley Centre and the National 53 

Centre for Atmospheric Science (NCAS). The temperature anomalies from CRUTEM form the 54 

land component of the global land and marine surface temperature dataset HadCRUT, with the 55 

Met Office Hadley Centre sea surface temperature (SST) dataset HadSST providing the marine 56 

component. Currently, HadCRUT4 (Morice et al., 2012) comprises land air temperatures from 57 

CRUTEM4 and SST from HadSST3 (Kennedy et al., 2011b, 2011a); HadCRUT5 will combine 58 

the new land air temperature dataset reported here with the recently-published HadSST4 59 

(Kennedy et al., 2019). 60 

There have been several important developments since 2012 for understanding and 61 

improving global (land-only and land-and-marine) temperature datasets. First, there have been 62 

further data rescue, data compilation and data homogeneity exercises at national, regional and 63 

global scales. Examples of the national and regional exercises are given later in this paper where 64 

we describe the acquisition of new or improved data into the CRUTEM5.0 compilation. The 65 

International Surface Temperature Initiative (ISTI; Rennie et al., 2014) and version 4 of the 66 

Global Historical Climatology Network (GHCN; Menne et al., 2018) provide updated global 67 

compilations of daily or monthly temperatures. Second, there is now better understanding of the 68 

sources of bias in global land temperature datasets, such as urbanization (Wang et al., 2015; 69 

Wickham et al., 2013) and lack of complete observational coverage (Cowtan et al., 2018; 70 

Cowtan & Way, 2014). Third, new global temperature datasets have been constructed using 71 

different methodological approaches, such as the Berkeley Earth and China Meteorological 72 

Administration (CMA) datasets (Rohde et al., 2013; Xu et al., 2018). Fourth, new reanalysis 73 

datasets are good enough to provide a useful and partially independent alternative for 74 

comparison with the traditional temperature datasets in recent decades. Reanalyses complement 75 

the traditional datasets because they utilise multi-variate observations (rather than only near 76 

surface temperature) and the physical processes represented within numerical models of the 77 

atmosphere (rather than statistical models) to obtain spatially complete fields.  78 

There are multiple approaches to constructing a global temperature record and this 79 

enables some of the structural uncertainty, arising from choices of method (Thorne et al., 2011), 80 

to be sampled by making comparisons across the different datasets. Thus, it is important to 81 

continue to update (and improve) the dataset obtained using the CRUTEM approach as a 82 

contribution to this ensemble of structurally different datasets. It is useful, therefore, to list the 83 

general principles that guide the CRUTEM approach and to note where these differ from other 84 

global temperature datasets. There is now an almost 40-year history to this dataset and updates 85 

using the same overall approach (albeit with some modifications where improvements can be 86 

made) are valuable to allow comparisons to be made that depend mostly on updated data rather 87 

than methodological changes. For CRUTEM we do not apply global, statistical algorithms to 88 

identify and correct for inhomogeneities: instead we utilise homogenization efforts undertaken 89 

by national or regional initiatives, which may benefit from the knowledge of local circumstances 90 
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or additional observing stations. We also use a simple gridding approach, with grid cell 91 

temperature anomalies based on station observations within the grid cell rather than relying on 92 

extra information from more distant stations. Though this reduces the spatial coverage of the 93 

dataset, the simplicity of the approach makes it more transparent and easier for others to 94 

reproduce. The bias introduced by incomplete global coverage (Cowtan & Way, 2014) will be 95 

addressed in the forthcoming HadCRUT5 dataset (Morice et al., submitted). Finally, the 96 

CRUTEM error model is quite comprehensive and was the first of its type applied to a global 97 

temperature dataset (Brohan et al., 2006), though other datasets have increasingly comprehensive 98 

error models (e.g. GISTEMP; Lenssen et al., 2019). 99 

We start in section 2 by describing the new and updated data sources that we have 100 

included in the CRUTEM5.0 station temperature database (with more comprehensive listings 101 

given in the Supplementary Material, SM). We then develop improvements to the process for 102 

identifying and removing potential outlier observations (section 3) and consider the 103 

representation of high latitude stations when using a regular latitude-longitude grid that has 104 

longitudinally-slim grid cells at high latitudes (section 4). In section 5 we compare the effect on 105 

global-mean land temperature, in turn, of the changes to the station database, changes to the 106 

outlier checking and an alternative gridding method. Some results at continental or sub-107 

continental scales are given in the SM. 108 

 109 

2 Station data sources and updates 110 

The CRUTEM station database comprises records obtained from global or regional 111 

compilations and records acquired from individual national meteorological and hydrological 112 

services (NMHS), as described by (Jones et al., 2012) and earlier CRUTEM papers (see list in 113 

Osborn & Jones, 2014). The database is updated monthly from CLIMAT and Monthly Climatic 114 

Data for the World (MCDW) circulations. Significant effort is expended to continually extend 115 

and improve the station database beyond these monthly updates. This effort is important as many 116 

long records in many regions do not report in real time over the CLIMAT network. More stations 117 

report sub-daily or daily values over the SYNOP network, and some groups (e.g. National 118 

Oceanographic and Aeronautical Administration, NOAA) extract monthly averages from 119 

SYNOP messages. The SYNOP data are not used here because they have been subject to less 120 

quality control (QC), the calculation of daily means may be incompatible (based on different or 121 

incomplete observation times) with the climate data shared later and decisions need to be made 122 

about the number of missing values in a month that will be allowed. Series acquired directly 123 

from NMHS are more likely to be based on complete observations and to have undergone more 124 

QC. 125 

Data acquisitions can be in the form of stations not previously in CRUTEM, additional 126 

data to augment stations already in CRUTEM, or homogenized data to replace values already in 127 

CRUTEM. The latter are particularly important given the CRUTEM principle to utilise 128 

nationally-homogenised records in preference to applying global statistical algorithms to remove 129 

inhomogeneities. In some cases (Table 1) these homogenised series are consistently and 130 

regularly updated and we access them every one or two years. The sources for USA, Canada and 131 

Australia use homogenization schemes which are re-applied to each update or when additional 132 

data become available; these changes then become incorporated into CRUTEM each time we 133 

update those series. Other acquisitions are more irregular and typically arise from either specific 134 
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regional homogenization or data rescue projects or personal contacts within NMHS; in some 135 

cases we identify specific issues (e.g. lack of routine updates or data sparseness) and focus on 136 

acquiring data to address them. 137 

To facilitate updating of the series we utilise World Meteorological Organisation (WMO) 138 

ID codes where they exist (or assign a WMO-style CRUTEM ID code if not) and map these to 139 

the domestic ID codes used by some data sources, especially the larger NMHS. Some ID codes 140 

change over time, perhaps reflecting a composite series that has been homogenised. We rarely 141 

merge series from multiple nearby sites, though we occasionally combine series where a long 142 

record stops and is replaced by a new one with a different WMO identifier: in those cases, extra 143 

checks are undertaken with respect to the identifiers and locations to ensure that incompatible 144 

series are not merged. Using the current WMO ID codes enables the series to be updated 145 

routinely with CLIMAT and MCDW data. Similarly, where homogenisation has been 146 

undertaken, it is convenient to homogenise earlier data so that it is comparable to the most recent 147 

data (rather than vice versa), so that routine updates are compatible with the existing record. In 148 

practice, this is not always the case so routine monthly updates may subsequently be replaced by 149 

series received from the NMHS. An example is that many Chinese records in CRUTEM are 150 

based on the mean of the daily minimum (Tmin) and maximum (Tmax) temperatures, while the 151 

monthly mean temperatures from CLIMAT are calculated from 6-hourly observations, which 152 

tends to give lower values. The monthly CLIMAT updates therefore extend the records in near 153 

real time but with a relative cool bias; this bias is then removed when the annual or biennial 154 

acquisition of data from the CMA replaces the CLIMAT values in the CRUTEM database. 155 

Biases in station data are discussed by Jones (2016) and are represented in the CRUTEM 156 

error model (Brohan et al., 2006). Of these biases, urbanization influences deserve particular 157 

attention in rapidly urbanizing regions such as China, and this influence can be exacerbated by 158 

unrepresentative observing networks (e.g. only 0.7% of the area of China is classified as urban 159 

yet 68% of stations are in urban locations; Wang et al., 2015). Sun et al. (2016) detect an urban 160 

warming signal in China of 0.09 C/decade (1961–2013) that augments an inferred underlying 161 

warming of 0.18 C/decade, indicating that a standard analysis of the available station network 162 

will overestimate the warming of this region by around 50%. In contrast, Wang et al. (2015) 163 

found a much smaller urban contribution in China, by appropriately weighting the land cover 164 

categories when averaging stations across China to reduce the urbanization bias. Their weighted 165 

series shows 0.23 C/decade warming over 1955–2007, only 10 to 20% less than the warming 166 

exhibited by unweighted data or by a Chinese average formed from the CRU temperature data. 167 

These two studies (and others given in Table 1 of Wang et al., 2015) indicate the uncertainty in 168 

estimating the urban-warming component in warming across China. 169 

Some simple, subjective tests are applied to newly acquired historical climate datasets 170 

prior to merging them into the CRUTEM archive. Annual and seasonal timeseries of the new and 171 

existing series are inspected visually; any apparent spikes or steps are considered more closely 172 

(e.g. by comparison with nearby series). If there is an overlap period, we compute differences on 173 

a monthly basis between new and existing series to locate systematic offsets (which might vary 174 

seasonally or occur suddenly) indicative of an inhomogeneity in one series that has been 175 

corrected in the other series or to identify other potential problems (e.g. to avoid overwriting 176 

with the wrong station if the new series has been wrongly labelled). In most cases the full length 177 

of a newly acquired series is used, overwriting existing data, rather than just adding a few years 178 

to the end of the data we already hold. This reduces the likelihood that we add a few years of 179 
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incompatible data to the end of an existing series. When a newly received series can potentially 180 

be combined with an existing CRUTEM series to create a longer series, the resultant series is 181 

only retained in full if the existing data appears to be consistent with the newly received series, 182 

based on simple tests described earlier. If these tests identify any obvious inhomogeneities then 183 

the early part of the series is not used. 184 

 185 

2.1 New data incorporated since CRUTEM4.0 186 

Through appending CLIMAT and MCDW values, the station database and then the 187 

gridded, global and hemispheric series have been updated monthly (with no change in version 188 

number). Separate updates (approximately annually) amalgamate updates/acquisitions from more 189 

disparate sources and a change in version number (from 4.0 to 4.1, etc.) is used to indicate the 190 

non-routine nature of some of the changes. The update to CRUTEM5.0 documented here 191 

combines all these updates from 4.0 (released in 2012) to 4.6 (released in 2017) together with a 192 

further round of updates (from 4.6 to 5.0). Thus many of the station database changes reported 193 

here are already present in the publicly available CRUTEM4.6 dataset; although those changes 194 

have been documented informally (via the Met Office website 195 

https://www.metoffice.gov.uk/hadobs/crutem4/data/versions.html), this paper represents the 196 

formal publication of this significant update to the CRUTEM dataset. 197 

Table 1 lists the sources accessed on an annual or biennial basis to update large subsets of 198 

data with series that are homogenised at a national level. These updates not only add recent 199 

observations but also improve or increase earlier data. All these have been used for the latest 200 

update from version 4.6 to 5.0. The details of the many other acquisitions are given in 201 

Supplementary Tables 1 to 7 and make the scope of this effort clear. A summary in terms of 202 

significant sources and numbers of series is given in Table 2. This illustrates our priorities in 203 

acquiring new, updated or improved data: regions with sparse data and benefitting from 204 

homogenization projects in particular. 205 

 206 

2.2 Changes in station temporal and latitudinal coverage 207 

The new database (CRUTEM5.0) now contains almost twice as many stations (10639) as 208 

were in CRUTEM4.0 (5583). The majority of the new acquisitions were already included by 209 

version 4.6 or earlier. Alongside additional stations, the extensions, updates and replacement 210 

with improved data have been significant. Figure 1 gives an overall picture by time and by 211 

latitude band of the changes from 4.0 to 5.0. Note that each latitudinal band has a different 212 

scaling according to the maximum observation count in each band; by “observation” we mean a 213 

monthly average temperature from one station, so the observation count equals the station count 214 

for an individual month. There were few changes prior to 1890 so only the period since then is 215 

shown. 216 

The CRUTEM4.0 station database ended in 2011, so of course all values since then are 217 

new gains for the CRUTEM5.0 database. However, even prior to 2011 there are significant 218 

increases in observation counts in all latitude bands, sometimes doubling the number of available 219 

values. Sources for some of these are given in Table 2, such as the ECA&D project for Europe 220 

that contributes especially to the increases from latitudes 30 to 70°N. The gains have offset some 221 

https://www.metoffice.gov.uk/hadobs/crutem4/data/versions.html
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of the previous decrease in observation counts since the 1970s, so that counts now peak in the 222 

1990s or later in some latitude bands. However, not all observations in the station database are 223 

actually used in the generation of the gridded CRUTEM temperature anomaly dataset because 224 

stations with insufficient data prior to 1990 to estimate their mean and standard deviation are not 225 

used. Some of the new acquisitions do not currently meet this requirement (the high proportion 226 

of missing values is apparent in dark blue in Figure 1), so the higher station counts do not fully 227 

translate into greater gridded coverage (illustrated later). 228 

Some existing CRUTEM4.0 station observations have been replaced by improved 229 

estimates in CRUTEM5.0 (e.g. through their replacement by homogenized data obtained from 230 

national projects). These changes (labelled ‘Different’ in Figure 1) are present in all latitude 231 

bands except for Antarctica and represent a large proportion of observations in bands 30 to 50°S 232 

and 30 to 50°N. The latter arises in part from continual updates to the United States Historical 233 

Climatology Network (USHCN) homogenization which changes as data series lengthen (Menne 234 

& Williams, 2009), while the former reflects various South American (Table 2) and Australian 235 

(Table 1) homogenization initiatives. A few observations have been removed if they had been 236 

identified as duplicates or as inhomogeneous (brown in Figure 1). 237 

 238 

3 Removal of outlier values 239 

3.1 Introduction and limitations of the CRUTEM4 methods 240 

The process to construct the CRUTEM dataset includes multiple layers of QC to identify 241 

and either correct or ignore dubious values. This begins with the QC checking by the originating 242 

NMHS, followed by additional checks implemented in various data compilations that we access 243 

(see section 2; e.g. Durre et al., 2010). The CLIMAT data, which constitute the main source for 244 

the regular monthly updates, are QC’d by the Met Office prior to inclusion in the CRUTEM 245 

station database. Common CLIMAT coding errors are first corrected, if detected. Subsequently, 246 

an automated check compares each value to neighbouring stations or the mean of daily values 247 

from SYNOP reports and flags it for inspection if it differs by more than a threshold amount. 248 

Values are also flagged for inspection if they lie outside climatological confidence intervals for 249 

that station. Flagged values are then manually inspected and not used in CRUTEM if considered 250 

erroneous. However, if a correct value can be confidently determined by inspection of the 251 

SYNOP mean daily values, or the mean of the max and min temperatures in the CLIMAT 252 

message, or by knowledge of basic coding errors (e.g. a factor of ten error), that is used instead. 253 

These stages in QC are unchanged from CRUTEM4. 254 

After compilation of the station database, CRUTEM4 and all earlier versions 255 

(summarised in Osborn & Jones, 2014) then applied a simple standard deviation (SD) based 256 

check to identify and remove outliers prior to creating the gridded dataset. Monthly temperature 257 

values were flagged as outliers if they lay more than 5 SD from the ‘normal’ value, where the SD 258 

and normal (i.e. time mean) were calculated separately for each month of the year and for each 259 

station from data during the reference periods 1941–1990 (SD) and 1961–1990 (normal). 260 

In line with the dataset construction principle that methodological changes should be 261 

minimised (section 1), this outlier check has remained almost unchanged since at least 262 

CRUTEM1 (Osborn & Jones, 2014). However, a count of outlier removals per year (“SD” 263 

brown lines in Figure 2) illustrates two limitations of this check. First, almost no outliers are 264 
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identified during the 1941–1990 period over which the station SD values are calculated. This is 265 

despite the fact that an occasional gross outlier has been found to be present in the database 266 

during this period (e.g. at three stations in St Kitts, Colombia and Romania). Sensitivity checks 267 

showed that in some cases (e.g. where only 15 to 20 values are available to calculate the SD and 268 

normal) physically impossible values can pass this test if they occur during this period. Second, 269 

there is a clear trend outside the 1941–1990 period with more cold outliers excluded prior to 270 

1941 and more warm outliers excluded after 1990 (and the proportion of warm outliers increases 271 

to the present). This behaviour is expected when outliers are identified relative to a fixed normal 272 

in the presence of an ongoing warming trend. Although the excluded outliers represent less than 273 

1% of the data values in any one year (and only 0.03% of values overall), the effect will grow as 274 

warming continues and already adversely affects some extremely warm months (e.g. June 2003 275 

in Europe: Supplementary Figure 2). A third limitation of the CRUTEM4 outlier check is that if 276 

there are insufficient data to compute the SD (or the normal) in any month of the year then the 277 

station is entirely discarded. This may throw away usable data that we would prefer to retain. 278 

These behaviours are clear in the very different total number of outliers before, during 279 

and after the 1941–1990 period (Figure 3; bars show the SD outlier totals). Only 21 cold and 5 280 

warm outliers are identified in the entire 1941–1990 period; prior to this, there are 2.5 times 281 

more cold than warm outliers found (448 cf. 179). After 1990, there are almost five times more 282 

warm than cold outliers found (1328 cf. 279). 283 

Revised outlier checks were developed (described in the following sections) for 284 

CRUTEM5 to address these three limitations. First, a physical plausibility test is applied to 285 

screen out any obvious outliers. As this is applied in all cases, we relax the minimum data 286 

requirement for the subsequent outlier check so that we do not discard usable data. Second, we 287 

replace the subsequent SD outlier check with one based on the interquartile range (IQR) because 288 

this is less sensitive to outliers occurring during the reference period. Finally, the IQR test is 289 

relaxed in the presence of regional extremes that affect many neighbouring stations, which also 290 

partly addresses the trend towards fewer cold and more warm extremes being excluded. 291 

 292 

3.2 Checking for physical plausibility 293 

The aim of this new outlier check is to pick up any very large errors that do not seem 294 

physically plausible. It is not intended to be a stringent test because the main outlier check is 295 

applied afterwards (section 3.3). The overall range of physically plausible values for monthly-296 

mean temperature depends on multiple factors, but the three most influential factors are month of 297 

the year, station latitude and station elevation (Rohde et al., 2013). For each month of the year 298 

(m), we compute in each 5 latitude band (j) the median (�̃�𝑗,𝑚) of all station normals (𝑁𝑠,𝑚 for 299 

each station s) and the median (�̃�𝑗,𝑚) of all station elevations (𝐸𝑠). The median normal by latitude 300 

band is illustrated for March by the white line in Figure 4. The deviations of each individual 301 

station’s normal and elevation from their respective latitudinal-band medians are used in a linear 302 

regression to determine an empirical global lapse rate (L): 303 

 304 

(𝑁𝑠,𝑚 − 𝑁𝑗,𝑚) = 𝐿(𝐸𝑠 − �̃�𝑗,𝑚) + 𝑐 + 𝑟𝑠,𝑚      (1) 305 

 306 

where c is a constant and r a residual from the regression. The average of the 12 monthly lapse 307 
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rates is the same as the lapse rate obtained using annual-mean normals. This value (L = -3.91 308 

K/km) is used solely for the physical plausibility outlier check. 309 

The distribution by latitude of the individual station temperature values (Figure 4a shows 310 

March as an example) illustrates the spread of values through time and location. Each 311 

temperature value (𝑇𝑠,𝑡,𝑚 in year t) is then adjusted for latitude and elevation of the station 312 

according to: 313 

 314 

�̂�𝑠,𝑡,𝑚 = 𝑇𝑠,𝑡,𝑚 − 𝑁𝑗,𝑚 − 𝐿(𝐸𝑠,𝑚 − �̃�𝑗,𝑚)      (2) 315 

 316 

This expresses each value relative to an expected norm considering the station latitude, elevation 317 

and month of the year. These are shown for March in Figure 4b, illustrating the overall range of 318 

these latitude- and elevation-adjusted values. The spread of these values represents the variability 319 

(spatial and temporal) of observed temperatures (e.g. it is largest in the mid-to-high latitudes of 320 

the winter hemisphere). The results were used to subjectively draw boundaries within which all 321 

the physically plausible values are thought to lie. Any values in the existing CRUTEM station 322 

database lying outside these boundaries were inspected and the boundaries were made more 323 

liberal if there was any doubt that the values might be genuine. The blue lines in Figure 4 show 324 

these boundaries for March. 325 

The physical plausibility check is applied to the CRUTEM5 station database to identify 326 

values that are implausible. Only 549 values were identified as being outside the physically 327 

plausible range (203 too cold, 346 too warm), less than 0.007% of the values checked. All 549 328 

values are excluded from the subsequent analysis (and are flagged in the underlying database). 329 

The CRUTEM4 outlier check had previously correctly identified (and thus excluded) many of 330 

these, except most of those in the 1941–1990 period. 331 

 332 

3.3 Quartile-based thresholds 333 

As noted above and illustrated in Figure 2, the CRUTEM4 SD-based outlier check 334 

identified few outliers during the 1941–1990 reference period (0.0008% values flagged as 335 

outliers, compared with 0.03% from 1850–1940 and 0.08% from 1991–2018). Outliers present 336 

during 1941–1990 inflate the SD. If occurring during 1961–1990, then they also bias the normal 337 

towards the outlier value. These effects are particularly large if the number of values used to 338 

compute the SD and the normal is relatively small (e.g. 15 or only slightly more). The inflated 339 

SD and biased normal increase the chance that the outlier value will lie within 5 SD of the 340 

normal. In some test cases, the effect is so limiting on the power of the outlier test that even a 341 

value of 1000°C passes the test if it occurs within the 1961–1990 period. 342 

We explored several potential improvements to the SD-based outlier check but none 343 

resolved all the issues. We looked at the ratio of each SD value to the SD of other months or of 344 

neighbouring stations to identify those that might be inflated by outliers, but no simple criteria 345 

that could be applied without manual intervention were identified. The SD used for testing the 346 

value in year t could be calculated using all values except the one in year t, but this still failed if 347 

there were two outliers in the data sequence for the same month at that station. 348 
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Instead, we found that an outlier test based on the IQR provides a more robust test 349 

(Tukey, 1977). Outliers were identified as those values lying outside the range (sometimes called 350 

the upper and lower “fences”): 351 

 352 

(LQ − 𝑛 IQR)  to  (UQ + 𝑛 IQR)       (3) 353 

 354 

where LQ is the lower quartile and UQ the upper quartile of the data, IQR = UQ – LQ, and n is a 355 

multiplier. The LQ and UQ are calculated for each monthly data sequence at each station from 356 

values in the same 1941–1990 period as used previously for the calculation of SD, again 357 

requiring a minimum of 15 non-missing values. The quartile and IQR values are more robust to 358 

the presence of erroneous values and the IQR-based test is able to identify potential outliers 359 

during the 1941–1990 period that the SD-based test let through. 360 

The choice of n is somewhat arbitrary, in the same way as is the choice of 5 SD rather 361 

than, say, 4.5 SD, because there is no specific value to separate genuine from erroneous values. 362 

Instead it is a balance between discarding too many genuine values and including too many 363 

erroneous values. Assuming the previous 5 SD test provides this suitable balance (except during 364 

the reference period where the SD test is inadequate), we can select n in the IQR-based test to 365 

yield the same number of outliers. For normally distributed data, n = 3.206 is equivalent to 366 

normal ±5 SD. On testing, this captured considerably more outliers than the 5 SD test did, 367 

because the data are not normally distributed (e.g. in many regions, especially Siberia, monthly 368 

temperature anomalies are negatively skewed) and the sample SD, normal and quartiles are 369 

sometimes poor estimates of their population values. Trialling a range of values for n, the total 370 

number of outliers (outside the 1941–1990 period) is closest to the 5 SD test when n = 3.7 371 

(Figure 3). The IQR-based test also identifies many outliers during the 1941–1990 period, which 372 

the SD test failed to do, including the three cases mentioned earlier. 373 

Although the 3.7 IQR and the 5 SD tests identify a similar total number of outliers, they 374 

do not always designate the same values as outliers. In fact only about 50% of outliers are 375 

common to both tests. Manual inspection of some cases suggests that the IQR outliers may be 376 

closer to what would be considered erroneous values (based on expert judgement or regional 377 

clustering). For example, 3.7 IQR designates as outliers far fewer high values in the June 2003 378 

European heatwave than does 5 SD (Supplementary Figure 2). Given the very warm anomalies 379 

across this region, many of these may be genuine values rather than outliers. The 3.7 IQR test 380 

also slightly reduces the trends in designated outliers compared with the 5 SD test (Figure 2b), 381 

though a trend towards more frequent designation of warm outliers is still present. 382 

 383 

3.4 Allowance for regional extremes 384 

Inspection of the outliers identified by the 3.7 IQR test indicates that there are cases 385 

where many stations in a region have extreme values. In many instances, regional clusters imply 386 

that some (or all) of the values designated as outliers may in fact be genuine values (there are 387 

some exceptions to this, e.g. if all the stations from one country are mis-reported in a particular 388 

month then a regional anomaly can occur which is erroneous despite agreement between 389 

neighbouring stations). To address this, the IQR test is modified to take into account the values 390 

reported simultaneously at other stations in the vicinity. This also partly addresses the issue of a 391 
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trend towards more frequent designation of warm outliers as the climate warms, since the 392 

climatic warming is expressed at the neighbouring stations too. 393 

This is achieved by modifying the IQR test in eq. (3), replacing n by (𝑛 − 𝑓𝑛′) for the 394 

lower fence and by (𝑛 + 𝑓𝑛′) for the upper fence. The strength of the modification is given by 395 

parameter f (f = 0 reverts to the standard IQR test), while 𝑛′ is a regional mean of surrounding 396 

station values normalised to IQR units. This normalisation is analogous to the common 397 

transformation of subtracting the mean and dividing by SD, but instead a quartile is subtracted 398 

and then the division is by the IQR. If the value being tested is below the median temperature for 399 

that station, all neighbouring station temperature values are normalised relative to their LQ; 400 

otherwise they are all normalised relative to their UQ. The normalised values represent how 401 

many IQRs each station value is below or above their relevant quartile. When applying the IQR 402 

outlier check to each monthly temperature at a station, the average of the normalised values from 403 

the nearest 15 stations is used for 𝑛′ (though only neighbours within 1200 km are considered, the 404 

typical correlation decay length of monthly land air temperatures; Harris et al., 2014). 405 

This regionally-modified IQR-based outlier check was applied to the CRUTEM5 406 

database with f = 0.3, after the removal of values that fell outside the physically plausible ranges. 407 

Shifting the fences by the regional normalised values from surrounding stations results in fewer 408 

values being labelled as outliers. On the basis that the overall stringency of the CRUTEM4 5 SD 409 

outlier check had been considered to give a good balance between keeping bad values versus 410 

excluding good values, n was reduced to 3.6 so that the number of outliers (outside the 1941–411 

1990 period) remained close to the number found previously. These choices make no practical 412 

difference to large spatial average temperature timeseries, but do affect local temperature 413 

anomalies in some months. 414 

Using these parameters, 2389 further values (0.03% of those tested) were flagged as 415 

outliers (972 cold, 1417 warm) and excluded from the subsequent analysis. Those values that 416 

could not be checked (due to insufficient values to compute the quartiles) are now used because 417 

they have passed the new physical plausibility test that removes gross errors (in CRUTEM4 they 418 

were excluded). In practice, some will later be excluded because they also have insufficient 419 

values to compute a normal. The adjustment for regional extremes has, as intended, reduced the 420 

number of designated outliers during some extremely cold (e.g. December 1879, Supplementary 421 

Figure 1) or warm (e.g. June 2003, Supplementary Figure 2) events. It has also reduced the 422 

trends in outlier counts (Figure 2) for cold outliers prior to 1941 and for warm outliers after 423 

1990, compared with the simple IQR- or SD-based checks. Unlike the SD-based check, it is 424 

effective in designating outliers during the 1941–1990 period. However, errors that affect a set of 425 

stations in a region may now pass the modified outlier test (such as when a data source provided 426 

erroneous August 2015 values for all stations in Turkey, Supplementary Figure 3) and so 427 

regional clusters of outliers that were previously flagged but are now let through must be 428 

manually checked (the Turkish station values were set to missing for August 2015). 429 

After removal of outliers, the normal (1961–1990 means) and SD (1941–1990) are 430 

recalculated using the retained data values. 431 

 432 
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4 Generating gridded fields of temperature anomalies 433 

4.1 Gridded anomalies using the standard CRUTEM method 434 

The standard CRUTEM5 method used to generate gridded fields of temperature 435 

anomalies is the same as used for CRUTEM4, with the details given by Osborn & Jones (2014) 436 

and the background to this choice discussed by Jones et al. (2012). This is the climate anomaly 437 

method and has two steps: (1) convert the monthly temperatures at each station into anomalies 438 

from their 1961–1990 means (“normals”); and (2) use these station anomalies to estimate 439 

temperature anomalies on a grid over the land surface of the world. For the second step, the 440 

CRUTEM approach is to form the arithmetic mean of any station anomalies that lie within each 441 

grid cell of a regular latitude-longitude grid with 5 resolution. Grid cells that do not contain any 442 

station anomalies are left missing. An alternative gridding with better high latitude representation 443 

is explored in a later section. Unlike some other methods (e.g. Cowtan & Way, 2014; Rohde et 444 

al., 2013), neither the standard nor alternative CRUTEM5 gridding utilises estimates of the 445 

spatial covariance of temperature anomalies. 446 

The uncertainty model for the gridded temperatures is unchanged from CRUTEM4 447 

(Brohan et al., 2006; Jones et al., 2012; Morice et al., 2012) and so it is not described here. 448 

Normals were not calculated for stations with insufficient data to meet our criterion. For 449 

CRUTEM4, this criterion had to be met for every month of the year otherwise normals were not 450 

calculated for any month for that station. This effectively excluded such stations from the 451 

creation of the gridded dataset (unless normals were obtained separately), whereas for 452 

CRUTEM5 we use stations for any month for which a normal can be calculated. This allows the 453 

inclusion of 277 extra stations with partial coverage. After calculation of normals, we adopt the 454 

same method as CRUTEM4 to infill some missing normals from World Meteorological 455 

Organization (1996) or estimated from different periods and then adjusted to represent the 1961–456 

1990 mean (Jones et al., 2012). The total number of stations with normals and SDs, and thus 457 

available for gridding, is 7983, up from 4842 in CRUTEM4.0. 458 

 459 

4.2 An alternative gridding method with better representation of high latitude stations  460 

The overall rationale for CRUTEM gridding is that observations contribute to grid cells 461 

that they lie within. Thus the covariance between locations further afield, that might be used in 462 

kriging, kernel smoothing or covariance-based methods is not utilised (see section 1 for a 463 

justification of our choice, including that structural uncertainty is better sampled with each global 464 

temperature dataset taking different approaches). In CRUTEM, therefore, a station’s influence is 465 

not linked to the covariance structure of temperature, but only to its geographical location. 466 

Arguably, under such a scheme, each station should contribute the same representation (weight) 467 

to the global field and global mean (except of course where we have redundant information from 468 

multiple stations in one small area, which gridding is designed to deal with). However, the 469 

standard CRUTEM gridding approach causes high latitude stations to be under-represented 470 

because the longitudinal extent of a grid cell decreases like the cosine of its latitude and each 471 

station can only contribute to a single grid cell. 472 

This is a different issue to the potential bias in estimates of global-mean temperature due 473 

to non-random incomplete coverage (Cowtan et al., 2018), such as when temperature changes are 474 
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not estimated over those areas (e.g. the Arctic Ocean) that are warming faster (Simmons & Poli, 475 

2015). Even if a global-mean temperature estimate is not required, the under-representation of 476 

high-latitude information can be problematic. For example, a data-model comparison where the 477 

simulated data is correctly masked to match the observed data coverage (and hence properly 478 

taking into account the incomplete coverage) will nevertheless be biased towards the agreement 479 

or disagreement at low latitudes if the high latitudes are under-represented. 480 

An alternative gridding method has been designed that addresses this issue while 481 

following as closely as possible the standard CRUTEM gridding. The modification is that a 482 

station is allowed to contribute to M adjacent grid cells where 𝑀 = 1 cos(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)⁄  rounded to 483 

the nearest whole number and the latitude of the grid cell centre is used. For example, at 72.5N, 484 

M = 3. These M cells are those longitudinally adjacent cells centred most closely on the station’s 485 

longitude. Each 5 by 5 grid cell temperature anomaly is now the arithmetic mean of any station 486 

anomalies that can contribute to that grid cell (even if they lie in a neighbouring longitudinal cell 487 

when cells are narrow at higher latitudes). Other approaches were considered but all had 488 

disadvantages. For example, using a non-regular equal-area grid would be more complex for 489 

users familiar with a regular grid, comparing with other datasets on regular grids, or using 490 

software designed for regular grids. Allowing a station to contribute to all cells within a fixed 491 

longitudinal distance would give more influence to those located near grid cell boundaries. The 492 

chosen method is simple, retains the regular grid, and reduces the link between a station’s 493 

location and its influence on the gridded dataset. The South Pole station is assigned to all grid 494 

cells in the southernmost row of the grid. 495 

The outcome of this alternative gridding method is illustrated for some example monthly 496 

fields in Figure 5. The benefits of this gridding can be seen visually in the SH polar projection 497 

maps: the high latitude coverage is more closely equivalent to that at the equator (right column) 498 

compared with the slim grid cells of the standard gridding (left column). The geographical 499 

structure of circum-Arctic temperature anomalies is also much clearer, whether it is for the more 500 

uniformly warm case of August 2016 or for the strong gradient between a very cold European 501 

sector and very warm at other longitudes in February 1963. The effect of gridding on global-502 

mean land air temperature is considered in section 5. Although the alternative gridding method 503 

addresses the under-representation of high-latitude temperature anomalies, it is not intended to 504 

supplant the standard CRUTEM gridded dataset because the CRUTEM uncertainty model 505 

applies to that gridding method. 506 

 507 

4.3 Generating global-mean temperature timeseries 508 

Global and hemispheric mean timeseries are calculated using the same method as for 509 

CRUTEM4 (Jones et al., 2012; Osborn & Jones, 2014). Hemispheric series are computed as the 510 

area-weighted mean of grid cell temperature anomalies, requiring a minimum of five grid cells. 511 

The global series is then computed as (2 NH + SH) / 3, reflecting the relative land areas in each 512 

hemisphere. The requirement for at least five grid cells in a hemisphere currently restricts the SH 513 

and global series to begin in January 1857, whereas the NH series covers our entire study period 514 

from January 1850 to the present. The SH records available in 1857 provide sampling of four 515 

different regions (South America, South Africa, SE Australia and New Zealand) but all are at 516 

similar latitudes (between 26 and 38S). 517 
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The uncertainty model for the global and hemispheric temperature anomaly timeseries is 518 

almost unchanged from CRUTEM4 (Brohan et al., 2006; Morice et al., 2012), grouped into four 519 

components. (1) Uncertainty in grid cell temperature anomalies that is uncorrelated between grid 520 

cells (e.g. due to measurement error or incomplete sampling of a grid cell). (2) Uncertain biases 521 

associated with residual homogenisation error and uncertainty in climatological normals, which 522 

are systematic for individual stations but independent between stations. (3) Systematic biases 523 

that are correlated between grid cells and persistent in time (e.g. urbanization or exposure 524 

changes). (4) Coverage uncertainty due to incomplete sampling of the land surface in each 525 

hemisphere. These components are combined into overall confidence intervals. The only change 526 

for CRUTEM5 is that the coverage uncertainty, which is estimated by subsampling a spatially 527 

complete dataset, is now based on the European Centre for Medium-Range Weather Forecasts 528 

reanalysis version 5 (ERA5; Hersbach et al., submitted). A previous implementation error has 529 

also been corrected (the exposure and urbanisation biases are now correctly treated as 530 

independent, adding them in quadrature), resulting in slightly narrower confidence intervals for 531 

CRUTEM5 than for CRUTEM4. Note that for HadCRUT4 (Morice et al., 2012), the combined 532 

land and marine global temperature dataset, the same underlying error model is used to generate 533 

an ensemble of realizations rather than the central estimate and confidence intervals reported 534 

here. 535 

 536 

5 Analysis of CRUTEM5 537 

5.1 Comparing CRUTEM4 and CRUTEM5 538 

We consider the expansion and improvements to the station database separately from the 539 

improved algorithms for identifying and removing outliers, by first calculating the global-mean 540 

temperature anomalies using the CRUTEM4 methods but with the updated station database 541 

(Figure 6). The significant expansion in the station database (from 5583 to 10639 stations) led to 542 

a 65% increase in the number of stations actually used (from 4842 to 7983, i.e. after application 543 

of outlier checks and removal of stations without normals or SD). The count of individual 544 

monthly station temperature anomalies increased by 57%. The majority of this expansion had 545 

already been incorporated into version CRUTEM4.6 first released in 2017 (compare brown and 546 

black lines in Figure 6). Increases in observation counts are particularly large from the 1960s to 547 

the present, though even the period 1880–1950 shows a useful increase. The increase from the 548 

CRUTEM4.6 to 5.0 station databases is mostly in the 2017–2019 period, with modest increases 549 

prior to that. The station observation counts peak in the 1970s and decrease by about 25% by the 550 

2000s. The underlying station database (Figure 1) already includes data that could address this 551 

decline, but these extra data for the 1980s to 2000s are from stations without 1961–1990 normals 552 

so they are not used with the current CRUTEM methods. 553 

Despite the large increase in station counts, the coverage of grid cells with temperature 554 

anomalies is only moderately expanded (by about 10% from CRUTEM4.0 to 5.0, with most of 555 

this increase already achieved by version 4.6; Figure 6). This is because most of the station 556 

acquisitions are in already-sampled regions. Nevertheless, this extra sampling improves the 557 

estimates in those regions and will reduce their uncertainty, as well as providing about 10% extra 558 

coverage. The inclusion of more nationally-homogenised data (section 2) will also improve the 559 
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reliability of regional temperature anomaly estimates, though this is not measured by the station 560 

or grid cell observation counts. 561 

Turning to the global-mean land temperature anomalies themselves (Figure 6, upper and 562 

middle), we find that the station database expansion has little effect. This is expected because 563 

prior work has shown that global estimates are robust and can be estimated from a relatively 564 

small number of observations. There are some differences as large as 0.1C in the early decades 565 

when coverage is poor (with CRUTEM5.0 often cooler than 4.0), the difference peaking around 566 

1870 and again in 1885 (pink line in upper-right panel of Figure 6). In the recent period (middle 567 

row), station database updates tend to raise global estimates by up to 0.05C in the final couple 568 

of years. This is because the monthly updates are biased relatively low in regions such as China 569 

where the CLIMAT data are inconsistent with our preceding series based on the mean of Tmin 570 

and Tmax; the less frequent updates then correct this bias by replacing the values with those 571 

estimated more consistently (see section 2). 572 

The modification of methods (improved outlier identification and allowing stations to be 573 

used for any months with normals, even if they do not have normals for all 12 months) affects 574 

the global-mean land temperature series even less (Figure 7). This is expected because these 575 

modifications were intended to improve local estimates during some extreme events rather than 576 

to have a global-mean effect (also note that this figure shows 12-month running means rather 577 

than individual months). The changes give a slight improvement in coverage (1.6% increase in 578 

station observation counts and 0.4% increase in grid cell observation counts), but changes in 579 

global land annual anomalies are less than 0.01C except in the early part of the record. 580 

The impact of the change in outlier identification is apparent for some individual regional 581 

extreme events, such as December 1879, June 2003 and August 2015 (right-hand columns of 582 

Supplementary Figures 1–3). Some grid cell anomaly estimates for June 2003 are more than 583 

0.5C warmer with the regionally-modified IQR-based outlier check compared with the old SD-584 

based outlier check, and a central European average of 15 grid cells is 0.16C warmer. Such 585 

differences can be important when quantifying the increased risk of such events attributable to 586 

human-induced climate change (Stott et al., 2004). The impacts of the changes to the station 587 

database and the outlier identification method are more apparent at regional scales than at the 588 

hemispheric and global scales, where they are negligible. Timeseries of continental and sub-589 

continental average temperature anomalies are shown in Supplementary Figures 4 to 10 and 590 

include a comparison of the CRUTEM4.6 and CRUTEM5.0 results. 591 

 592 

5.2 Comparing standard and high-latitude gridding 593 

That the alternative gridding (section 4.2) provides more uniform representation of 594 

stations regardless of their latitude has already been shown for two individual months (Figure 5) 595 

and four more examples are given in Supplementary Figures 11 and 12. A good illustration is 596 

August 2016 (Figure 5): single stations at St Helena in the South Atlantic (16S) and at Halley 597 

on the Antarctic coast (75.5S) provide very different coverage (and hence contributions to any 598 

area-weighted analysis) with the standard gridding but much more similar coverage with the 599 

alternative gridding. 600 
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The alternative gridding increases the estimated global land warming by about 0.1C over 601 

the course of the whole record (top-right panel of Figure 8), with about half of that additional 602 

estimated warming occurring since 2000. This places the global series diagnosed from the 603 

alternative gridding near the upper edge of the 95% confidence interval from the standard 604 

gridding result during the last decade (Figure 8). The greater warming estimated with the 605 

alternative gridding arises from the NH series (in fact the overall estimated warming is reduced 606 

by ~0.05C in the SH since 1975), as expected because the longitudinally-slim high latitude grid 607 

cells under-represent the northern polar stations with standard gridding, and this is where 608 

temperature has increased the most (Simmons & Poli, 2015). With the alternative gridding, pre-609 

1890 values are about 0.04C lower and the warming trends from 1910 to 1940 and from 1990 to 610 

present are slightly enhanced. 611 

With the standard gridding, the overall warming from the 1861–1900 mean to the mean 612 

of the last 5 years is estimated to be 1.6C (with a 95% confidence interval on individual annual 613 

means of -0.11 to +0.10C in the recent period). With the alternative gridding it is 1.7C, while 614 

with CRUTEM4.6 it was 1.6C. Given that the underlying station database is the same for both 615 

gridding methods and that the modification to the gridding is relatively minor, the errors in 616 

global-mean values are likely to be quite similar. However, the errors of adjacent high latitude 617 

grid cells will be more strongly correlated with the alternative gridding because a station can 618 

now contribute to multiple grid cells, and the coverage error will be affected by the greater 619 

number of grid cells with estimates of temperature anomalies (bottom-right of Figure 8). 620 

Therefore, the CRUTEM error model does not apply directly to the alternative gridding, and for 621 

this reason the standard gridding version of CRUTEM5.0 will remain as the preferred dataset. 622 

An important point to make is that the alternative high-latitude gridding introduced here 623 

is not intended to address the broader issue of incomplete spatial coverage due to lack of 624 

observations in some regions. The biases introduced in an estimate of the full global-mean 625 

warming by not sampling a rapidly warming region such as the Arctic Ocean (Cowtan et al., 626 

2018) are better addressed by other approaches such as with reanalyses or making spatially-627 

more-complete estimates and require consideration of the land, ice-free and ice-covered oceans 628 

together. As such, this land-only paper is not an appropriate place to investigate this, but it is 629 

addressed in the new HadCRUT5 dataset (Morice et al., submitted) formed by combining 630 

CRUTEM5.0 and HadSST4.0 (Kennedy et al., 2019). 631 

The alternative gridding version of CRUTEM5.0, with better representation of high-632 

latitude data, could be useful for (e.g.) model-observation comparisons where the model data are 633 

masked to match the coverage of the observation dataset. With the standard gridding, this mask 634 

will unduly limit the high latitude area retained and might bias the model-observation 635 

comparison to the lower latitude areas (this is obvious from Figure 5). Masking and comparing 636 

with the alternative gridding would reduce this problem. 637 

 638 

5.3 Comparing CRUTEM5 with other land air temperature datasets 639 

The two versions of CRUTEM5.0 (standard and alternative gridding) show close 640 

agreement with other land air temperature datasets at the global scale. Figure 9 compares these 641 

series with global-mean land series from GISTEMP (NASA Goddard Institute for Space 642 

Science; Lenssen et al., 2019), NOAAGlobalTemp V5 (Zhang et al., 2019), Berkeley Earth 643 
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(Rohde et al., 2013) and ERA5. Each annual series is very highly correlated (r > 0.98 for all 644 

series, > 0.99 for the two CRUTEM5.0 series) with the mean of the other series. The root-mean-645 

squared difference between each annual series and the mean of the other series is between 0.05 646 

and 0.12C (for CRUTEM5.0 it is 0.08C with standard gridding and 0.06C with alternative 647 

gridding). 648 

These small differences are comparable to the estimated one sigma uncertainties of the 649 

CRUTEM5.0 annual-mean values (which are smaller than ±0.2C since 1870 and then smaller 650 

than ±0.1C since 1930). However, there are also some small systematic differences visible in 651 

the intercomparison (Figure 9). CRUTEM5.0 with standard gridding tends to lie at the bottom of 652 

the group of series since 2000, Berkeley Earth tends to lie at the top of the group in most years 653 

since 1940, with the other series lying more centrally within the spread of results. Some of these 654 

differences likely arise from spatial coverage and masking to a common geographical region 655 

reduces them (not shown here), or to the different methods of calculating the global mean 656 

provided by each group. 657 

 658 

6 Conclusions 659 

In this paper we have detailed the further development of the CRUTEM global land air 660 

temperature dataset and present the new version CRUTEM5.0. The key aspects of this work and 661 

its implications for our knowledge of regional and global temperature change over the land 662 

surfaces of the Earth are as follows: 663 

1. The underlying work to strengthen the CRUTEM station database is important because 664 

it allows us to benefit from improved availability of station observations and from better 665 

assessments of their long-term homogeneity. Also, data coverage could gradually decrease if 666 

only monthly CLIMAT updates are used because some stations close or stop reporting through 667 

the routine compilations; with our continued non-routine work, we are able to incorporate new 668 

stations in their place. We note, however, that there is a growing body of stations that we are not 669 

currently using to generate the gridded dataset because they do not have sufficient data to 670 

calculate their normals (compare station counts in Figures 1 and 6). This will need to be 671 

addressed with methodological changes in future versions. 672 

2. Compared with CRUTEM4.0, the CRUTEM5.0 station database is expanded in terms 673 

of station numbers (by 91% in total, and by 65% in terms of those that can be used in the gridded 674 

dataset), expanded in terms of monthly observation counts (by 59%, though part of this increase 675 

is because the dataset now runs to 2019; for 1850–2010, the expansion is 49%). Alongside this 676 

expansion, many values have been replaced (yellow in Figure 1) with the products of improved 677 

national homogeneity exercises. 678 

3. Most of the data acquisitions are in already-sampled regions, where they improve the 679 

temperature estimates and reduce their uncertainty. Despite the large increase in station counts, 680 

the coverage of grid cells with temperature anomalies is only moderately expanded (for 1850–681 

2010 there are 9% more grid cell temperature anomalies in CRUTEM5.0 than in 4.0). 682 

4. Improved outlier checking has been applied to the updated station database, providing 683 

better removal of physically implausible values especially during the reference period, retention 684 

of some extreme values when they occur in regional clusters, and reducing the trends in outlier 685 
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removal that arise from the underlying climatic warming. In future work we may utilise spatially 686 

interpolated grids (Morice et al., submitted) to identify outliers relative to regional information or 687 

relative to a time-evolving climatology. This could more completely address the issue of a 688 

warming climate causing high extremes to be more frequently mis-classified as outliers.  689 

5. The mean temperature timeseries for global land is refined but not significantly 690 

changed. This is because global land temperature estimates are already quite robust to changes in 691 

datasets and across datasets. Uncertainty in the global series would be reduced most by acquiring 692 

stations in unsampled regions rather than more in well-sampled regions, and by further 693 

evaluation of the biases related to changes in exposure in the 19th century (see discussion in 694 

Jones, 2016). 695 

6. A caveat to the previous conclusion is that it is the mean temperature of the global 696 

sampled-area that appears to be robust. Estimates of the full global-mean land temperature 697 

including the unsampled areas may be less robust and can also be biased when calculated as the 698 

mean of the sampled region, though bias has been more clearly demonstrated for the global land 699 

and marine temperature (Cowtan et al., 2018) rather than land-only. Bias can arise if temperature 700 

changes are very different between sampled and unsampled regions. This is especially the case 701 

for the sea-ice region of the Arctic Ocean, but the strong warming of the circum-Arctic land also 702 

needs to be properly sampled to reduce bias in the global-mean land temperature. We partly 703 

mitigated this bias previously (from CRUTEM3 to CRUTEM4; Jones et al., 2012) by expending 704 

effort to acquire previously unused data from the high northern latitudes. We further mitigate it 705 

here by providing a second estimate based on an alternative gridding method which removes the 706 

under-representation of high latitude stations: this increases our estimates of global-mean land 707 

warming by about 0.1C. Linear trends (C/decade) over the last 40 years (1980–2019) are 0.28 708 

(0.30) globally, 0.34 (0.37) for the northern hemisphere and 0.17 (0.17) for the southern 709 

hemisphere using the standard (or alternative) gridding.  710 

7. Related to the previous paragraph, many analyses (e.g. comparisons of models with 711 

observations) of this and other global land temperature datasets should ideally focus on the 712 

observed region. Infilling via various statistical estimators is best considered in the combined 713 

land and marine context (see Morice et al., submitted) rather than here, not least because the 714 

outcome is sensitive to the choice of estimating water or air temperature anomalies in sea ice 715 

regions. Nevertheless, infilling does not solve the issue with unobserved regions, and a common 716 

structural error in all datasets is the lack of observations from Antarctica and the continental 717 

interiors of Africa and South America and some parts of tropical/subtropical Asia prior to the 718 

1950s.  719 
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MCDW: https://www.ncei.noaa.gov/data/monthly-climatological-data-of-the-world/access/ 745 

GISTEMP land: 746 

https://data.giss.nasa.gov/gistemp/graphs_v4/graph_data/Temperature_Anomalies_over_Land_a747 

nd_over_Ocean/graph.csv 748 

NOAAGlobalTemp V5 land: https://www.ncei.noaa.gov/data/noaa-global-surface-749 

temperature/v5/access/timeseries/aravg.mon.land.90S.90N.v5.0.0.201911.asc 750 

Berkeley Earth land: http://berkeleyearth.lbl.gov/auto/Global/Complete_TAVG_complete.txt 751 

ERA5 land: https://climexp.knmi.nl/selectfield_rea.cgi 752 
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 883 

Figure 1. Station counts (i.e. number of monthly temperature observations) by time and latitude band, 884 

showing changes from CRUTEM4.0 to CRUTEM5.0 station databases. Values that are recorded for the 885 

same station in both databases are yellow if they differ or green if they are unchanged; those present only 886 

in CRUTEM4.0 are brown and those present only in CRUTEM5.0 are pale blue. Missing values that lie 887 

within a station’s overall period of record are dark blue. Counts are shown in 20 latitude bands and the 888 

vertical axis of each band covers the range from zero to the maximum station count (indicated on the left-889 

hand axis) in that band. 890 

 891 
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 892 

Figure 2. Timeseries of candidate (a) cold and (b) warm outlier counts obtained using the standard 893 

deviation (SD) method (brown), the interquartile range (IQR) method (green) and the IQR method with 894 

modification of the fences to account for regionally-coherent anomalies (black). Values show the 895 

percentage of each year’s observations that are flagged as outliers from 1870 to 2019. Legends show the 896 

trends in outlier counts (%/decade) from each method during 1870-1941 for cold outliers and during 897 

1990-2019 for warm outliers. 898 

 899 

 900 
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 901 

Figure 3. Outlier counts prior to (1850-1940), during (1941-1990) and after (1991-2019) the reference 902 

period used to define the outlier test parameters for the standard deviation (SD) method (bars and 903 

horizontal dashed lines) and the interquartile range (IQR) method (curved regions) as a function of the 904 

strictness of the IQR test (n in equation 3). Warm outlier counts are positive (red), cold outlier counts are 905 

negative (blue). 906 

 907 

 908 

 909 

 910 

 911 

 912 
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 913 

Figure 4. Left panel: heat map of all station monthly temperatures (C) in the CRUTEM5 database as a 914 

function of latitude for March. Brighter (darker) colours indicate more (less) frequent values. The median 915 

of the March temperature normals (1961–1990 means) for each 5 latitude band as a white line. Right 916 

panel shows: heat map for the same station data, but after adjustment for station latitude and elevation, 917 

together with the ranges (vertical blue lines) used to identify physically implausible values (those lying 918 

outside these ranges). 919 

 920 
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 921 

Figure 5. Gridded temperature anomaly (C relative to the 1961-1990 mean) maps for two example 922 

months (August 2016 top, February 1963 bottom) for standard (left) and alternative (right) gridding. 923 

 924 
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 925 

Figure 6. Comparison of global-mean land temperature series from CRUTEM4.0 (pink), CRUTEM4.6 926 

(brown) and CRUTEM5.0 (black) station databases and the same construction methods (the CRUTEM4 927 

methods). Top: 12-month running mean temperature anomalies (°C from the 1961-1990 mean) for each 928 

series (left) and their differences (right). Middle: as top but for the period since 1979. Bottom: timeseries 929 

of counts for stations (left) and grid cells (right) containing data, with total monthly observations 930 

indicated in the legends. Observation counts are after the removal of outliers and stations without 931 

normals. Note that the black lines are obscured by the brown lines where the values are close. 932 

 933 
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 934 

Figure 7. As Figure 6 except comparing global-mean temperature series and observation counts from the 935 

CRUTEM5.0 station database using outlier checking and normal requirements from CRUTEM4 (brown: 936 

“OldMethod”) or CRUTEM5 (black: “NewMethod”). The grey shading is the 95% confidence interval 937 

for CRUTEM5.0 data with CRUTEM5 methods. Note that the black lines are obscured by the brown 938 

lines where the values are close. 939 

 940 
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 941 

Figure 8. As Figure 6 except comparing global-mean temperature series and observation counts from the 942 

CRUTEM5.0 station database using outlier checking and normal requirements from CRUTEM5 for 943 

standard gridding (black) and alternative gridding (blue). Alternative gridding allows high latitude 944 

stations to contribute to multiple grid cells that lie within a similar longitudinal distance as an equatorial 945 

grid cell. The grey shading is the 95% confidence interval for CRUTEM5.0 data with CRUTEM5 946 

methods and standard gridding. 947 

 948 

 949 
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 950 

Figure 9. Comparison of global, annual-mean land temperature series from CRUTEM5.0 with standard 951 

gridded, CRUTEM5.0 with alternative gridding, Berkeley Earth, GISTEMP, NOAA V5 and ERA5, as 952 

anomalies from the 1881-1910 mean (dotted horizontal lines), the first 30-year mean for which five of the 953 

six series have data. The ERA5 series (which begins in 1979) is shifted so that it’s mean matches the 954 

mean of the other five series over their overlap period. All panels show the same data, but each series is 955 

highlighted in orange in one panel each, so that the position of that series compared with the multi-dataset 956 

ensemble can clearly be seen. 957 

 958 
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Table 1. Main sources of regular (approximately annual) updates for CRUTEM4.0 and CRUTEM5.0. 959 

Region Provider Current source Publication Comments 

Australia Bureau of Meteorology 

(BoM)  

http://www.bom.gov.au/climate/data/acorn-sat/  Jovanovic et al. 

(2012); Trewin 

(2018) 

ACORN-SAT: 112 series 

plus 8 from remote islands 

and Antarctic coastal 

stations 

Canada Environment and Climate 

Change Canada 

http://data.ec.gc.ca/data/climate/scientificknowledge/adjusted-

and-homogenized-canadian-climate-data-ahccd/homogenized-

surface-air-temperature-ahccd/ 

Vincent et al. (2012) 338 series 

China China Meteorological 

Agency (CMA) 

Provided through personal contacts at CMA or Qingxiang Li 

at Sun Yat-Sen University 

Xu et al. (2013) 380 series (but 420 were 

received in 2018) 

Russian 

Federation 

All-Russia Institute of 

Hydrometeorological 

Information – World Data 

Centre (RIHMI-WDC) 

http://meteo.ru/english/climate/d_temp.php 

ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/   

Bulygina & 

Razuvaev (2012); 

Menne et al. (2012) 

518 series until 2017; 

subsequent updates were 

obtained from GHCN-

Daily  

Contiguous 

USA 

National Oceanic and 

Aeronautical 

Administration (NOAA) 

https://www.ncdc.noaa.gov/ushcn/data-access  Menne et al. (2009) USHCN 1218 series 

 960 

 961 

http://www.bom.gov.au/climate/data/acorn-sat/
http://data.ec.gc.ca/data/climate/scientificknowledge/adjusted-and-homogenized-canadian-climate-data-ahccd/homogenized-surface-air-temperature-ahccd/
http://data.ec.gc.ca/data/climate/scientificknowledge/adjusted-and-homogenized-canadian-climate-data-ahccd/homogenized-surface-air-temperature-ahccd/
http://data.ec.gc.ca/data/climate/scientificknowledge/adjusted-and-homogenized-canadian-climate-data-ahccd/homogenized-surface-air-temperature-ahccd/
http://meteo.ru/english/climate/d_temp.php
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/
https://www.ncdc.noaa.gov/ushcn/data-access
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Table 2. Listing of significant new acquisitions since CRUTEM4.0 (see Supplementary Tables for more details). 962 

Region Provider, Source and/or Comments Relevant publication Number of series 

Global ISTI / ex-colonial archive  264 

Global NOAA GHCN v4 Menne et al. (2018) 141 

Alaska NOAA GHCN v4 Menne et al. (2018) ~50 new, ~50 augmented 

Caribbean CARIWIG project  Jones et al. (2016) ~50 new 

South America Latin American Climate Assessment & Dataset LACA&D  21 

South America Regional Climate Centres Network in southern South America (RCC-SSA)  ~92 new, ~88 augmented 

Andean region Personal contact with colleagues in Chile and Argentina  ~20 new, ~100 augmented 

Bolivia, Peru DECADE project / homogenized Hunziker et al. (2017) 8 new, 1 augmented 

Chile CLARIS project Penalba et al. (2014) 9 

Chile Center for Climate and Resilience Research (CR2) / CRU archives Boisier et al. (2018)  ~27 

Uruguay ISTI / Institute of Meteorology, Uruguay  11 

Europe ECA&D project / KNMI / not homogenized van der Schrier et al. (2013) 1357 

Denmark, Faroes, Greenland Danish Meteorological Institute (DMI) / CRU / most are homogenized  11 new, 29 augmented 

Germany, Poland ISTI Rennie et al. (2014) 58 new, 33 augmented 

Iceland Iceland Met. Office / homogenized  8 new, 10 augmented 

Netherlands KNMI / homogenized van der Schrier et al. (2011) 10 augmented 

Norway Norwegian Meteorological Institute (NMI) / homogenized  186 augmented 

Pyrenees Servei Meteorològic de Catalunya (SMC) / homogenized  38 new 

Spain Universitat Rovira i Virgili (URV) / SDATS / homogenized Brunet et al. (2006) 10 new, 12 augmented 

Sweden Swedish Meteorological and Hydrological Institute (SMHI) / ECA&D project  37 

Southern Africa SASSCAL project / CSAG / CRU archives  94 

ASEAN region Malaysia Meteorological Department for ASEAN  324 

Indonesia Meteorological, Climatological and Geophysical Agency (BMKG)  80+ 

Israel Israel Meteorological Service (IMS)  4 

Japan Japan Meteorological Agency (JMA) / ISTI / NOAA GHCN v3  294 

SE Asia, Australia Southeast Asian Climate Assessment & Dataset (SACA&D) van den Besselaar et al. (2017) 50 new, 4 augmented 

Taiwan Central Weather Bureau  32 
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NE Tibet Key Laboratory of Desert and Desertification  8 new, 18 augmented 

New Zealand National Institute of Water & Atmospheric Research (NIWA) / homogenized Mullan et al. (2018) 7 

ISTI=International Surface Temperature Initiative; NOAA=National Oceanic and Aeronautical Administration; KNMI=Royal Netherlands Meteorological Institute; see 963 

Supplementary Material tables for definition of other acronyms. 964 

 965 
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(b) Warm outlier counts (%) and trend over 1990-2019 (%/decade)
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