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ABSTRACT

A key requirement for the quantitative assessment of the global marine carbon cycle is to
improve understanding of the regulation of dissolved organic carbon (DOC)
concentrations. Continental shelf seas make an important contribution to sequestration of
CO; from the atmosphere, through physical and biological processes, 1.e. the Continental
Shelf Pump (CSP). However, the role of organic matter dynamics in the CSP is poorly
understood. Decoupling the carbon to nitrogen stoichiometry of organic matter
production from that of the primary producers can lead to excess uptake of dissolved
carbon relative to nitrogen, allowing for ‘overconsumption’ of carbon and increased
biological pump efficiency. This process could be particularly effective if carbon-rich
material such as gel-like Transparent Exopolymer particles (TEP) are formed, as these
can sink out of the surface layer. This research investigated the role played by TEP in
carbon cycling in NW European shelf seas by using a combination of field observations
and modelling approaches. Results show that shelf sea systems with higher primary
production (PP) lead to a higher TEP concentrations. In shelf seas TEP can be produced
as a by-product of primary production, in coastal areas or during periods of nutrient
limitation via overflow production of carbon-rich TEP precursors in seasonally stratified
areas. A clear relationship between TEP and chlorophyll a observed in this study
reinforces the evidence that phytoplankton is the main driver of TEP production. Results
from the modelling work indicate that TEP can change the partitioning of the exported
carbon, leading to an increase of the benthic respiration of ~ 30 %. This result improves
our understanding of TEP dynamics and demonstrates that TEP can play a potentially
significant role in carbon cycling and export in shelf seas, where its concentration is

disproportionately high relative to the open ocean.
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Chapter 1 Introduction

1.1 Ocean carbon cycling

The ocean plays an important role in the carbon cycle by storing large amounts of carbon,
particularly in the deep ocean. Figure 1.1 of the global carbon cycle shows that the ocean
stores many more times the carbon than that which is in the atmosphere. This storage is
mediated by the export of organic matter from the surface ocean, which is biological in
origin. Whilst a small amount of carbon globally comes from terrestrial environment via

rivers, this may be more significant in shelf seas (Hansell, 2013; Barréon and Duarte,

2015).
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Figure 1.1 Schematic representation of the global carbon cycle (Ciais ef al., 2013).

1.2 Biological pump, solubility pump and microbial carbon pump

Two mechanisms are responsible for the regulation of the atmospheric carbon dioxide
(CO,) by the oceans. The first mechanism is the cycling of the inorganic carbon and
involves CO; air-sea exchange (Liss and Merlivat, 1986; Nightingale et al., 2000) and the
dissociation of the carbonic acid (Dickson et al., 2007). The second mechanism is biotic

and it is linked to the biological activity and cycling of inorganic or organic carbon

(Heinze et al., 2015).
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In the solubility pump, the ocean equilibrates with the atmosphere via ocean-atmosphere
gas exchange. Given a steady atmospheric concentration of CO,, the surface ocean would
be in long-term equilibrium with the atmosphere, or at least at steady state and no
biological activity. However, as we are pumping CO, into the atmosphere by human
activity the ocean is responding by taking up more inorganic carbon (Sabine et al., 2004;
Le Quéré et al., 2016). In the biological pump the surface ocean is under-saturated with
respect to CO; in spring and summer in many parts of the ocean following biological
uptake, which leads to a solubility-driven response in air-sea CO, flux. The deep ocean
is supersaturated in dissolved inorganic carbon (DIC) due to the subsequent sinking and
remineralization of this organic carbon produced in the surface. For most organic matter
the remineralistion is kinetically limited, so the faster the sinking rate the more efficient
the carbon export (Ducklow et al., 2001). The biological pump efficiency has generally
been estimated using sediment trap data from the mesopelagic (Ducklow et al., 2001) and
relies on the assumption that particles sink fast enough for the system to be assumed to
be at steady state. However, Giering ef al. (2017) recently observed that particle sinking
velocities in the N. Atlantic of < 40 m d” were too slow for the steady state assumption
to hold. This means that the sinking rates and strength of the biological pump are not fully
understood. In the microbial carbon pump, refractory organic matter from the terrestrial
environment (Ward et al., 2017) or produced in the ocean that cannot be remineralized or
broken down, forms a significant pool of carbon in the deep ocean which has a lifetime
of tens of thousands of years (Hansell, 2013). This refractory pool has a high C : N ratio
as more bioavailable, relatively N-rich organic compounds tend to be remineralised (Jiao

etal.,2014).

1.2.1 Continental shelf pump (CSP)

Shelf seas play an important role in the ocean carbon cycle due to their high productivity
and differential cooling relative to the adjacent open ocean (Tsunogai et al., 1999; Yool
and Fasham, 2001) and physical processes at the shelf edge favoring export of water off-
shelf to depth (Huthnance, 1995; Simpson and McCandliss, 2013). Whilst still poorly
understood, there is an increasing body of evidence from both measurements and models
that continental shelves are a source of DIC (Bozec ef al., 2005; Thomas et al., 2005;
Chen and Borges, 2009; Wakelin et al., 2012) dissolved organic carbon (DOC) (Barron
and Duarte, 2015; Mannino et al., 2016; Chaichana, 2017) and particulate organic carbon
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(POC) (Thomsen et al., 2017) to the open ocean. In recent synthesis papers the continental
margins are found to be significant sinks for atmospheric CO, in spite of the terrestrial
organic matter loading from rivers (Bauer et al., 2013). During pre-industrial times the
continental shelf appeared to be heterotrophic. However, in a future scenario the
interaction of multiple factors such as acidification and eutrophication would increase the
complexity of the system leading to a weaker prediction of the magnitude of organic and

inorganic carbon and CO, fluxes (Bauer ef al., 2013).

The link between air-sea CO, uptake in a shelf sea and the export of carbon to the open
ocean is complex (Gruber, 2015), and depends on the CO, concentration of water coming
on to the shelf, seasonal cycles of temperature and stratification and the amount of organic
and inorganic carbon travelling down rivers. However, all else being equal, increased
sinking of particulate carbon, and production of carbon-rich organics in a shelf sea greatly
act to enhance carbon export. The Figure 1.2 from Gruber (2015) shows the global ocean
of sinks and sources of carbon dioxide. The map highlights that temperate and high
latitude coastal regions are sinks for atmospheric CO; (e.g. the North Sea and the Celtic

Sea).

Air-sea CO, flux {(mol Cm= yr )

L
Greenwich
mendian

Figure 1.2 Air-sea CO,; fluxes (mmol C m? y'l) on a global scale (Gruber, 2015). Air-sea CO, fluxes are high in
coastal areas.
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1.3 Continental shelf seas

Shelf seas cover 7% of the global ocean surface area. Despite this, shelf seas account for
10-30% of the global marine primary production (Gattuso ef al., 1998) and they play a
key role in the global carbon cycle (Walsh, 1991; Mackenzie ef al., 2004). Shelf seas have
strong biological activity and represent a link between the terrestrial, oceanic and
atmospheric carbon reservoirs (Gattuso et al., 1998). Continental shelf seas, such as the
North Sea, make an important contribution to uptake of CO, from the atmosphere,
through physical and biological processes, i.e. the Continental Shelf Pump (CSP)
(Tsunogai et al., 1999; Thomas et al., 2004; Borges et al., 2005). Nevertheless, the
mechanisms and seasonality of this continental shelf pump are not fully understood
(Prowe et al., 2009). The North Sea for instance, has a shallow, permanently mixed
southern region and a northern, seasonally stratified region. The North Sea has been
recognised as a system with a strong sink for atmospheric CO, of 1.4 mol C m™ yr’
(Thomas et al., 2004; Thomas et al., 2005). Ninety percent of this CO, uptake from the
atmosphere by the North Sea is exported to the North Atlantic Ocean, making the North
Sea a very efficient CSP (Thomas et al., 2005).

1.3.1 Northwestern European shelf seas
1.3.1.1 Celtic Sea

The Celtic Sea (Figure 1.3) is a temperate shelf sea on the northwestern European
continental margin, covering an area from Brittany (France), to the south of Ireland, St.
Georges Channel and Cornwall (UK). The continental shelf has a total surface area of
130,000 km?”. It represents a transition zone which separates Atlantic waters on the
margins of the European continental shelf from the coastal waters of the Bristol Channel

and the Irish Sea (Brown ef al., 2003).
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Figure 1.3 The Celtic Sea with its circulation and carbon transport pathway adapted from de Haas et al. (2002).
— indicates main oceanographic currents; ®¥ indicates main carbon tranport. The white colour indicates depth
of less than 100 m, the light grey of 100-200 m and the medium grey of more than 200 m.

The water column structure of the Celtic Sea is determined by the combination of two
processes: buoyancy input by surface heating and turbulent mixing induced by shear
stresses due to barotropic tides (Simpson and Hunter, 1974; Simpson and Bowers, 1981).
The water column is mixed from late December to early May due to wind forcing (Brown,
1991; Knight and Howarth, 1999; Young et al., 2001; Brown et al., 2003). During
winter/spring the Celtic Sea is influenced by water masses from the Atlantic Ocean with
high salinity along the Cornish coast (Pingree 1980) and by water from the River Severn.
In the Celtic Sea the shelf edge at 200 m depth represents the boundary between the
shallow shelf sea and the deep ocean (Huthnance, 1995). It has a distinct biological
activity (Fernandez et al., 1993) and plays an important role in mediating the exchange
of water, nutrient and carbon fluxes with the open ocean (Liu ef al., 2000). The shelf edge
is an area where turbulence and mixing are able to re-suspend sediment (Heathershaw et
al., 1987; Puig et al., 2004) and nutrients (Holligan et al., 1985; Brickman and Loder,
1993; Sharples et al., 2001).

Primary production (PP) at the shelf edge in the Celtic Sea at the beginning of spring
bloom is estimated to be ~ 70 mmol C m™ d”', reaching 120 mmol C m™ d”' during the
later stages of the spring bloom (Rees et al., 1999). The PP in the seasonal thermocline
(summer) in the Celtic Sea ranges from 16 to 32 mmol C m™ d' (Hickman et al., 2012).
On an annual scale the Celtic Sea has a primary production of 102 g C m? y™' (Joint et

al., 1986). By including dissolved organic matter, total primary production reaches ~15
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x 10° ton C y™'. The Celtic slope is a very productive area of the Celtic Sea where the
primary production reaches 162 g C m™ y™' (de Haas et al., 2002). The Celtic Sea is
characterized by fine and coarse sandy, gravelly or muddy sediments (grain diameter <63
um) (Belderson and Stride, 1966; Pantin and Evans, 1984; Heathershaw and Codd, 1986).
The majority of the organic carbon produced in the Celtic Sea is exported off the shelf to
the continental slope where it is stored long-term (de Haas et al., 2002). Only a small area
of the Celtic Sea with a weak current allows deposition of the organic carbon in shelf

sediments (McCave, 1971).

1.3.1.2 North Sea

The North Sea (Figure 1.4) is a marginal, shallow sea (area of around 750,000 km?) on
the European continental shelf with an open northern boundary to the North Atlantic
Ocean. In the west and south it is surrounded by the British Isles, and the European
continent (France, Belgium, Netherlands, Germany and Denmark), while Norway is on
its north-eastern and eastern side. The North Sea has a shallow southeastern region (< 50
m), separated by the Dogger Bank from a deeper central region (50 — 100 m), which
extends along the north British coast. The central northern region of the shelf gradually
deepens to 200 m before reaching the shelf edge (Howarth, 2001). The main circulation
in the North Sea is an anti-clockwise rotation along its edges. The main inflow of water
is from the North Atlantic Ocean via the Shetland Channel and the Fair Island Channel,
with the outflow leaving along the Norwegian Trench on the eastern boundary (Lenhart
and Pohlmann, 1997). A small proportion of the North Atlantic inflow reaches the region
south of the Dogger Bank (55" N, 3" E), which is otherwise dominated by an inflow of
water from the English Channel (Thomas et al., 2005). Furthermore, there is a high
variability in the source and volume of water entering into the system between seasons
and years, that is correlated to climatic conditions. The average water temperature ranges
from 17 °C in summer to 6 °C in winter. The salinity averages ranges from 34 to 35.
Based on water column stratification, the North Sea can be separated into two different
biogeochemical regions: a shallow, southern region and a seasonally stratified, northern
region (Thomas et al., 2004). The boundary between the two biogeochemical regions is
at approximately 54° N in the west and at 57° N in the east (Figure 1.4), corresponding to
the northern part of the Dogger Bank (Ducrotoy et al., 2000; Emeis et al., 2015).
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Figure 1.4 The North Sea with its circulation pattern and carbon transport pathway adapted from de Haas et al.
(2002). —= indicates the main oceanographic currents; ®¥» indicates the main carbon tranport. The dashed red
line indicates the approximate boundary between the two biogeochemical regions (northern and southern).

The shallow southern region with high primary productivity (300 - 350 g C m™ y™)
(Emeis et al., 2015) is affected by terrestrial and anthropogenic nutrient inputs and is
characterized by a permanently mixed water column throughout the year. After an initial
uptake of dissolved inorganic carbon (DIC) during the spring bloom, DIC remains at
intermediate levels throughout the water column (Prowe et al., 2009). The northern region
is characterized by lower primary productivity (50 - 100 g C m™y™") as a result of seasonal
stratification and the influence of the Atlantic waters (Emeis et al., 2015) and a net export
of particulate organic matter (POM) and nutrients to the deeper layers (Thomas et al.,
2004). The southern region has very low annual net air—sea CO; fluxes when compared
with the northern region, where a strong uptake of atmospheric CO; is recorded (Thomas

et al., 2004).
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Marine suspended sediments are supplied to the North Sea from the Norwegian Sea, the
English Channel and the Baltic Sea. Riverine input reaches the North Sea by the Elbe,
Ems (German coast), Rhine, Meuse, Scheldt (Dutch and Belgium coasts), Thames, Wash
and Humber (UK coast), suppling ~ 4.0 x 10° ton C y™' (Brockmann et al., 1990). Due to
riverine influences the shallow southern region of the North Sea is characterized by a high
suspended particulate matter load, especially during the winter time from the Thames
plume (Eleveld et al., 2008; Weston et al., 2008; Chaichana, 2017). Sediments of fine
grain which are rich in organic matter are prevalent in the North Sea. A large part of those
sediments is transported by the anti-clockwise residual circulation and accumulates in the
Skagerrak. A small part is transported into the Norwegian Channel (de Haas et al., 1997,
de Haas and van Weering, 1997).

1.4 Organic carbon in shelf seas
1.4.1 The organic carbon pump

The ocean is one of the largest reservoirs of carbon in the world (Figure 1.1). Dissolved
organic carbon (DOC) is the second largest carbon pool in the oceans (Hansell and
Carlson, 2001). Therefore, a key aim for the quantitative assessment of the ocean carbon
cycle is comprehending the processes regulating DOC production and consumption
(Polimene et al., 2006). In the past decade the role of coastal shelf seas in the uptake of
atmospheric CO, has been investigated (Borges et al., 2005) and several studies have
shown the significant contribution of shelf seas in global ocean carbon uptake (Takahashi
et al., 2009). Continental shelf seas play a key role in the cycling of biogeochemical
elements through physical and biological mechanisms (Thomas et al., 2004; Borges et
al., 2005). Through the ‘organic carbon pump’, one of the biological pumps (Heinze et
al., 1991), shelf seas capture carbon from the atmosphere via primary production and
export it to the deep sea. In the organic carbon pump most of the biomass produced in
surface waters during primary production by phytoplankton is turned over and respired
within the euphotic zone. Only a small portion of this biomass sinks as POC which reach
deeper waters. An even smaller fraction of this biomass reaches the seafloor where is
buried in sediments (Boyd and Trull, 2007). The greatest part of the sinking particles are
remineralised by heterotrophic organisms and CO, produced from this process is returned
to the atmosphere. The efficiency of this biological pump in removing CO, from the
atmosphere 1s affected by the capability of the marine ecosystem to "export" the
particulate organic carbon and dissolved organic carbon, produced by biological activity,
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from the surface layer to the deep ocean, where it can be stored "long-term". However,
the mechanisms of how the CO, can be sequestered by shelf seas and the seasonality are

not well understood (Prowe et al., 2009).

1.4.2 Carbon export

Coastal seas are important for the marine carbon cycling (Walsh, 1991). However, the
mechanism of how the carbon cycles within the coastal areas and its export to the open
ocean is not fully understood (Bauer et al., 2001; Vlahos et al., 2002). In coastal seas, the
main input of organic carbon comes from rivers (Cauwet, 2002) and discharges of water
from land (Burnett ef al., 2003). A small fraction is due to atmospheric inputs (Willey e?
al., 2000). Riverine input of organic carbon in coastal areas is estimated to be ~ 426 Tg
C yr', of which ~ 250 Tg C yr™ is in form of DOC and ~ 176 Tg C yr™" is in form of POC
(Cauwet, 2002).

Diesing et al. (2017) found that coastal sediments are important for POC sequestration
and storage on the NW European continental shelf. The coastal seas are areas of high
productivity where the organic carbon produced exceed rates of respiration (Duarte and
Cebrian, 1996; Gattuso et al., 1998). The remaining organic carbon is buried in the
sediments or exported to the open ocean (Duarte ef al., 2004). The exported carbon can
be in the form of particulate organic carbon or dissolved organic carbon . The DOC
concentration is usually twice the concentration of POC in surface waters (Druffel et al.,
1992; Bauer and Druffel, 1998). The retention time of POC in the ocean (< 1 month)
(Lande and Wood, 1987) is shorter than that in the coastal areas (~ 4 months) (Huthnance,
1995). This might indicate that POC is produced and retained in coastal areas (Huthnance,
1995). Furthermore, regional studies showed that 80 % of the organic carbon exported
from coastal areas to the open ocean is in form of DOC (Bauer ef al., 2001; Vlahos et al.,

2002).

1.5 Carbon overconsumption

Biological, chemical and physical mechanisms control the chemical composition of
seawater. The average molar C : N : P ratio of oceanic particulate organic matter has been
found to be close to 106 : 16 : 1 (Redfield, 1963). This C : N : P stoichiometry refers to
the relationships between the organisms and the ecosystem structure, as well as the

function with environment and stoichiometry of the organisms (Sterner and Hessen, 1994;
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Elser et al., 1996; Elser et al., 2000). However, the C : N : P stoichiometry is not fixed
and modifications to its value and range have been reported (Anderson and Sarmiento,
1994; Arrigo, 2005; Moore et al., 2013). Its deviation from the Redfield ratio provides
information on nutrient limitation, on primary production (Moore et al., 2013),
phytoplankton physiology (Quigg ef al., 2003) and the capability of the ocean to sequester
carbon (Sigman and Boyle, 2000).

In the marine environment phytoplankton plays an important role in the regulation of
atmospheric CO,, through the fixation of CO; by photosynthesis, followed by the export
of the organic carbon to the deep ocean (Engel, 2004). The capability of the ocean to take
up carbon is related to the availability of nutrients in the surface ocean. Nitrate uptake,
along with a carbon to nitrogen (C : N) ratio of 106 : 16 is often used to estimate the new
production in the open ocean (Dugdale and Goering, 1967). This is usually done by using
a nutrient-based carbon assimilation of the nitrate consumption multiplied by the C : N
ratio of 6.6. The new production calculated with this method determines a link between
nitrate uptake and the sequestration of carbon by the biological pump (Eppley and
Peterson, 1979). However, the Redfield stoichiometry of 6.6 often disagrees with
observations, particularly during short periods of time and at specific locations. This
indicates a decoupling between the turnover of nitrogen and carbon (Banse, 1974).
Sambrotto et al. (1993) have found that in coastal areas, shelf seas and the open ocean the
ratio of carbon to nitrate uptake in surface waters exceeds the Redfield ratio. This was
observed particularly during phytoplankton blooms, where C : N ratios of 8 - 14 were
reported (Sambrotto et al., 1993). This phenomenon, where the dissolved inorganic
carbon uptake exceeds the amount deduced from the observed nitrate uptake and Redfield
stoichiometry (Kortzinger et al., 2001) is known as “carbon overconsumption”
(Toggweiler, 1993). The following explanations have been put forward for carbon
overconsumption: enzymatic conversion of dinitrogen gas (N,) to other forms of
nitrogen (e.g. ammonia) by microorganisms (Hood et al., 2001), and the formation of
extra-cellular Transparent Exopolymer Particles (TEP) rich in carbon exuded by
phytoplankton and bacteria (Passow, 2002). In the ocean a dissolved organic matter
(DOM) production with high C : N ratios (low-N DOM) has been observed and has been
associated with carbon overconsumption (Kdhler and Koeve, 2001). In a future scenario
(increase in atmospheric CO,, climate change and eutrophication) the increase of the C :
N ratios of DOM from the standard Redfield ratio may affect nutrient cycling, by

changing DOM composition from nutrient-rich to nutrient-poor (Sardans ef al., 2012) .
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Taucher et al. (2012) provided a piece of evidence for the possible link between the
increase of the C : N ratios under a future scenario of higher atmospheric CO, and
seawater temperature. They conducted a mesocosm experiment with a natural plankton
community collected from the Baltic Sea in summer to investigate how the increase in
atmospheric carbon dioxide concentrations and the consequent increase in sea surface
temperatures may enhance carbon overconsumption. They carried out a one month
experiment where the growth rate of the phytoplankton community was stimulated with
the addition of nutrient. Furthermore, the experiment was produced under altered growth
temperature conditions from the ambient temperature of + 4 °C. The increased
temperature produced an increase in the uptake of DIC and in the production of DOC and
POC. Furthermore, the authors reported an increase of the elemental ratios of carbon and
nitrogen (C : N) in dissolved organic matter and particulate organic matter, with C : N
ratios of more than 30. They suggest that high temperatures produce an increase in the
fixation of carbon. However, their results are opposite to similar experiments conducted
in spring. They concluded that mesocosm experiments in different seasons are dominated
by different phytoplankton species. Therefore, the phytoplankton community might play
a role in the response of the biogeochemical cycling to the increase in seawater

temperatures.

Prowe et al. (2009) investigated the mechanisms that control the air-sea CO, flux in the
North Sea by using a three-dimensional ecosystem model. They ran the model in the
northern and southern region of the North Sea for the year 2001 and validated the model
output against fieldworks observations. Two runs were performed at each location. The
first run using a model with fixed Redfield ratio and the second run using a model with a
non-fixed Redfield ratio. Their results indicated that the air-sea CO, flux in the two
regions were strongly affected by water column stratification. For instance, in the
southern North Sea the continuum recycling of nutrients did not allow the fixation of
carbon. Both models and observations showed no significant differences in the uptake of
DIC. On the contrary in the northern North Sea, the stratification of the water column in
summer produced nutrient limitation, which facilitated the fixation of carbon and
produced a net difference in DIC uptake between the two models and the observations.
In particular, the model with a non-fixed Redfield ratio was in a good agreement with the
observations, indicating a carbon overconsumption of DIC of 40 pmol kg™ in respect to
the model with a fixed Redfield ratio in summer. They argued that this carbon

overconsumption may be in part associated with the production of TEP in surface water
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in the northern North Sea region in summer. The authors concluded that during productive
season carbon overconsumption and the formation of dissolved organic carbon, (e.g.
TEP) by primary production is important for driving CO; fluxes in the northern North

Sea.

Another modelling study conducted by Schartau ez al. (2007) simulated the phenomenon
of carbon overconsumption in conjunction to the formation of TEP. Their modelling
approach was used to reproduce a mesocosm experiment, which was performed in a tank
under controlled experimental conditions with seawater collected from the Santa Barbara
Channel. The authors assessed the ability of the model to reproduce a combination of
processes such as phytoplankton acclimation to nitrogen stress, carbon overconsumption,
exudation and coagulation of DOC to form TEP. The model reproduced two pathways
that involve the overconsumption of carbon. In the first pathway DOC is exuded during
phytoplankton growth. In the second pathway POC is produced by phytoplankton under
nutrient limited conditions. The results from the modelling work were consistent with the
observations from the mesocosm experiment. The authors reported that the predicted and
observed increase in POC of 30% found in their study was associated with the formation

of TEP.

1.6 Transparent Exopolymer Particles (TEP)

Alldredge et al. (1993) describe transparent exopolymer particles as transparent gel
particles formed from extracellular polymeric substances (EPS) exuded by
microorganisms. TEP are abundant in open oceans and coastal waters with sizes ranging
from <1 pm to 200 pm. Due to their high carbon content and low nitrogen content (Mari
et al., 2001), and their high capability to aggregate solid particles, TEP may provide a
mechanism by which DOM, originating from excess carbon uptake in the euphotic zone,
can contribute to particle export by interaction with sinking particles (Engel and Passow,
2001). Passow (2002) proposed two different mechanisms of TEP formation from

dissolved organic matter in the marine environment (Figure 1.5).
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Figure 1.5 Formation of TEP from dissolved organic matter proposed by Passow (2002) from Meng et al. (2013).

In the first pathway, TEP is generated by bacteria and phytoplankton from particulate
material, mucus, organic detritus and cell-coating surfaces. In the second pathway,
precursor substances form TEP under specific environmental conditions such as
turbulence and presence of inorganic colloids. The latter pathway could be the primary
source of TEP in marine environments (Passow, 2002). The precursor substances, for
example polysaccharide fibrils, are produced by cell breakage or lysis or are secreted by
microorganisms (Leppard et al., 1977). Submicron gel-like substances are then produced
from these polysaccharide fibrils through three different processes: 1) coagulation, the
formation of a gel particle by the collision and subsequent sticking of two smaller
polymers (Wells and Goldberg, 1993), 2) gelation where the formation of a gel from
linking between chains of branched polymers leads to the formation of a progressively
larger polymer, or 3) annealation where the polymers from one gel diffuse and

interpenetrate with other gels forming a larger polymer (Chin et al., 1998).

1.7 Ecological and biogeochemical relevance of TEP in the marine ecosystem
1.7.1 Abundance and distribution of TEP

Transparent exopolymer particles have been found in fresh water and in marine waters
(Passow, 2002). High TEP concentrations have been associated with phytoplankton
blooms (Passow and Alldredge, 1994; Passow et al., 1995; Mari and Kierboe, 1996;
Passow et al.,2001). Due to its link with primary production TEP is predominantly found
in the euphotic zone and has higher concentrations in coastal seas than in the open ocean
(Passow and Alldredge, 1994; Engel and Passow, 2001). The distribution and
concentrations of TEP reported for the marine environment are presented in Table 1.1
and expressed as micrograms of Gum Xanthan equivalent per litre (ug Xeq. 1"). The
maximum concentration of TEP (14800 pg Xeq. 1'") in marine waters was reported for
the Adriatic Sea, which was associated with the production of large amount of mucus
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(Radi¢ et al., 2005). Generally, peak concentrations of TEP during phytoplankton blooms
are 1000 pug Xeq. I"', while TEP concentrations in sea ice range from 790 to 7710 pg Xeq.
I (Krembs et al., 2002). TEP concentrations in the open ocean are two orders of

magnitude lower than in coastal areas (Passow, 2002).

Table 1.1 Average concentrations (minimum — maximum) of TEP (ug Xeq. 1) for different locations, seasons and
depths. TEP concentrations are expressed in micrograms of Gum Xanthan equivalent per litre (ug Xeq. 1).

Location Season Depth TEP References
(m) (ng Xeq. I")
Santa Barbara mooring, year-round 20 213 Passow et al., 2001
station 2, USA (max = 1042)
Santa Barbara Channel, USA summer 20 (80-310) Passow and Alldredge, 1995
Santa Barbara Channel, USA summer 10 72 Passow, 2000
(max = 74)
Santa Barbara Channel, USA | winter, summer 0-75 - Passow and Alldredge, 1995
(29-252)
Monterey Bay, USA summer 10 (50-310) Passow and Alldredge, 1995
Great Barrier Reef, Australia winter 5 (23-791) Wild, 2000
North Adriatic summer up to 37 570 Radic¢ et al., 2005
(4-14800)
Mediterranean Sea - 0-200 21 Ortega-Retuerta et al., 2010
(5-94)
Gulf of Cadiz summer 0-100 118 Garcia et al., 2002
(25-609)
Gulf of Cadiz / Strait of - 0-200 - Prieto et al., 2006
Gibraltar (25-205)
NE Atlantic, 47N summer surface 53 Engel et al., 1997
(27-294)
NE Atlantic, 47N winter surface 36 Engel and Passow, 2001
Norwegian fjords spring 36 193 Riebesell et al., 1995
(max = 258)
Baltic Sea spring - 1300 Engel, 2000
Baltic Sea summer - 241 Engel and Passow, 2001
Central Baltic Sea summer - (145-322) Passow, 2002
Chukchi Sea, sea ice, Alaska spring - (790-7710) Krembs et al., 2002
Otsuchi Bay spring - 1344 Ramaiah ez al., 2001
(24-2321)
Ross Sea spring - 308 Hong et al., 1997
(max = 2800)
Gerlache Strait - 0-100 - Corzo et al., 2005
(0-283)
Antarctic Peninsula - 0-200 15.4 Ortega-Retuerta et al., 2009
(0-48.9)

1.7.2 Role of TEP in the formation of marine aggregates

Several studies have reported the crucial role of TEP for the aggregation and potential
sinking of particles (Dam and Drapeau, 1995; Logan et al., 1995; Engel, 2000a; Fabricius
et al., 2003; Engel ef al., 2004; Engel, 2004). Due to its stickiness TEP can act as a glue
(Passow, 2002) and can be responsible for the formation of fast sinking aggregates (Mari
et al., 2017). TEP itself cannot sink because its density is lower than that of seawater

(from 700 to 840 kg m™) (Azetsu-Scott and Passow, 2004a). This indicates that TEP
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represents a pool of carbon-rich POC in surface waters that does not readily sink (Mari ef
al., 2017). However, TEP is able to promote the aggregation of particles and the
consequent formation of marine aggregates. The buoyancy/sinking of these aggregates
has been proposed to be sensitive to the ratio of TEP to other particles (of different
density) in the aggregate (Mari et al., 2017). A study reports that the fraction of TEP
collected at 500 m from sediment traps was lower than the standing stock of TEP (Passow
et al., 2001). This may indicate that the buoyancy/sinking mechanism could extend the
residence time of aggregates containing TEP in surface waters (Azetsu-Scott and Passow,

2004a) and delay its sinking.

Generally marine snow (aggregates > 0.5 mm (Engel et al., 2002)) has a sinking rate from
20 to 200 m d*! (Armstrong et al., 2009; McDonnell and Buesseler, 2010). In contrast,
the sinking velocity of a single diatom cell varies from 0.1 to 1 m d”' (Culver and Smith,
1989). Aggregates containing TEP show a large and variable range of sinking rates not
very well estimated, which depends on the size of the aggregate, packaging, porosity
(Iversen and Ploug, 2010) and density (Christina and Passow, 2007). The
buoyancy/sinking of these aggregates depends on their density which seems to be
sensitive to the ratio of TEP to other particles (of different density) in the aggregate (Engel
and Schartau, 1999; Azetsu-Scott and Passow, 2004a). Therefore, an increase in the
production of TEP might determine a decrease in the downward flux or in the case of
very high TEP production may lead to an upward flux that extend the residence time of
aggregates containing TEP in surface waters (Azetsu-Scott and Passow, 2004a) and

delays their sinking (Mari et al., 2017).

A study conducted by Alonso-Gonzalez et al. (2010) in the south of the Canary Islands
reported that more than 60% of the sinking POM collected at 260 m depth in
summer/autumn was sinking at a velocity of less than 11 m d™'. They also found that 53%
of POM in winter/spring was sinking at a higher velocity of more than 326 m d”'. Their
finding may indicate that the lower sinking velocity of the POM found in summer/autumn
may be due to the higher presence of TEP in the POM (Mari et al., 2017). TEP is generally

produced and accumulated in surface waters during summer (Mari and Burd, 1998).

The North Adriatic Sea is a eutrophic coastal area characterized by the formation of
mucilage associate with blooms of diatoms which accumulate in the surface waters. This

accumulation has been hypothesized to have occurred due to the strong vertical density
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gradient observed in the area (Maclntyre et al., 1995) or the formation of gas bubbles due
to the metabolic activity of attached microbes (Riebesell, 1992). However, several studies
have reported a high production of TEP in the Adriatic Sea (Schuster and Herndl, 1995;
Radi¢ et al., 2005a). Due to their low density and abundance TEP may significantly
contribute to the accumulation of mucilage in the surface waters (Mari et al., 2017).
Moreover, the potential contribution of TEP in the accumulation of these aggregates in
surface waters can be supported by their high C : N molar ratio, typically of TEP (Miiller-
Niklas et al., 1994).

Another piece of evidence that shows the potential role of TEP in reducing the export of
POM comes from a study conducted by Mari ef al. (2017) in two different systems: the
Kattegat and the Mediterranean Sea. They estimated the density of an hypothetical
aggregate composed of TEP and phytoplankton cells (diatoms). In this study the density
of the aggregate containing TEP was computed by using an approximate density of
diatom cells of 1120 kg m™ (Van Ierland and Peperzak, 1984) and the highest TEP density
of 840 kg m™ (Azetsu-Scott and Passow, 2004a). They also assumed that the aggregate
containing TEP had a porosity of 90% (Ploug and Passow, 2007). The study concluded
that the export of POC was influenced by the aggregate containing TEP density and that
this mechanism led to the accumulation of a carbon-rich pool (i.e. TEP) in surface waters,
with a temporary reduction of the downward export of POM. The accumulation in surface
waters of this carbon-rich pool determines its direct exposure to the sunlight, which may
lead to an increase of its biological remineralization and photochemical degradation (Mari
et al., 2017). Mari et al. (2017) concluded that an aggregate composed of TEP and
diatoms might sink only if the carbon content of TEP is less than 5% of the total aggregate

composition.

In the deep ocean a concept called ballast effect has been reported and used to explain the
strong correlation between downward fluxes of POC and their mineral content (Klaas and
Archer, 2002; Armstrong et al., 2009). However, such a relationship is not so evident in
surface waters (Sanders et al., 2010). Nevertheless, the ballast effect seems to be the
mechanism capable to cause the export of TEP from the surface waters (Mari et al., 2017).
TEP because of its low density to sink needs to be ballasted with dense particles, which
are heavy enough to counteract the low density of TEP. Those particles may be heavy
minerals such as carbonate from coccolithophores and foraminifera or siliceous

compounds called opal from diatoms (Mari et al., 2017).
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To investigate the role of heavy particles on ballasting aggregates containing TEP Mari
et al. (2017), conducted a study in the northwestern Mediterranean Sea. The study aimed
to estimate the density of TEP-mineral aggegrates during winter and summer. As a heavy
mineral fraction was used the mineral dust deposition events happened between 2003 and
2007 in the Mediterranean Sea (Ternon et al., 2010). The density of the dust was
extrapolated from literature as an average value of 2300 kg m™~ (Chou et al., 2011) and
the TEP density was supposed to be 840 kg m™ (Azetsu-Scott and Passow, 2004a). The
result revealed that even the strongest dust deposition event was not able to cause a
downward flux of the TEP-mineral aggregates in summer. In contrast, during winter due
to lower concentrations of TEP in surface waters a downward flux of TEP-mineral
aggregates was predicted (Mari ef al., 2017). This result indicates the complexity of TEP
dynamics and the relative contribution of TEP and other ballasting particles in
determining the upward or downward flux of aggregates containing TEP (Azetsu-Scott

and Passow, 2004a).

In the TEP aggregation process the presence of heavy particles alone does not lead to the
formation of sinking aggregate. This is because the aggregation process is a function of
other factors such as particle size, rate of collision and particle stickiness (Jackson, 1990;
Jackson and Burd, 1998). The formation of aggregates containing TEP is linked to the
abundance, size of particles and TEP stickiness, which can define the probability that two
different particles stick together. It is clear that TEP stickiness is the main driver of
particle aggregation (Engel, et al., 2004). Therefore, any change in TEP stickiness will
lead to a change in the formation of aggregates containing TEP, with a consequent
potential negative effect on the export of carbon. For instance, it has been reported that
low TEP stickiness increases the retention time of particles in surface water, resulting in
a lower flux of POC (Kierboe ef al., 1998; Mari et al., 2012). The stickiness varies in
relation to the source of TEP, its age and degradation stage. Common values of TEP
stickiness ranges from 0.1 to 0.8 and it is linked to the physiological state of the
phytoplankton (Kiarboe ef al., 1994). Furthermore, an increase of the age of an aggregate
produces a decrease in the fraction of TEP (e.g. due to bacterial uptake) which promotes
sinking (Ploug et al., 2008). With increasing water column depth, nutrients are not
limiting to bacteria which enables an increase of the bacterial remineralization of TEP

and a further increase in sinking velocity of the aggregates (Mari et al., 2017).
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1.7.3 Accumulation of TEP in surface waters: production and consumption

The accumulation of TEP is result of the balance between the rate of its production and
its consumption in surface waters. The factors that affect the production of TEP by
phytoplankton include: the light regime (Hong et al, 1997), nutrient limitation
(Obernosterer and Herndl, 1995), the physiological state of the phytoplankton (Passow,
2002), the carbon dioxide concentration (Engel, 2002) and phytoplankton growth rate
(Waite et al., 1995). Moreover, turbulence can impact on the formation of TEP from
exuded DOM (Schuster and Herndl, 1995; Stoderegger and Herndl, 1999; Passow, 2000).
Conversely the mechanisms that remove TEP from the surface waters include bacterial

remineralization, filter feeders and photodegradation (Mari et al., 2017).

Several studies have linked elevated seawater temperature with the release of
extracellular material by phytoplankton, which might lead to an increase in TEP
production (Claquin et al., 2008; Piontek et al., 2009; Wohlers et al., 2009; Engel et al.,
2010; Fukao et al., 2012; Taucher et al., 2012; Biermann et al., 2014; Seebah et al.,
2014a). Moran et al. (2006) estimated that an increase of 2 °C of seawater can lead to an

extracellular release of TEP precursors by up to 54%.

Nutrient limitation is another factor that may be responsible for an increase in TEP
production. It seems that when phytoplankton are nutrient limited there is a consequent
increase in the release of extracellular polysaccharides (i.e. TEP precursors) (Myklestad,
1995). Limiting levels of nutrients may lead to the phenomenon called carbon
overconsumption, which determines the exudation of carbon-rich DOM from

phytoplankton (i.e. precursor of TEP) (Engel, 2002).

Furthermore, ocean acidification seems to have a role in TEP production. Experiments
using high partial pressure of carbon dioxide (pCO;) have shown that ocean acidification
may lead to an increase in TEP production (Engel, 2002; Riebesell et al., 2007;
MacGilchrist ef al., 2014; Song et al., 2014). However, the effect of high pCO, on TEP
production is questionable (Egge et al., 2007; Passow et al., 2014).

Not very well studied and documented is the role played by bacterial activity in the

production of TEP. Bacteria produce extracellular polymeric substances (EPS) (Decho,
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1990), which might contribute to the total TEP production (Schuster and Herndl, 1995;
Stoderegger and Herndl, 1999; Passow, 2002b; Sugimoto ef al., 2007; Koch et al., 2014).

Another mechanism that promotes the formation of TEP is the injection of air bubbles in
surface waters due to wind speed (Zhou et al., 1998). This mechanism has also been used
in laboratory experiments to generate TEP from seawater rich in DOM (Mopper et al.,
1995; Mari and Kierboe, 1996; Mari, 1999) and investigated by Wurl ez al. (2011) in their
conceptual model of TEP production. Intense wind speed leads to the coagulation of TEP
precursors with a consequent increase in the concentration of TEP in surface waters.
However, at the same time the introduction of bubbles may increase the buoyancy of TEP
and extend its retention time in surface waters (Mari et al., 2017). Still, it has been shown
that this mechanism can increase the microbial respiration of DOC (Kepkay and Johnson,

1989) and that it can stimulate the remineralization of TEP by bacteria (Mari et al., 2017).

In addition to removal by sinking of aggregates, TEP can also be removed from the
surface waters due to its exposure to strong UV-B radiation especially in the Surface
Microlayer (SML) (Mari et al., 2017). The degradation of TEP due to strong UV-B
exposure has been predicted in photodegradation experiments conducted by Ortega-
Retuerta ez al. (2009). They observed an average photodegradation rate of ~ 0.3 d”', which
is consistent with the laboratory experiments conducted by Kovac et al. (1998) in the

northern Adriatic Sea with mucilage.

Another way that TEP can be removed from surface waters is due to bacterial
remineralization. Several studies have reported the capability of bacteria to colonise TEP
(Alldredge et al., 1993; Passow and Alldredge, 1994; Schuster and Herndl, 1995; Mari
and Kierboe, 1996) and a linear positive relationship between TEP and the alpha/beta
glucosidase activity of bacteria was observed (Smith et al., 1995). However, the specific
degradation rate of TEP is still unknown due to the practical difficulty in separating
processes of formation, degradation and transformation of TEP by bacteria (Mari et al.,
2017). The only information available is from a study conducted on extracellular
particulate carbohydrates (in part TEP) released by phytoplankton which has shown a
degradation rate due to bacterial remineralization of 0.53 d™'. This is much higher than

that of POC (0.25 d") (Harvey et al., 1995; Mari et al., 2017).
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Bacterial degradation can be inhibited during conditions of nutrient limitation in summer
in stratified waters. This is determined by the fact that the availability of nitrogen and
phosphorus controls the bacterial remineralization rate and bacterial cell division (Zweifel
et al., 1993). Moreover, during nutrient limitation phytoplankton releases large amounts
of dissolved carbohydrates, which might inhibit the enzymatic activity of bacteria

(Obernosterer and Herndl, 1995; Thingstad et al., 1997).

1.7.4 Contribution of TEP to carbon cycling

The formation and export of organic carbon from the surface waters to the seafloor plays
a central role in carbon cycling (Mari et al., 2017). TEP, due to its high capability to
aggregate solid particles and its high C : N ratio (more than 20; Mari et al., 2017) can
promote the export of carbon-rich aggregates. This selective export of carbon by TEP
(e.g. high C : N ratio) could produce a decoupling between the export of carbon and
nitrogen (Passow, 2002). However, the density of TEP is lower than that of seawater.
Therefore the buoyancy/sinking of these aggregates is sensitive to the ratio of TEP to
other particles (e.g. phytoplankton cells, POC and detritus) in the aggregate (Mari et al.,
2017). Mari et al. (2017) estimated that an aggregate formed of TEP and diatoms should
sink out only when TEP is less than 5 % of the total aggregate composition. Their
modelling experiment showed that the initial concentration of TEP in the aggregate plays
a crucial role in the export of organic carbon produced during primary production. As a
consequence this may impact on the efficiency of the biological carbon pump in exporting
organic carbon from the surface waters to the seafloor. They also postulated that an
increase in the fraction of TEP in the aggregate from 5 to 10 % may increase the
remineralisation of the fraction of POC from 23 to 48 % in the aggregate in surface waters.
The doubling of the fraction of POC remineralised in the surface waters would determine
a significant reduction of the efficiency of the carbon pump. This indicates that small
changes in the production or degradation of TEP in respect to the other fractions in the

aggregate can alter the efficiency of the carbon pump.

The contribution of TEP to carbon cycling in a future scenario (global warming and ocean
acidification) is controversial. Some authors reported that an increase in the production
of TEP may enhance the flux of POC (Riebesell ef al., 2007; Arrigo, 2007). Other authors
postulated that this increase in the production of TEP would reduce the biological carbon

pump efficiency, by extending the retention time of POC in surface waters (Mari et al.,

44



2017). One phenomenon that in the future will affect the production of TEP would be the
increase of the surface temperature of the ocean. There is evidence in literature supporting
the hypothesis that global warming will increase the production of TEP in surface waters
(Ramaiah et al., 2001; Claquin et al., 2008; Piontek et al., 2009; Wohlers et al., 2009;
Fukao et al., 2012; Seebah et al., 2014b). Another future phenomenon related to the
increase of the surface temperature in the ocean is the increase of the vertical stratification
of the upper ocean (Behrenfeld et al., 2006) and the consequent reduction of the mixed
layer depth (Boyd et al., 2007; Rost et al., 2008; Bijma et al., 2013; Reusch and Boyd,
2013). As a consequence in the future the shallower mixed layer and increased vertical
stratification will reduce the availability of nutrients in surface waters (Rost et al., 2008;
Steinacher et al., 2010) and will extend the period of nutrient limitation. Nutrient
limitation is one of the factors that cause the increase of TEP production in surface waters
and at the same time it reduces the capability of bacteria to consume TEP (Mari ef al.,
2017). Ocean acidification is another phenomenon that leads to the production of TEP
and TEP precursors (e.g. carbohydrates) (Engel, 2002; Riebesell ef al., 2007; Thornton,
2009; Engel et al., 2014; Taucher et al., 2015). The effect of ocean acidification and an
increase in the temperature of surface seawaters, in relation to TEP production was
investigated for the diatom Thalassiosira weissflogii (Seebah et al., 2014a). This study
reported that a reduction in the pH, combined with high seawater temperature produced
an increase in the production of TEP. The authors observed a reduction in TEP
aggregation and a decrease of the sinking velocity of aggregates containing TEP. The role
of TEP in the aggregation of particles is well documented in literature. However, there 1s
a lack of information on how TEP is able to mediate this process, the retention time of
aggregates containing TEP in surface waters and their sinking velocities. In order to better
estimate the contribution of TEP to carbon cycling under future climate change it is
important to understand how these changes affect the production of TEP and its physical-

chemical properties (e.g. TEP stickiness) (Mari et al., 2017).

1.8 Representation of TEP in marine ecosystem models

TEP is not very often considered in models. However, some efforts have been made to
incorporate TEP processes in biogeochemical models (e.g. Kriest, 2002; Schartau et al.,
2007; Oguz, 2017b). TEP is usually not included in ecosystem models because it is
thought to belong to the refractory dissolved organic matter pool, despite the evidence of

its role in particle aggregation processes and sinking of organic matter (Verdugo ef al.,
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2004). From the best of my knowledge there are no studies that have mechanistically
investigated the role of TEP in particle aggregation and carbon export by means of a
biogeochemical model. Only one recent study used a 1-dimensional approach to model
particle aggregation dynamics and the interaction of TEP with the pelagic food webs
(Oguz, 2017b). Modelling studies of TEP have investigated TEP processes (e.g. TEP
formation, sedimentation) in conceptual models, which were parameterized with the use
of experimental cultures of phytoplankton and/or field observations (e.g. Wurl et al.,

2011).

1.9 Project rationale
1.9.1 Motivation

There has been growing interest in the role and importance of polymer gel particles (i.e.
TEP) in the microbial loop, sedimentation processes, biogeochemical cycling, marine
carbohydrate chemistry and particle dynamics in the ocean (Verdugo et al., 2004). At
present the role played by TEP in continental shelf seas for the uptake, export and storage
of organic carbon is not well understood. What is well known is that TEP is exuded by
phytoplankton as a carbon-rich compound (Mari et al., 2017). Its production is thought
to be associated with carbon overconsumption which occurs in summer when the
phytoplankton community is nutrient limited (Mari ef al., 2017). TEP due to its stickiness
and low density (Azetsu-Scott and Passow, 2004a) can act as a glue by promoting the
formation of large aggregates, which when ballasted with negatively buoyant particles
may sink out exporting POC and TEP to the seafloor (Passow et al., 2001; Burd and
Jackson, 2009; Mari et al., 2017).

A study suggests that the North Sea in summer is characterized by an excess of dissolved
inorganic carbon uptake (~ 40 umol kg™') without a corresponding nitrate uptake (Prowe
et al., 2009), which may involve a non-Redfield pathway for carbon fixation (carbon
overconsumption) (Toggweiler, 1993; Thomas ef al., 1999; Koeve, 2005). This process
could be particularly effective if carbon-rich material, such as gel-like particles (i.e. TEP),
is formed as these sink out of the surface layer in form of aggregates. This mechanism
could increase efficiency of the continental shelf pump. Moreover, TEP dynamics are

poorly understood and not represented in marine ecosystem models.
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The main knowledge gaps are the following:
e Lack of information on the vertical and spatial distribution, as well as the
seasonality of TEP in NW European shelf seas (North Sea and Celtic Sea).
e Knowledge gaps on linking TEP production to carbon overconsumption in
summer (i.e. North Sea).
e Little information on the importance and the role of TEP in the continental shelf
pump for CO; uptake and carbon export.

e No representation of TEP dynamics in marine ecosystem models.

1.9.2 Aim

The main aim of this research is to investigate the role played by TEP in carbon cycling

in NW European shelf seas. For this purpose, two different approaches have been used:
v Observations:

1. To discover the spatial distribution and the seasonality of TEP in the North
Sea and the vertical distribution of TEP in the Celtic Sea.

2. To investigate the formation and accumulation of TEP in the euphotic zone
and how these are related to water column stratification, primary production
and sea surface conditions in the context of carbon cycling in NW European

shelf seas.

v’ Experimental-modelling approach:

1. To develop a new formulation describing TEP dynamics in marine ecosystem
models.
2. To investigate the vertical distribution of TEP and the associated carbon

export.

1.9.3 Hypotheses and Objectives

The specific Hypotheses and Objectives of this research are:

Hypothesis 1:

Transparent exopolymer particles are produced in situ in shelf seas as a by-product of
phytoplankton productivity and will therefore have similar spatial and temporal patterns

as primary productivity and related variables, e.g. chlorophyll.
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Objective 1:

To use in situ observations of TEP to investigate the vertical distribution of TEP
in the Celtic Sea (Chapter 4), as well as the spatial distribution and the seasonality
of TEP in the North Sea (Chapter 5).

To determine the key processes controlling the vertical and spatial dynamics of
TEP by means of linear regression analyses of TEP versus chlorophyll and other

variables (Chapters 4 and 5).

To investigate whether the TEP to chlorophyll relationship and the TEP to
chlorophyll ratio are reliable indicators of TEP production (Chapter 4).

To use the European Regional Seas Ecosystem Model (ERSEM), along with in

situ data to model TEP concentrations (Chapter 4).

Hypothesis 2:

Transparent exopolymer particles aggregate into large particles that sink out, leading to

export of carbon-rich POC. Aggregates containing TEP composition and size can

substantially affect the quality, quantity, degradation and sinking of the exported carbon.

Objective 2:

To use a simple box model to estimate TEP formation, accumulation rate,
turnover, sinking rate, carbon export and bacterial remineralization (Chapters 4

and 5).

To use a modeling approach to understand how aggregates containing TEP
composition can affect particle aggregation, sinking and carbon export (Chapter

4).

To model the effect of TEP on particle aggregation and sinking in ERSEM
(Chapter 4).
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Hypothesis 3:

TEP production and associated carbon overconsumption occurs in summer when the
phytoplankton community is nutrient limited. The effect increases the quantity of sinking
carbon and therefore increases the efficiency of the continental shelf pump. By
consequence, TEP should play a substantial role in controlling air-sea CO; flux in shelf

S¢€as.

Objective 3:
e To use ERSEM to investigate the fate of carbon exported due to TEP and the
potential effect of TEP on CO, uptake, carbon sequestration and C : N

stoichiometry of organic matter (Chapters 4 and 5).
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Chapter 2 Analytical methods

2.1 Introduction

This chapter describes the general analytical methodology used within this research
project. The analytical methods described have been developed to quantify transparent
exopolymer particles (TEP), Particulate Organic Matter (POM) and chlorophyll a in sea
water samples taken from the European continental shelf. TEP concentration was
determined by using the semi-quantitative colorimetric approach developed by Passow

and Alldredge (1995).

Particulate Organic Carbon (POC) and Nitrogen (PON) concentration in sea water were
quantified with the CHN Elemental Analyser, which separates H, CO,, and N, through a
gas chromatographic column. Concentrations were detected with a thermal conductivity
detector (Ehrhardt and Koeve, 1999). Samples of chlorophyll a were analyzed by high
performance liquid chromatography (HPLC) and fluorometry. Furthermore, a new
method for TEP detection was developed and storage experiments for TEP preservation

were conducted.

2.2 TEP analytical method

TEP are defined as polysaccharide particles containing acidic sugars (Wurl, 2009), that
are retained on a 0.4 um polycarbonate filter, under low vacuum (150 mm Hg) and stained
with Alcian Blue (8GX) at pH 2.5 (Alldredge et al., 1993). The Alcian Blue molecule is
a cation copper phthalocyanine dye (Decho, 1990; Alldredge et al., 1993) that in aqueous
solutions binds with anionic carboxyl, phosphate and half-ester sulphate groups of acidic
polysaccharides (Parker and Diboll, 1966; Ramus, 1977) such as TEP. Passow and
Alldredge (1995) tested ten different compounds (Agarose, Amylose, Chitin, Laminarin,
Alginic Acid, Gum Xanthan, D-Glucuronic Acid, Carrageenin, Bovine Serum Albumen,
Carboxylase) for their suitability as standards for TEP determination. They found that the
two most appropriate standards were Alginic Acid and Gum Xanthan for the higher
capacity of Alcian Blue to stain the TEP-like particles created by these compounds.
However, Gum Xanthan was chosen as the most appropriate standard to quantify TEP,
due to the higher replicability of the method. The molecular structure of the Alcian Blue,

Gum Xanthan and the Alcian Blue-Gum Xanthan complex are shown in Figure 2.1.
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Figure 2.1 Molecular structures of Alcian Blue and Gum Xanthan. Red circles indicate the formation of the Alcian
Blue-Gum Xanthan complex.

All steps of TEP analysis are illustrated in Figure 2.2. The method uses a range of volumes
of sea water (100 ml — 1 litre), filtered under 150 mm of Hg vacuum through a
polycarbonate filter, with a 0.4 um pore-size and 47 mm diameter (Nuclepore, Whatman).
Wherever possible, TEP samples and blanks were collected in triplicate. TEP
concentration was determined colorimetrically following the approach of Passow and
Alldredge (1995). After filtration, 1 ml of an aqueous operating solution (section 2.3) of
0.02% Alcian Blue (8GX) in 0.06% of acetic acid, with a pH of 2.5 was added to the
filter. After a few seconds, the filter was rinsed with 10 ml of Milli-Q water in order to
remove any excess dye. Afterwards, the stained filter was stored frozen at -20°C for up

to 6 months according to Passow and Alldredge (1995) for later analysis.
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Step Step
Volume of Volume of
water or standard
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l Filter volume
Filter volume through a
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Add 1 mL 60 °C for 12h
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weight of
l standard
Put filter in a retained on
test tube the filter
Add 6 mL
H,S0, (80 %)
Leave the filter
to soak for 2 h
Shake sample
every 30 min
Measure the
absorbance at
787 nm

Figure 2.2 Diagram illustrating TEP analysis step by step. a) Determination of TEP or standard solution
absorbance, b) determination of the weight of the standard solution on the dry filter.

2.3 Alcian Blue solution preparation and testing

A concentrated aqueous solution of Alcian Blue was prepared as follows (Wurl, 2009) :
97 ml Milli-Q water

3 ml Glacial Acetic acid

1 g Alcian Blue (8GX)

Subsequently, an aliquot of the solution was diluted in a ratio of 1 : 50 with Milli-Q in
order to obtain the Alcian Blue aqueous operating solution (Wurl, 2009). Prior to being
used the Alcian Blue operating solution was filtered through a 0.2 um syringe filter
membrane in order to remove any possible dye particles that might have formed

spontaneously (Passow and Alldredge, 1995; Wurl, 2009).

In order to verify if the Alcian Blue operating solution was suitable for staining a sample

was stained as described in section 2.2, and the continuous absorbance spectrum of Alcian
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Blue in 80% of sulfuric acid was determined with the UV-Vis spectrophotometer
LAMBDA 35 (Figure 2.3). The maximum absorbance of Alcian Blue in 80% sulfuric
acid occurs at a wavelength of 787 nm (Figure 2.3) (Passow and Alldredge, 1995).
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Figure 2.3 Sample spectrum measurement with the UV-Vis spectrophotometer LAMBDA 35 (Absorbance versus
wavelength in nm).

2.4 Gum Xanthan standard solution preparation and testing

The standard solution for calibration was prepared by mixing 30 mg of Gum Xanthan
(Sigma G-1253) into 200 ml of Milli-Q water, permitting the polysaccharide to swell for
30 minutes. Subsequently 30 ml of the solution was processed with a tissue grinder, where
a pistil was lowered and raised two times to break up big particles (Wurl, 2009). The
whole solution (200 ml) was treated as described above to break up the big particles and

obtain an homogeneous solution similar in size to TEP.

To determine whether the solution was suitable as standard for calibration a clogging test
was performed. For this one litre of standard solution of Gum Xanthan (150 mg L") was
prepared as described above. Increasing volumes of the Gum Xanthan solution (1 to 30
ml) were filtered under 150 mm of Hg pressure through polycarbonate filters with 47 mm
diameter and a pore size of 0.4 um (Nuclepore, Whatman). The time taken for each
sample to filter was measured to investigate a linear response, as well as how much

sample the filter could take before clogging. Figure 2.4 shows the relationship between
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volume filtered and time to filter. A linear relationship was found below 15 ml. Above

this volume the filter starts to clog and there is a non-linear increase in filter time.

800
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Volume filtered (ml)

Figure 2.4 Relationship between the volume of the standard solution of Gum Xanthan filtered and the time taken
to filter the sample.

2.5 Calibration of the standard solution

Six different volumes up to 30 ml of the Gum Xanthan solution used during the clogging
test (section 2.4) were tested to perform the calibration curve. The result showed that
volumes up to 25 ml of the Gum Xanthan solution provided the best regression fit with
the highest coefficient of determination. Therefore a five-point calibration was carried
out by using volumes of 6 ml, 8 ml, 10 ml, 15 ml and 25 ml of the standard solution of
the Gum Xanthan (150 mg L™). The capability of the Alcian Blue to stain particles was
measured by filtering the five different volumes of the Gum Xanthan standard solution,
while following the protocol for TEP sample analysis (section 2.2). Each volume was
filtered in triplicate and three filters were used as a blank to determine the absorbance of
the empty filter. Next the filters were stained with Alcian Blue, as described in section

2.2. The absorbance of these filters was measured following the protocol in section 2.6.

A second set of filters were used to determine the mass of the Gum Xanthan retained on
the filter for each volume of the standard solution. First empty filters were dried at 60°C

for 12 hours and subsequently weighed five times to ensure accuracy. Following this each
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volume of the standard solution was filtered five times across the pre-weighed filters,
while 10 ml of Milli-Q was filtered across another five filters for determination of the
blank. Upon filtration the filters were dried at 60°C for 12 hours and weighed five times.
The average and standard deviation of mass of Gum Xanthan were calculated for each

volume filtered from the five replicates.

All filters were electrically neutralized with a high voltage ionizer (Wurl, 2009) prior to
being weighed with the electronic ultra-microbalance Sartorius SE2. Furthermore, the
filters were stored individually in combusted glass petri dishes (450°C for 4 hours) to
avoid possible contamination (Wurl, 2009). The petri dishes were kept in a closed plastic

box with silica gel to absorb the humidity of the surrounding environment.

The weight of the standard solution retained on the filter for each volume filtered

W xanthan (ug) Was determined using Eq. (2.1) (Wurl, 2009).

WXanthan (ng) = (Wstandard - Wempty) - (Wblkz - Wblkl) (2- 1)

where:
W ¢tanaara 15 the average weight of the dry filters with the standard solution for each
volume

W empty 18 the average weight of the empty filters for each volume

W i1 1s the average weight of the empty blank filters
W pik2 1s the average weight of the blank filters rinsed with 10 ml of Milli-Q water

The (W12 — Whikt) is a correction for possible changes that can occur in the weight of

the blank filters due to the use of Milli-Q water (Wurl, 2009).

Two Alcian Blue calibration curves were determined and applied to the two different
years of TEP sampling (2014 and 2015). A calibration curve needs to be made every time
a new solution of Alcian Blue is made to relate blueness to Gum Xanthan equivalents. As
part of this research two solutions of Alcian Blue were prepared and calibrated just before
each cruise in the year 2014 and 2015. Furthermore, Alcian Blue solution was tested after
about six months to check its stability. The weight of the standard solution retained on

the filters for the five volumes was determined in a laboratory calibration made in the
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year 2014. In the year 2015 the weight of the standard solution on the filters was assumed
to be the same as in the year 2014. Both calibration curves are shown in sections 2.7 and

2.8.

2.6 TEP concentration determination

To determine the concentration of the standard solution of Gum Xanthan or of TEP in
samples, the stained filter was transferred into a glass tube and 6 ml of sulphuric acid
(80%) was added. Afterwards, the tube was incubated for two hours, while being agitated
several times during this period. After incubation the sample absorbance was determined
at 787 nm against Milli-Q water with a UV-Vis spectrophotometer LAMBDA 35. TEP
concentration was expressed in pg 1" of Xanthan equivalent and calculated using Eq.

(2.2) (Passow and Alldredge, 1995; Wurl, 2009).

[((Sample;g; — Blk;g;) — b]
V-m

TEP (ug Xeq. I'1) = (2.2)

where:

Sample-g; is the absorbance of the sample at 787 nm
Blk-g; is the absorbance of the blank at 787 nm

V is the volume of sample filtered, expressed in litres
m is the slope of the linear regression curve

b is the y-intercept of the linear regression curve

The limit of detection (LOD) for TEP analysis was 11.3 ug Xeq. I'. It was calculated
based on the analyte concentration that gave a signal equal to the blank signal, plus three
times the standard deviation of the blank (Miller and Miller, 2010). The precision of TEP
analysis was = 15%. It was determined by using all TEP measurements. Firstly, TEP
measurements were normalised into a range of zero to one by dividing the individual
concentrations by the mean concentration of each sample. Secondly the standard
deviation of all the normalised values was calculated and multiplied by two to get the
precision of TEP measurement at 95% confidence interval. Each time TEP samples were
run a sample of the Gum Xantham in triplicate was used as check standards. The
variability in repeated measurements of this standard demonstrated a precision of about

13 %.
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The TEP concentration was converted to the carbon content of TEP (TEP.) by applying
the empirical conversion factor of 0.63 + 0.03 shown in Eq. (2.3) (Wurl, 2009). This was
done to enable a comparison with TEP carbon (TEP.) measurements from the literature.
To compare TEP to particulate organic carbon measurements, TEP, in pg I was

converted to pmol "' by diving TEP, (ug I'") by twelve (molar mass of carbon).

TEP.(ugl™') = 0.63 TEP(ug Xeq.l™1) (2.3)

2.7 First Alcian Blue calibration curve

The calibration curve shown in Figure 2.5 was obtained from the absorbance at 787 nm
versus the weight of the standard Gum Xanthan. The first calibration curve was used to

determine the concentration of TEP samples collected in the year 2014.

y = 0.002x +0.058
030 R? = 0.994 ' '
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Figure 2.5 Calibration curve, linear regression and residuals of the standard Gum Xanthan.
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The semi-quantitative method for TEP analysis uses the relationship between the staining
capability of the Alcian Blue and the weight of the polysaccharide Gum Xanthan. The
large error bars (Figure 2.5) are due to the difficulty of quantifying the dry weight of the
standard. The amount of the Gum Xanthan on the filter is quite low, therefore it requires
a balance with high resolution. Also the weighing process is affected by the nature of the
filter (polycarbonate), which has an electrostatic charge and by the humidity of the

surrounding working environment.
To evaluate the quality of the first calibration curve, statistical analyses (regression

statistics and ANOVA) were performed. The results reported in Table 2.1 and Figure 2.5

showed a coefficient of determination of 0.994 and a p-value less than 0.01.

Table 2.1 Regression statistic and ANOVA of the calibration curve.

Regression Statistics
Multiple R 0.997
R Square 0.994
Adjusted R Square 0.992
Standard Error 0.0070

Observations 5

ANOVA

df SS MS F Significance F
Regression 1 0.025 0.025 509.0565 0.00019
Residual 3 0.0001 4.95E-05
Total 4 0.025

Coefficients Standard Error tStat  p-value
Intercept  0.058 0.006 9.365 0.002
Slope 0.002 0.0001 22.562 0.00019

2.8 Second Alcian Blue calibration curve

In 2015 a new Alcian Blue solution was used. This new Alcian Blue solution was
calibrated by determining the absorbance of five volumes of Gum Xanthan standard
solution, as described in section 2.5. Due to the operational difficulty of quantifying the
weight of the Gum Xanthan on the filters, the weight of the standard solution retained on
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the filters of the five volumes measured in the first calibration curve was used (section
2.7). The calibration curve in Figure 2.6 shows the absorbance measurements versus the
weight of the standard Gum Xanthan. This second calibration curve was used to

determine the concentration of TEP samples collected in the year 2015.
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Figure 2.6 Calibration curve, linear regression and residuals of the standard Gum Xanthan.
The statistical analyses of the standard curve (regression statistics and ANOVA) were

performed. The results reported in Table 2.2 and Figure 2.6 showed a coefficient of

determination of 0.990 and a p-value < of 0.01.
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Table 2.2 Regression statistic and ANOVA of the calibration curve.

Regression Statistics

Multiple R 0.995
R Square 0.991
Adjusted R Square 0.987
Standard Error 0.009

Observations 5

ANOVA

df SS MS F Significance F
Regression 1 0.029 0.029  322.5213 0.0003
Residual 3 0.0002 9.2E-05
Total 4 0.029

Coefficients Standard Error tStat  p-value
Intercept 0.057 0.008 6.777  0.006
Slope 0.0029 0.0001 17.958 0.0003

2.9 Photographic method for TEP detection
2.9.1 Introduction

The spectrophotometric method for the determination of TEP (Passow and Alldredge,
1995) described in the previous sections of this Chapter, involves several critical steps, is
time consuming and requires working with a hazardous chemical. In this work a simple,
reliable, accurate and rapid photographic method was developed to determine the TEP
concentration in seawater samples based on the same relationship between TEP and
Alcian Blue. The photographic method is easy to put in place and does not require
working with sulfuric acid. Furthermore, the TEP concentration on the filter can be
determined quickly and easily with the use of image processing and analysis software
such as ImageJ. The method’s approach is based on the linear positive relationship found
between the intensity of the blue colour of the filter and the amount of the standard Gum

Xanthan on the filter.
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2.9.2 Material and method

The standard solution (Gum Xanthan) was prepared as described in section 2.4.
Afterwards, a five-point calibration curve was determined by filtering five different
volumes of the Gum Xanthan standard solution (section 2.5). Next the filters were stained
with Alcian Blue, following the protocol in section 2.2. Each volume was filtered in
triplicate and three filters were used as a blank to determine the absorbance of the empty
filter. The stained filters were placed in clean petri dishes and placed under a camera
(Canon EOS 1200D) (Figure 2.7). The camera was set with the parameters reported in
Table 2.3. Images of each filter were then taken and processed with the image processing

and analysis software Imagel.

Figure 2.7 Example of standard Gum Xanthan solution on a filter, stained with Alcian Blue during the image
processing analysis. The red square indicates the area of the filter analysed by the software to get the RGB (Red,
Green and Blue) colour.

Table 2.3 The specific settings of the camera.

Camera setting

Flash Lowest power (-1.5)
Shutter F5.6
ISO 200
Auto white
balance On

An area of the filter (Figure 2.7) was sampled and analysed with ImageJ, which splits the
composite RGB (Red, Green and Blue colour) picture into the individual red, green, and
blue channels. Subsequently, the intensity of the colour (Colour int.) of the filter was

calculated with Eq. (2.4) (Tariq, 2015). All the samples were blank corrected.

. (R-B)
Colour int.= ¢ (2.4)

61



where:

R=red
B = blue
G = green

2.9.3 Results

The calibration curve in Figure 2.8 shows the absolute values of intensity of the blue
colour detected from the filter image analysis versus the weight of the standard Gum
Xanthan. This calibration curve uses the weight of the Gum Xanthan determined for the

first calibration curve (section 2.7).
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Figure 2.8 Photographic method: Calibration curve, linear regression and residuals of the standard Gum Xanthan.

The statistical analyses of the calibration curve of the photographic method (regression

statistics and ANOVA) were performed and are reported in Table 2.4 and Figure 2.8.
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Table 2.4 Photographic method: regression statistic and ANOVA of the curve.

Regression Statistics

Multiple R 0.989
R Square 0.978
Adjusted R Square 0.970
Standard Error 0.003

Observations 5
ANOVA

df SS MS F Significance F
Regression 1 0.001 0.001 130.62 0.001
Residual 3 3.55E-05 1.18E-05
Total 4 0.001

Coefficients Standard Error tStat  p-value

Intercept 0.005 0.003 1.939 0.147
Slope 0.0007 5.97E-05 11.429 0.001

2.9.4 Standard spectrophotometric method versus photographic method

The photographic method developed for TEP analysis was compared with the
spectrophotometric method as shown in Figure 2.9. The comparison showed a coefficient

of determination of 0.982, indicating a significant and linear correlation between the two

methods.
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Figure 2.9 The photographic method versus spectrophotometric method.
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2.9.5 Conclusion and future work

The photographic method developed has shown to be simple to put in place, reliable and
as accurate as the spectrophotometric method. It is also rapid and does not require
working with hazardous chemicals such as sulfuric acid. There is no interference observed
during the TEP analysis due to high concentrations of suspended particles in the samples.
However, this is just a preliminary study and further analysis should be done particularly
in the direction of testing a real sample with both methods and comparing the results. The
photographic method was developed at a late stage of this research, where more than 50%
of TEP samples were already analysed with the standard spectrophotometric method.

Therefore, it was not possible to use it as part of this research.

2.10 TEP storage experiment
2.10.1 Introduction

Passow and Alldredge (1995) have shown that formalin is a suitable chemical to preserve
TEP and does not interfere with TEP analysis. Since the publication of their paper,
formalin has been the only chemical method used for TEP preservation. Here seawater
samples collected by Cefas SmartBuoy and preserved with a saturated mercuric chloride
solution (commonly used in nutrient preservation) were used to investigate the seasonal
cycle of TEP at West Gabbard (51.9569° N, 2.1042° E) and Warp (51.5294° N, 1.0166°
E). Storage experiments were carried out to test the suitability of mercuric chloride as an
alternative chemical to preserve TEP samples over extended periods. As a first step an
experiment was conducted by testing a wide range of unbuffered and buffered formalin
solutions along with a solution of saturated mercuric chloride. The best two methods to
preserve TEP (unbuffered formalin and saturated mercuric chloride) were further used to
carry out an experiment to investigate the suitability of saturated mercuric chloride to
preserve TEP for up to six months in sea water collected from different locations and

s€asons.

2.10.2 Testing various preservatives

Thirty-three litres of sea water were collected during the Cefas cruise Cend 3/15
(February 2015) at the location “off Plymouth” (50.0276° N, 4.3768° W) with Niskin
bottles at 3.4 m depth. One litre of sea water (in triplicate) was used as a reference,

processed on board according to the method described in section 2.2 and stained filter
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were stored frozen at -20°C for later analysis. The other thirty liters of the sea water were

stored in five liter carboys and preserved as follows:

- Exp. 1 sample without preservative.

- Exp. 2 sample with 2% formalin (2 ml of CH,0 in 100 ml H,0), buffered with
sodium phosphate monobasic (NaH,PO, - H,0) and sodium phosphate di-basic
(Na,HPO,) at pH of 6.8 (Nagorsen and Peterson, 1980).

- Exp. 3 sample with 4% (4 ml of CH,0 in 100 ml H,0) unbuffered formalin.

- Exp. 4 sample with 4% (4 ml of CH,0 in 100 ml H,0) formalin, buffered with
sodium phosphate monobasic (NaH,PO, - H,0) and sodium phosphate dibasic
(Na,HPO,) at pH of 6.8 (Nagorsen and Peterson, 1980).

- Exp. 5 sample with 4% formalin (4 ml of CH,0 in 100 ml H,0), buffered with
sodium tetraborate (Na,B,0- - 10H,0) at pH of 8.2.

- Exp. 6 sample with 7.5 ml of saturated mercuric chloride solution

(32 gofHgCl, in 1 L H,0 ) (Johnson et al., 2013).

The stored samples were placed in a cool (4°C) and dark place until further analysis. A
single sub-sample (1 litre) of the stored sample from each carboy was analyzed and the
TEP concentration was determined colorimetrically as described in section 2.6, after one

week, two weeks, one month, two months and seven months from collection.
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2.10.3 Results

TEP concentration of the reference and from each storage experiment after one week, two

weeks, one month, two months and seven months from collection are shown in Table 2.5

and Figure 2.10.

Table 2.5 TEP concentration (ug Xeq. 1'1) for each storage experiment at five different time steps and the reference.

1 week 2 weeks 1 month 2 months 7 months
Sample ID TEP TEP TEP TEP TEP
(ngXeq.T")  (ngXeq.I")  (ngXeq.1)  (ngXeq.I") (ng Xeq. I')

Reference 108.8 £ 0.02

Exp. 1 83.3 81.6 53.6 115.0 121.2

Exp. 2 170.2 107.5 80.2 88.9 89.2

Exp. 3 84.7 95.7 100.2 93.9 86.4

Exp. 4 1136.4 1236.3 1302.9 1316.1 1295.8

Exp. 5 100.3 126.8 96.8 97.8 101.4

Exp. 6 85.7 117.6 124.1 91.0 107.2

TEP (ug Xeq. I')

Reference Exp.1 Exp. 2

Exp. 3

Exp.5

Exp. 6

M After 1 week
D After 2 weeks
H After 1 month
D After 2 months

B After 7 months

Figure 2.10 Results of TEP concentration detected for each storage experiment at five different time steps;
(dashed line) reference threshold. Reference (frozen sample 108.75 + 0.02 pg Xeq. I')). The results from

experiment four are not shown.
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Table 2.6 Mean concentrations of TEP (ug Xeq. I'), standard
deviation and percentage of increase/decrease of TEP
concentrations respect to the reference for each storage experiment.

mean increase /decrease
Sample ID TEP %
(ng Xeq. 1"
Exp. 1 83.4+27 1233
Exp. 2 111.7 +£40.6 127
Exp. 3 93.6£6.5 1139
Exp. 4 1247.9 + 82.1 11047.5
Exp. 5 105.4 + 143 3.0
Exp. 6 104.6 £ 19.1 1338

After a week Exp. 1 has a lower TEP concentration compared to the reference. The TEP
concentration decreased over time after one month (Figure 2.10). After two months in
Exp. 1 an increase of TEP was observed, reaching the reference concentration. This
increase in TEP concentration in the sample without preservative could be explained by
the possible lysis of the phytoplankton cells or the variability in the measurements due to
a lack of replicates. The lysis of phytoplankton cells causes the release of the
cytoplasmatic content of the cells, which can stain with Alcian Blue, resulting in an
overestimation of TEP (Passow and Alldredge, 1995). Exp. 2, Exp. 5 and Exp. 6 had
mean concentrations relatively close to the reference and with an increase/decrease of
average concentrations of 2.7%, 3.0% and 3.8% (Table 2.6). In particular Exp. 3 had a
low variability in TEP concentrations over time (Figure 2.10). In Exp. 2 and Exp. 4
precipitates of sodium phosphate monobasic and sodium phosphate dibasic in the samples
stained with Alcian Blue may explain the overestimation of TEP (Table 2.5). For instance,
Exp. 4 (not shown in the graph) had a high formation of precipitates owing to the high
values of TEP (mean value of 1247.94 + 82.1 pg Xeq. I'') when compared with the
reference (Tables 2.5 and 2.6).

2.10.4 Conclusion

The results show that Exp. 3, Exp. 5 and Exp. 6 with their lower percentage of changes
in concentrations in respect to that of the reference are suitable methods to preserve TEP
samples for up to seven months. Due to its very low variability in TEP concentrations
over time, Exp. 3 may be the most consistent and reliable method for the preservation of

TEP samples. Further analysis was carried out in different locations and seasons to
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investigate the suitability of unbuffered formalin (Exp. 3) and saturated mercuric chloride

(Exp. 6) to preserve TEP for up to six months.

2.10.5 Testing unbuffered formalin and saturated mercuric chloride

Five litres of surface sea water were collected during the Cefas cruises: Cend 8/15 (May
2015) and Cend 24/15 (November 2015) at four different locations on the UK shelf seas
using Niskin bottles. A sample of the collected sea water (in triplicate) was used as
reference and processed on board as described in section 2.2 and stored frozen at -20°C
for later analysis. The experiments took five litres of sea water, which were stored in three
five litre carboys: one without preservative and the other two with preservatives: 4%
unbuffered formalin solution (4 ml of CH,0 in 100 ml H,0) and a saturated mercuric
chloride solution (32 g of HgCl, in 1 L H,0 ) respectively. Preserved sea water was
stored in a cool (4°C) and dark place until further analysis. Different amounts of the stored
sample (100 ml - 300 ml) from each experiment were analyzed in triplicate and TEP
concentration was determined colorimetrically according to the method described in
section 2.6 after one week, two weeks, one month, two months and six months from

collection.

2.10.6 Results

TEP concentrations of the reference, the sample without preservative, the sample
preserved with 4% unbuffered formalin and the sample preserved with mercuric chloride
after one week, two weeks, one month, two months and six months from collection are
shown in Figures 2.11, 2.12,2.13, 2.14 and in Tables 2.7, 2.9, 2.11, 2.13. Tables 2.8, 2.10,
2.12, 2.14 show TEP average concentrations and the percentages of increase/decrease of
TEP concentrations for each treatment with respect to that of the reference. In the first
three experiments (ST1, ST6 and STS8) the samples without preservative showed a
decrease of TEP concentrations of about 50% (Tables 2.8, 2.10, 2.12). In all the
experiments (ST1, ST6, ST8 and ST21) the mean values of the samples preserved with
mercuric chloride showed smaller variations in the percentages of increase/decrease of
TEP concentrations, than those preserved in formalin (Tables 2.8, 2.10, 2.12, 2.14).
However, the samples preserved with formalin in all the experiments were more

consistent overtime.
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Table 2.7 TEP concentration (ug Xeq. 1) in each storage experiment at five different time steps and the reference for
Cend 8/15 Station 1.

Cend 8/15 1 week 2 weeks 1 month 2 months 6 months
ST 1 TEP TEP TEP TEP TEP
(ngXeq.I')  (ngXeq.I")  (ngXeq.1")  (ngXeq.I") (ng Xeq. T
Reference 1080.8 +259.3
no preser. 461.6 £229.4 655 +137.5 3183 +£81 366.6 £55.3 4933 £23.6
formalin 866.6 = 100 968.5+ 75 859.2 +32 966.6 £260.7  998.1 £91.3

mercuric chloride 1036.6 £321.8 1130 + 60.8 916.6 £ 159 1023.3+163.1  953.3+104

1600
1400 -
1200 -
".f My T I Tl r B After 1week
& 1000 1
(] After 2 weeks
X 800 -
= B After 1 month
a 600 I
ﬂ [ After 2 months
400 -
B After 6 months
200 A

frozen sample formalin4% mercuric
without unbuffered chloride
preservative

Figure 2.11 Variability of TEP sample concentration collected during Cend 8/15 (ST 1 51.9946° N, 2.1066°E) in
May 2015 using different preservation methods for up to six months after collection. The dashed line indicates
reference threshold.

Table 2.8 Mean concentrations of TEP (ug Xeq. '), standard
deviation and percentage of increase/decrease of TEP
concentrations with respect to the reference for each storage

experiment.
Cend 8/15 mean decrease
ST 1 TEP %
(ng Xeq. I')
no preser. 459 +80.9 1575
formalin 931.8 +87.2 1137
mercuric chloride 1012 £98.9 163
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Table 2.9 TEP concentration (ug Xeq. 1) in each storage experiment at five different time steps and the reference for
Cend 8/15 Station 6.

Cend 8/15 1 week 2 weeks 1 month 2 months 6 months
ST6 TEP TEP TEP TEP TEP
(ngXeq.I") (g Xeq.I)  (ugXeq.1)  (ngXeq.I") (g Xeq. 1)
Reference 3258+ 16
no preser. 174.4 £50.4 139.4 £ 44 4 173.8 £11 193.8 £35.3 191.6 £ 48.4
formalin 252.4+£26.7 311.1 +61 263.5+224 2753 +41.1 259.8 £50.5
mercuric chloride 257.7+24.3 339.1 +£50.6 283.8 £33 300.8 +31.8 386.6 + 80.1
500
450
400
& 350
;' 300 B After 1week
Q
>:° 250 After 2 weeks
=
: 200 M After 1 month
= 150 DIAfter 2 months
100 M After 6 months
50
0

frozen sample formalin4% mercuric
without unbuffered chloride
preservative

Figure 2.12 Variability of TEP sample concentration collected during Cend 8/15 (ST 6 53.5279° N, 1.0704° E)
in May 2015 using different preservation methods for up to six months after collection. The dashed line indicates
the reference threshold.

Table 2.10 Mean concentrations of TEP (ng Xeq. l']), standard
deviation and percentage of increase/decrease of TEP
concentrations with respect to the reference for each storage

experiment.
Cend 8/15 mean decrease
ST 6 TEP %
(ng Xeq. I')
no preser. 174.6 £ 16.1 1463
formalin 2724+ 16 4163
mercuric chloride 313.6+£22.4 337
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Table 2.11 TEP concentration (ug Xeq. ") in each storage experiment at five different time steps and the reference for
Cend 24/15 Station 8.

Cend 24/15 1 week 2 weeks 1 month 2 months 6 months
ST 8 TEP TEP TEP TEP TEP
- - - - -1
(ngXeq.I")  (ngXeq.I)  (ugXeq.1)  (ngXeq.I") (g Xeq. 1)
Reference 206+ 11.6
no preser. 99.6 +41.6 119.6 £ 9 129.2 £ 143 158.8 +37 213+ 14.1
formalin 160 + 34.1 189.2 £21.2 171.3+£13.5 171 £23.1 163.2 +£8
mercuric chloride 1574+6.4 203.7 £40.7 180.7 £ 15 178.8 £25.6 226.3+57.3
300
250
- 200 W After 1week
g. After 2 weeks
x
oo 150 B After 1 month
2
a [ After 2 months
= 100
B After 6 months
50

frozen sample formalin4% mercuric
without unbuffered chloride
preservative

Figure 2.13 Variability of TEP sample concentration collected during Cend 24/15 (ST 8 53.5347° N, 3.3831° E)
in November 2015 using different preservation methods for up to six months after collection. The dashed line

indicates the reference threshold.

Table 2.12 Mean concentrations of TEP (ng Xeq. l']), standard
deviation and percentage of increase/decrease of TEP
concentrations with respect to the reference for each storage

experiment.
Cend 24/15 mean decrease
ST 8 TEP %
(ng Xeq. I')
no preser. 144 +14.9 4300
formalin 171+ 10 117
mercuric chloride 189.4+£20.3 J 8.0
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Table 2.13 TEP concentration (ug Xeq. ") in each storage experiment at five different time steps and the reference for
Cend 24/15 Station 21.

Cend 24/15 1 week 2 weeks 1 month 2 months 6 months
ST 21 TEP TEP TEP TEP TEP
(ngXeq.I")  (ngXeq.I)  (ugXeq.1)  (ngXeq.I") (ng Xeq. I')
Reference 385.2+53.5
no preser. 339.2 £ 66.1 316.3 £107.1 4252 +542 333+99.2 379.6 + 84.7
formalin 359.3 £ 40 530.7 £ 68.1 4843 +£14.7 4762 £99.6 457.8 £26.8

mercuric chloride 418.1 £31.7 406.3 £ 56.2 476.6 +17.8 4437+ 41.7 456 +£40.7

700
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a 500 B After 1week
8’- 400 After 2 weeks
E.D B After 1 month
o 300 [ After 2 months
w
F 100 B After 6 months
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frozen sample formalin4% mercuric
without unbuffered chloride
preservative

Figure 2.14 Variability of TEP sample concentration collected during Cend 24/15 ( ST 21 51.9789° N, 2.0882
E°) in November 2015 using different preservation methods for up to six months after collection. The dashed line
indicates the reference threshold.

Table 2.14 Mean concentrations of TEP (ng Xeq. l'l), standard
deviation and percentage of increase/decrease of TEP
concentrations with respect to the reference for each storage

experiment.
Cend 24/15 mean increase /decrease
ST 21 TEP %
(g Xeq. I')
no preser. 358.6 £22.1 169
formalin 461.7 +34.1 1199
mercuric chloride ~ 440.1 + 14.1 1143
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2.10.7 Conclusion

The results show that both mercuric chloride and unbuffered formalin can be suitable
preservatives for TEP preservation for up to six months. Mercuric chloride can be a good
alternative to unbuffered formalin for the preservation of TEP long term. In the case of
the use of formalin a correction needs to be made for the extra volume added to the
sample. Such a correction is not necessary for the mercuric chloride method, as only a

small volume of mercuric chloride solution is added to the sample.

2.11 Analysis of Particulate Organic Matter (POM)

Particulate organic carbon (POC) and particulate organic nitrogen (PON) samples were
collected by filtering a volume of 250 ml of sea water through a glass syringe provided
with a filter holder. Pre-combusted glass fiber filters (GF/F) (diameter of 25 mm and pore
size of 0.7 pm) were used. After collection samples and blanks were stored at —20°C for

later analysis.

In the UEA laboratory the filters containing POC and PON samples were defrosted and
half of each filter was analysed. Prior to the analysis clean glass petri dishes were placed
in the furnace at 450 °C for 4 hours before usage to avoid possible carbon contamination.
During the analysis a single sample from the defrosted filter was used. The filter was
placed in the glass petri dishes and dried for 24 hours at 60°C in a clean oven prior to

POC and PON analysis.

When completely dry, samples were treated to remove any particulate inorganic carbon
(PIC) present due to possible calcite shells of coccolithophorids. For this purpose the
vapor acidification method (Hedges and Stern, 1984) was used. Samples in the glass petri
dishes were kept in a desiccator containing a beaker with concentrated hydrochloric acid
(HCl1 36% w/v) for 24 hours. Afterwards the PIC-free samples were dried for 24 hours at
60°C in a clean oven to remove any residual HCl and water, and kept in a desiccator with
silica gel until further analysis. Blank filters were processed in the same way as the POC

and PON samples and used as control on potential contamination.

Acetanilide (in the range 1500 — 1900 pg) was used as standard and weighed directly into
tin capsules by using an electronic ultra-microbalance Sartorius SE2. Samples, standards

and blanks were placed into nickel sleeves and analyzed with a CHN Elemental Analyser
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(Exeter Analytical Model 440). The concentration of the samples was calculated after
blank correction. The limit of detection (LOD) of the instrument for POC and PON was
0.47 pmol C and 0.03 umol N, respectively and calculated on the basis of three times the
standard deviation of the blanks (Miller and Miller, 2010). POC and PON concentrations
in uM were calculated based on two times the mass of carbon and nitrogen in the samples

analysed (to get the concentration of the whole filter), divided by the volume of sea water

filtered.

2.12 Analysis of chlorophyll a

Subsurface samples (4 m depth) for chlorophyll @ determination were collected at 50
stations, distributed at regular intervals within the sampling area during the International
Beam Trawl Survey (IBTS) in the North Sea. The IBTS was carried out in August 2014
and 2015 in the North Sea by the Centre for Environment, Fisheries and Aquaculture
Science (Cefas). Chlorophyll a samples were analyzed by high performance liquid
chromatography (HPLC) by Cefas. To calculate chlorophyll a concentrations of the 76
sampling stations (surface and bottom) of the survey a linear regression analysis between
chlorophyll a measurements and fluorescence from the onboard Ferrybox and CTD
profiles were used. Figure 2.15 and Figure 2.16 show two examples of the four calibration
curves obtained from regression analysis and used to determine chlorophyll a
concentrations in surface and bottom waters in the two years of the survey (2014 - 2015)
in the North Sea. Eq. (2.5) from the linear regression was used to calculate the chlorophyll
a (ug I'") for the 76 stations.

Chla(ugl™) = (ﬂu‘:nJ (2.5)

where:
fluor is the Ferrybox or CTD fluorescence
m is the slope of the linear regression curve

b is the y-intercept
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Figure 2.15 The chlorophyll a versus fluorescence linear regression analysis used to determine surface
chlorophyll a concentrations in the year 2014.
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Figure 2.16 The chlorophyll versus fluorescence linear regression analysis used to determine bottom chlorophyll
a concentrations in the year 2014.
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Chapter 3 Modelling the effect of TEP on particle aggregation

and export

3.1 Introduction

Dissolved organic carbon (DOC) is a significant reservoir of carbon in the marine
ecosystem. Therefore, understanding the processes regulating DOC production and
consumption is crucial for a quantitative assessment of the global ocean carbon cycle
(Polimene ef al., 2006). Marine ecosystem models are valuable tools to mechanistically
investigate physiological and biogeochemical processes underpinning DOC dynamics.
Transparent Exopolymer Particles (TEP) are ubiquitous in the marine environment
(Passow, 2002). Due to its stickiness and low density (Azetsu-Scott and Passow, 2004a)
TEP can act as a glue, promoting the formation of large aggregates which when ballasted
with negative buoyant particles, may sink out exporting particulate organic carbon and
TEP to the seafloor (Passow et al., 2001; Burd and Jackson, 2009; Mari et al., 2017). The
approach used to model TEP follows the recently published insight on TEP dynamics by
Mari et al. (2017). To the best of my knowledge the approach used within this study is
new, unique and is applied for the first time to a marine biogeochemical model. In this
study the European Regional Seas Ecosystem Model (ERSEM) was chosen for its past
applications in regional seas, its variable stoichiometry (C : N : P) and its ability to
simulate the major biogeochemical cycles of carbon, nitrogen, phosphorus and silicate. It
is also able to simulate a simple microbial food web. Those characteristics make ERSEM
highly suitable to simulate the effect of TEP on aggregate formation and sedimentation
and therefore on carbon sedimentation fluxes in the UK shelf seas. For the purpose of this
work the latest version of ERSEM published by Butenschon et al. (2016) was used and a
new parameterization for TEP was derived. This chapter explains in detail the
development of TEP parameterisation in ERSEM and the approach applied to model TEP
into ERSEM. The method is based on the capability of TEP to aggregate solid particles
and on the consequent potential formation of sinking or floating aggregates. The addition
of TEP equations to the standard ERSEM code is evaluated in Chapter 4, where station
A in the Celtic Sea and station L4 in the Western English Channel were used as a test
case for model development. /n sifu observations of TEP and chlorophyll a collected at
station A were used to tune the model. Furthermore, in situ observations of nutrients,
chlorophyll a and particulate organic carbon collected at station A and at station L4 were

used to evaluate the effect of TEP on particle aggregation and export.
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3.2 The model
3.2.1 The European Regional Seas Ecosystem Model (ERSEM)

ERSEM (Baretta et al., 1995; Blackford et al., 2004; Butenschon et al., 2015) is a marine
biogeochemical model based on biomass and functional type describing the carbon and
nutrient (N, P, Si and Fe) cycles within the lower trophic levels of the marine ecosystem.
Model state variables include living organisms, dissolved nutrients, organic detritus,
oxygen and CO,. Model living organisms are subdivided into three functional groups
(Figure 3.1) describing the planktonic trophic chain: primary producers, consumers and
decomposers. Primary producers and consumers are subdivided into 4 and 3 size-based
functional types respectively, while decomposers are modeled through only one
functional type. More specifically the phytoplankton community consists of
picophytoplankton, nanoflagellates, dinoflagellates and diatoms. The zooplankton
community includes: mesozooplankton, microzooplankton and heterotrophic
nanoflagellates. Decomposers are modeled by one type of heterotrophic bacteria.
Functional types belonging to the same group share common process descriptions, but

different parameterizations.

A key feature of ERSEM is the decoupling between carbon and nutrient dynamics
allowing the simulation of variable stoichiometry within the modeled organisms.
Chlorophyll is also treated as an independent state variable following the formulation
proposed by Geider et al. (1997). Consequently, each plankton functional type is modeled
throughout by up to five state variables describing each cellular component (C, N, P, Si,

Chl a).
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Figure 3.1 The pelagic ecosystem model flow diagram in ERSEM indicating the carbon and nutrient pathways
between functional groups (Blackford et al., 2004).

3.2.3 Model set up

In this study, ERSEM was coupled with the General Ocean Turbulence Model (GOTM)
(Figure 3.2) and set-up as described in Butenschon et al. (2016). More specifically, the
model was forced with re-analysis meteorological data from the European Centre for
Medium-Range Weather Forecasts (ECMWF) and fluxes were calculated using the bulk
formulae of Kondo (1975). The model was initialized with temperature, salinity and
nutrient concentrations observed in situ (Smyth et al., 2009) and the water column
evolution was further constrained by nudging observed temperature and salinity profiles
at a weekly interval with a one week relaxation time (Burchard et al., 1999; Torres et al.,
2006) The water column was divided into 50 vertical layers, a time step of 900 s was
used. Surface radiation was calculated by an astronomical formula (Rosati and Miyakoda,
1988) taking into account latitude, longitude, time, fractional cloud cover and albedo.
Light extinction through the water column was assumed to depend on the concentration
of organic particulates in the water column for living organisms, detritus, and silt as

described in Blackford ef al. (2004).
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Figure 3.2 The European Regional Seas Ecosystem Model (Butenschon et al., 2016).

3.3 Model development
3.3.1 New parameterization of TEP and aggregates containing TEP

TEP plays a crucial role in the aggregation and potential sinking of particles (Dam and
Drapeau, 1995; Logan et al., 1995; Engel, 2000a; Passow et al., 2001; Fabricius et al.,
2003; Engel et al., 2004; Mari et al., 2007). In this study a new parameterisation of TEP
was developed in ERSEM to simulate the TEP aggregation process and its impact and
role in biogeochemical carbon cycling. Figure 3.3 shows the schematic representation of
TEP in ERSEM. TEP is produced by the phytoplankton community during nutrient
limitation (Mari et al., 2017) in the form of dissolved organic matter (Figure 3.3; pathway
a). TEP in the water column can be used by bacteria (Figure 3.3; pathway b) and when
ballasted with solid particles can promote sinking of POC and TEP to the seafloor (Figure
3.3; pathway c).
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Figure 3.3 Modified version of the European Regional Seas Ecosystem Model (Butenschon et al., 2016) showing
the TEP scheme. Pathway a) shows the production of TEP by the phytoplankton community during nutrient
limitation in the form of dissolved organic matter (DOM). Pathway b) shows the interaction of TEP in the water
column with bacterial food web. Pathway c) shows the fate of TEP when ballasted with solid particles which
promote sinking of POC and TEP in form of an aggregate to the seafloor.

Figure 3.4 shows the conceptual diagram describing the TEP aggregation process. The
aggregation process starts when a certain concentration of TEP is reached and a threshold
is exceeded. The formation of aggregates containing TEP is linked to the probability of
collision and adhesion capacity of two particles (stickiness). For the purpose of this work
the stickiness coefficient (o) is used as a proxy for aggregates containing TEP formation.
In particular the approach developed in this study is based on the assumption that a
minimum concentration of TEP is required to form an aggregate. Therefore an aggregate
is formed only when the stickiness coefficient (derived from TEP:Chl « ratio) is greater
than the arbitrary aggregation threshold (aggg4,). If this condition is met, an aggregate is
formed and it is assumed to be composed of POC, TEP and phytoplankton biomass. The
buoyancy/sinking of this aggregate is sensitive to the ratio of TEP (low density) to other
particles (high density) in the aggregate (Mari et al., 2017). In our case these other
particles consist of phytoplankton biomass and detrital POC. In the last step of the

aggregation process the density of the newly formed aggregate (p,, g gr) is compared to
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the density of seawater (p,,,,qrer) 10 determine whether the aggregate will float or will

sink. The aggregation process also considers that a floating aggregate after being
generated, due to mixing and further particles collision can further aggregate forming

higher density particles heavy enough to sink.
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Figure 3.4 Schematic conceptual diagram representing TEP aggregation process. Dashed lines represent processes,
solid lines represent fluxes. Stickiness coefficient (a), aggregation threshold (e, 44,-), aggregate density (A9 9T gensity)
and density of seawater (p,,).

3.3.1.1 Preliminary version of the TEP aggregation process in ERSEM

The first and preliminary approach developed to model TEP in ERSEM was based on the
density of the aggregate formed by TEP. The process of formation of the aggregates was
performed by assuming that any concentration of TEP would be enough to form an
aggregate. When this approach was compared with the reference (standard ERSEM
model without TEP) a change in the distribution of the four phytoplankton functional
types was found (Figure 3.5 a and b). The introduction of TEP in ERSEM caused an
inversion on the dominance of the phytoplankton groups and a month shift of the algal
bloom. In the reference run the phytoplankton bloom was dominated by diatoms with a
bloom in May (Figure 3.5a). By contrast in the model with TEP the picophytoplankton
was dominant and the bloom had shifted from May to June (Figure 3.5b). To overcome
this problem and get a more realistic aggregation process a second approach (used in the
rest of this manuscript and represented in Figure 3.4) was developed. This approach
introduces a further step in the aggregation process of TEP based on the stickiness

coefficient (o) of TEP (Engel, 2000a). The use of the stickiness coefficient introduces a
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threshold to the aggregation process, which needs to be exceeded in order to get an
aggregate. This implies that the capability of TEP to form aggregates (Mari ef al., 2017)
will depend on its concentration. This approach with a minimum threshold for
aggregation reestablished the distribution of the four phytoplankton functional types
(Figure 3.5a and c). The change in the structure of the phytoplankton community in the
first approach could be explained by the fact that it did not have an aggregation threshold.
This would have caused an excessive removal of phytoplankton biomass during the
aggregation process (mainly diatoms), giving more chance to other phytoplankton groups,

such as picophytoplankton to grow and to become dominant.
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Figure 3.5 Phytoplankton functional types (Diatoms, Nanophytoplankton, Picophytoplankton and
Microphytoplankton) in ERSEM for the year 2015 at station L4 in surface waters for a) a reference run without
TEP b) a preliminary TEP model with density process only and c¢) a TEP model with density and stickiness
processes.

3.3.2 Aggregation process

The detailed series of equations describing TEP formation and aggregation and the
dynamics of aggregates containing TEP are explained in this section.

The total floating aggregate, sinking aggregate and free TEP, are given in the Eq. (3.1),
(3.2) and (3.3).

0Af,
at

0Af,
at

0Af,

| aggr —
Jat

| prod __ | consumption (3_ 1)
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aASc | aggr — aASC |prod _ % | consumption __ aASC | sink (3 2)
ot at at at '
% |free — % | source _ JdAs, | aggr _ 0Af . | aggr
— % | consumption (3.3)
Jat .
where:
04
a{c | 299" = total floating aggregate (mg C m=3d™1)
04
—a{ < | prod — TEP,, phytoplankton biomass and particulate organic carbon

going into the floating aggregate (mg C m=3d1)

0Af,

3¢ | consumption — consumption of the floating aggregate

by bacteria (mg C m=3d™1)

0As
- c | 299" = total sinking aggregate (mg Cm~3d™1)
0As
TS < | prod — TEP,, phytoplankton biomass and particulate oganic carbon

going into the sinking aggregate (mg C m~3d™1)

d0As,

5 | consumption — copsumption of the sinking aggregate

by bacteria (mg C m=3d™1)

% | sink — sinking of the aggregate (mg Cm=3d™1)

% | free = total free TEP, (mg C m~3d™1)

% | source — TEP, produced by phytoplankton during nutrient limitation
(mg Cm™3d™1)

% | consumption — consumption of the free TEP, by bacteria (mg C m=3d™1)
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TEP, 1s assumed to be produced by phytoplankton under nutrient limitation as given in

Eq. (3.4).

OTEP apP
o c |source — [(1 _ BP)(l _ f;lp)] atc |ypp (3.4)
where:

B p = constant fraction of carbon uptake

fp? = internal nutrient ratio

c

at

|9PP = gross primary production (mg C m~3d™1)

The aggregation process is based on the density of the aggregates. Particulate organic
carbon (Eq. (3.6)), TEP. (Eq. (3.4)) and phytoplankton biomass (Eq. (3.7)) are used for

the formation of the aggregate.

Riptc = R1.+ R2.+ R3.+ R4.+ TEP_.+ R6,. + R8,. + As. + Af, (3.5)
R.=R4,.+ R6. + RS, (3.6)
P.=P1.+ P2.+ P3,.+ P4, (3.7)
where:

R,,; . = total organic carbon (mg C m~3)

R1, = labile dissolved organic carbon (mg C m~3)

R2_ = semi — labile dissolved organic carbon (mg C m~3)
R3, = semi — refractory dissolved organic carbon (mg C m~3)
R4, = small — size particulate organic carbon (mg C m~3)
TEP. = free TEP, concentration (mgCm™3)

R6, = medium — size particulate organic carbon (mg C m~3)
R8_ = large — size particulate organic carbon (mg C m~3)
As, = sinking aggregate concentration (mg C m~3)

Af. = floating aggregate concentration (mgCm™~3)

P1, = diatom biomass (mg C m~3)

P2, = nanophytoplankton biomass (mg C m~3)
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P3, = picophytoplankton biomass (mg C m~3)
P4, = microphytoplankton biomass (mg C m~3)
R, = particulate organic carbon (POC) (mg C m~3)

P. = phytoplankton biomass (mg C m~3)

The formation of the aggregate is triggered by the stickiness coefficient (o). More
specifically, in this work a linear relationship between the stickiness coefficient and TEP
: Chl a was used (Engel, 2000a) as a proxy within the aggregation process to determine
whether the concentration of TEP is enough to lead to the formation of an aggregate. Chl

a (Eq. (3.8)) and TEP are used in Eq. (3.9) to calculate the stickiness coefficient (o).

Chla = Plchl + chhl + P3Chl + P4’chl (3 8)
TEP,
_ w _
“=M\ Chia |1 (3.9)
where:

Chl a = chlorophyll a (mg m~3)

P1,,, = diatom chlorophyll a (mg m~3)

P2, = nanophytoplankton chlorophyll a (mg m~3)

P3_,; = picophytoplankton chlorophyll a (mg m~3)

P4, = microphytoplankton chlorophyll a (mg m~32)

o = 0.63 (conversion factor to convert TEP, (mg m~3) to TEP (ug Xeq.1™1))
m = slope of equation (6.38x10~* (Engel, 2000a) )

q =y — intercept (—3.33x1073 (Engel, 2000a))

a = TEP stickiness (Engel, 2000a)

The process of formation of the aggregate was performed by assuming that only in the
case of TEP stickiness () being higher than that of the aggregation threshold oeer (@ >
Qgggr), there would be enough TEP. to form an aggregate, while the aggregate

composition depends on the contribution of each single fraction (Eq. (3.10), (3.11),

(3.12)).
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% TEP, = TEP, 100 3.10
e T R.+ P, +TEP, (3.10)

R,
%R, = 100 3.11
%o Re R.+ P.+TEP, ( )
P
% P, = £ 100 (3.12)

R. + P+ TEP,

The density of the aggregate is calculated using Eq. (3.13), which takes into account the
aggregate composition (Eq. (3.10), (3.11) and (3.12)), densities of TEP., POC,

phytoplankton, seawater density and aggregate porosity.

Yrep, YoR,
Aggrdensity = Pw ~ Paggr T (1 B paggr) [< 100 )pTEPC + <100) PR,

((f’(;’;,)ppcl (3.13)

where:

TEP. = TEP, concentration (mgCm™3)

R, = particulate organic carbon (mgC m™3)

P = phytoplankton biomass (mg C m™3)

%TEP, = percentage of TEP. in the aggregate

%R, = percentage of particulate organic carbon in the aggregate
%P, = percentage of pytoplankton biomass in the aggregate
p,, = density of seawater (kg m~3)

Paggr = Porosity of the aggregate

prep, = density of the TEP, (kg m™3)

Pr, = density of the particulate organic carbon(kg m~3)

pp, = density of the pytoplankton biomass (kg m~3)

AGgT gensity = density of the aggregate (kg m~3)

The formation of a floating aggregate occurs when TEP stickiness (o) is higher than the

aggregation threshold tugy (@ > @qg4,) and the density of the aggregate is lower than

86



that of seawater (AggTgensity < Pw)> then the aggregation factor 9 =1 and an

aggregate will be formed as described in equations Eq. (3.14) and (3.15).
A fraction § of the concentration of POC and phytoplankton (Eq. (3.14)), and a fraction
Erep of TEP, concentration will contribute to the aggregate every day (Eq. (3.15)).

0Af,

- |prodPR — (p_+ R,) § 9 (3.14)

0Af,

o |74 = TEP Ergp 9 (3.15)

where:

0Af,

|prodPR
at

= phytoplankton biomass and particulate oganic carbon going into

the floating aggregate (mg Cm~3d™1)

0Af ¢
at

prodTEP — TEP, going into the floating aggregate (mg C m=3d™1)
¥ = aggregation factor

¢ = daily fraction of carbon (POC and Phytoplankton) forming aggregates

&rgp = daily fraction of TEP, forming aggregates (d 1)

In this process a daily fraction of the floating aggregate can be assembled with other
particles, forming heavier particles which can sink out and become part of the sinking

aggregate (Eq. (3.16)).

d0A .

947 | sink = Af R (3.16)
at

where:

d0A .

ch | sink — flux of floating aggregate moving to the sinking aggregate

(mgCm™3d™1)

3 = daily fraction of floating aggregate going into sinking aggregate ( d™1)
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The production of floating aggregates (Eq. (3.17)) is given by the sum of
phytoplankton/POC production and the production of TEP., minus the flux of floating
aggregates going into the pool of the sinking aggregates.

0Af,
ot

0Af,
at

0Af .
at

0Af,

| prod _
at

| prod PR | prod TEP __

| sink (3 17)

The consumption of the floating aggregate by bacteria (Eq. (3.18)) is proportional to the
amount of the aggregates relative to the total carbon substrate available for bacteria (Eq.

(3.5)), the fraction of the sinking aggregate available to bacteria and bacterial uptake.

0Af . consumpti Af. 9B,
7" ption — upt

| (G, Pir) 57 | (3.18)
where:

PE 7. = fraction of the floating aggregate available to bacteria (d™h

0B,
ot

€ | upt = bacterial uptake (mg C m=3d~1)

The formation of a sinking aggregate occurs when TEP stickiness (a) is higher than the
aggregation threshold oager (&€ > @444,) and the density of the aggregate is higher than
that of seawater (AggT gensity > Pw)- then the aggregate factor 9 = 1 and an aggregate
will be formed as described in the Eq. (3.19) and (3.20).

A fraction § of the concentration of POC and phytoplankton (Eq. (3.19)), and a fraction
Erep of TEP, concentration will contribute to the aggregate every day (Eq. (3.20)).

aAs
—c IP“’“’R =(P.+R,) EV (3.19)

aAsC

at |pdeEP =TEP. $rep ¥ (3.20)
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where:

d0As,

| prod PR
at

= phytoplankton biomass and detrital POC going into

the aggregate (mg C m=3d™1)

% | prodTEP — TEP_ going into the aggregate (mg C m~3d 1)

The production of sinking aggregate (Eq. (3.21)) is given by the sum of
phytoplankton/POC production, the production of TEP.. and the flux of floating
aggregate moved to the pool of the sinking aggregate.

JdAs,
at

JdAs,
at

JdAs,
at

0Af .

| prod _
at

| prod PR | prod TEP

| sink (3 21)

As for the floating aggregate the consumption of the sinking aggregate by bacteria (Eq.
(3.22)) is proportional to the amount of the aggregates relative to the carbon substrate
available for bacteria (Eq. (3.5)), the fraction of the floating aggregate available to

bacteria and bacterial uptake.

JdAs,
at

As,
Rtotc

0B
) Pl 1= [ (3.22)

| consumption _ [(

The loss/gain term due to sinking (Eq. (3.23)) depends on the concentration gradient of

the sinking aggregate along the water column and the sedimentation velocity of the

aggregate.

0AS: | ;o ASc

i’ = .2
o | 5, Vs, (3.23)
where:

Pﬁsc = fraction of the sinking aggregate available to bacteria (d~1)
% = sinking aggregate gradient concentration (mgC m™3)

V45, = sinking velocity of the sinking aggregate (m db
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The consumption of the free TEP,, (TEP. not associated with the aggregates and still in
form of DOM) by bacteria (Eq. (3.24)) is proportional to the amount of the aggregate
relative to the carbon substrate available for bacteria (Eq. (3.5)), the fraction of the TEP,

available to bacteria and bacteria uptake.

dTEP,
at

. TEP JB
| cosumption — [(=——%) Py ] —=
tot c

| upt (3.24)

where:

P7gp, = fraction of TEP, available to bacteria (d™*)

A fraction of nitrogen, phosphorus and silicium proportional to that of TEP, goes into the
aggregates. Furthermore, in order to track the amount of TEP, into each aggregate a
specific new currency (t) was added to the model, which expresses the content of TEP, in
both sinking and floating aggregates. The specific parameters used during TEP

simulations are listed in the Table 3.1.
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Table 3.1 Summary of the specific parameters (symbol, description and unit)
used to represent TEP in ERSEM.

Symbol Description Unit
TEP density kg m>
PTEP,
POC density kg m?
Pproc
Phytoplankton density kg m*
PPhyto
. Aggregate porosity -
porosity
Sinking velocity of the sinking md’
m
aggregate
Daily fraction of POC and d!
aggr
Phytoplankton going to the
aggregate
Daily fraction of TEPc going to the d!
agygrrep
aggregate
Aggregation threshold -
aaggr
9 Aggregation factor -
? Daily fraction of floating aggregate d!
going to the sinking aggregate
Fraction of TEPc available to d!
TR5
bacteria
+R10 Fraction of sinking aggregate d!
available to bacteria
“R11 Fraction of floating aggregate d!

available to bacteria
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Chapter 4 Vertical distribution of TEP at Celtic Sea sites

during spring and summer 2015

4.1 Introduction

TEP exuded by phytoplankton as a carbon-rich compound (Mari ef al., 2017) may play
an important role in the Continental shelf seas for the uptake, export and storage of
organic carbon. TEP production is thought to be associated with carbon overconsumption,
which occurs in summer when the phytoplankton community is nutrient limited (Mari ef
al., 2017). Due to its stickiness and low density (Azetsu-Scott and Passow, 2004a) TEP
can act as a glue by promoting the formation of large aggregates, which when ballasted
with negatively buoyant particles may sink out, exporting particulate organic carbon and

TEP to the seafloor (Passow et al., 2001; Burd and Jackson 2009; Mari et al., 2017).

This study was carried out during the Shelf Sea Biogeochemistry programme (SSB), co-
funded by the Natural Environment Research Council (NERC) and the Department for
Environment, Food and Rural Affairs (Defra). The aim of the SSB programme was to
increase understanding of the cycling of nutrients and carbon and the controls on primary
and secondary production in NW European shelf seas and their role in biogeochemical
cycles. Within the SSB programme, samples for TEP were collected from the seasonally
stratified Celtic Sea during spring and summer 2015 to investigate the role of TEP in
carbon cycling in NW European shelf seas. In particular, the vertical distribution of TEP

in spring and summer, at three Celtic Sea sites was studied.

This Chapter presents the results and discussion of the vertical distribution of TEP in the
Celtic Sea during spring and summer. The Chapter is divided into two parts, observations
and modelling approaches. The first part is focused on the field observations of TEP
which were used to discover the vertical distribution of TEP at three different sites in the
Celtic Sea. TEP observations were also used to address the key processes that control the
vertical dynamics of TEP, with the use of linear regression analyses of TEP versus
chlorophyll a and other variables. Furthermore, the TEP to chlorophyll a relationship and
ratio is used to investigate their possible use as indicators of TEP production. In the
second part of the Chapter three different modelling approaches were used in combination
with TEP observations to explore the processes controlling TEP dynamics in the shelf
sea. The first modelling approach uses a simple box model to estimate TEP formation,

accumulation rate, residence time, sinking rate, TEP export and bacterial
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remineralization. The second modelling approach was used to investigate the role of TEP
in the formation of marine aggregates, aggregates containing TEP composition sinking
and export. The third modelling approach was used to reproduce the observed TEP
concentrations and model the effect of TEP on particle aggregation in the Celtic Sea by
means of the European Regional Seas Ecosystem Model (ERSEM). To this end a new
formulation for TEP dynamics was developed in ERSEM and used to investigate the fate
of carbon exported and its effects on CO, uptake from the atmosphere, carbon

sequestration and C : N stoichiometry of the particulate organic carbon .

4.2 Observations
4.2.1 Method: TEP sample collection and processing

Water samples were collected at three stations: Station A, Station CCS and Station CS2

along a transect from the coast to the open ocean in the Celtic Sea (Figure 4.1).

52°N

519N 1

50°N §:

49°N §;

lu]

N : : :
1% 10% 9% 8o 7o B2y 5oy
Figure 4.1 Sampling area: Celtic Deep (A); Candyfloss (CCS); Shelf Edge (CS2).

TEP samples were collected as part of the Shelf Sea Biogeochemistry research program
during spring 2015 (DY 029) and summer 2015 (DY033) on the RRS Discovery at three
study sites in the Celtic Sea. Discrete samples for TEP were collected at the three main

process sites, which were the focus of the SSB cruise programme: Celtic Deep,
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Candyfloss and Shelf Edge (Figure 4.1). The samples were collected from 20 L Niskin
bottles filled at different depths during CTD casts, along a transect from the coast to the
shelf edge (Figure 4.1). TEP samples (1 L) were fixed with a 4% formaldehyde final
concentration in the sample and stored at 4 °C in the dark until analysis was undertaken
in the UEA laboratory as described in sections 2.2 and 2.6. TEP values shown in this
chapter are based on a single measurement at each depth due to the low volume of sample
collected and low concentration of TEP. However, a standard deviation of = 15% of the
TEP value was estimated to be the uncertainty associated to the measurements as
described in (section 2.6). During the two cruises samples of water were collected for
chlorophyll @, nutrients and Particulate Organic Matter (POM) determination.
Chlorophyll a was collected by filtering 200 - 250 ml of sea water through 25 mm
diameter Whatman GF/F filters. Filters were extracted in 8 ml of 90% acetone for 18-20
h and the resulting chlorophyll a fluorescence was measured on a Turner Trilogy
fluorometer calibrated against a solid standard and a chlorophyll a extract (Sigma) by Dr.
Alex Poulton at the NOC (National Oceanography Centre), Southampton. Nutrients were
analysed by Carolyn Harris from PML (Plymouth Marine Laboratory) during the research
cruise DY 029 and by Malcolm Woodward from PML during the cruise DY033. Nutrient
concentrations were determined by the analytical method described in Woodward and
Rees (2001). The typical precision of the analytical results was between 2-3%. The limits
of detection for nitrate and phosphate were 0.02 umol "', nitrite 0.01 pmol I"', ammonia
0.05 umol I"" and silicate did not ever approach the limits of detection. Particulate organic
carbon and nitrogen samples were analysed by Dr. Clare Davis and Dr. Claire Mahaffey
at Liverpool University in duplicate after vapour phase decarbonation using a Carlo Erba
Instruments NC2500 elemental analyser (Yamamuro and Kayanne, 1995). The results
uncertainty limits were 7.17 £ 0.09 % for POC and 0.57 + 0.02 % for PON. CTD profiles
data for physical variables such as temperature, salinity and turbidity were downloaded

from the British Oceanographic Data Centre (BODC).

In order to investigate the potential biological and physicochemical factors controlling
TEP. dynamics the relationship between TEP, and chlorophyll @, nutrients, temperature
and salinity were determined by means of regression analysis. For comparison with the
existing literature, TEP and chlorophyll a were log-transformed. TEP stickiness (o) was

calculated using the empirical equation Eq. (4.1) (Engel, 2000a).
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TEP
=6.38x1 —4<—)— .3x1073 4.1
a 8x10 Chla 3.3x10 (4.1)

where:
TEP = concentration of TEP (ug Xeq.1™1)
Chl a = concentration of chlorophyll a (ug1™1)

The Surface Mixed Layer Depth (SMLD) was determined by Dr. Joanne Hopkins at
NOC, Liverpool using the vertical density of water masses from the CTD profiles and
applying a threshold for the potential change in density relative to that at 10 metres. For
the cruise in summer 2015 (DY033) a threshold of 0.02 kg m™ was used. For spring 2015
(DY 029) the threshold was reduced to 0.01 kg m™. The SMLD calculated at Station CS2
was not very clear due to strong vertical mixing. Therefore for this station SMLD was

determined using the vertical profiles of chlorophyll a, temperature, salinity and density.

4.2.2 Results

TEP, concentrations and other variables are shown in Figure 4.2, 4.3 and 4.4. Spring TEP,
concentration ranged from 1.3 pmol I' (137 m depth) on Station CCS to 7.3 pmol I"' (15
m depth) on Station CCS, with an average of 3.7 umol I"". Summer TEP, concentration
ranged from 1.2 pmol 1" (192 m depth) on Station CS2 to 12.3 umol I"' (7 m depth) on
Station A, with an average of 4.5 umol I'". The SMLD at Station A was calculated to be
at 31 metres depth in spring and at 27 metres depth in summer. At Station CCS the SMLD
was at 53 metres depth in spring and at 28 metres depth in summer. At Station CS2 the
SMLD was at 10 metres depth in summer. However, due to high vertical mixing this
result was not very clear. Therefore for this station the SMLD was inferred to be at 20
metres depth by taking into account the vertical profiles of chlorophyll a, temperature,
salinity and density. TEP, concentrations were generally higher in the Surface Mixed
Layer (SML) in spring and summer at stations CCS and CS2, and decreased with depth.
Station A showed high TEP, concentrations near the bottom (~ 100 m depth) in spring
(6.2 pmol I'") and summer (7.5 pmol I'). This may suggest a potential benthic interaction
and resuspension of old TEP from the seafloor. At stations CCS and CS2, TEP, vertical
profiles generally tracked those of chlorophyll a, decreasing with increasing depth in the
Bottom Mixed Layer (BML). TEP, concentration increased with depth in the BML at

Station A in spring and summer and did not follow the profile of chlorophyll a. In all
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stations TEP, production in the SML in summer was consistent with the hypothesis that
TEP is linked to nutrient depletion due to its higher concentrations in the SML respect to
that of the BML. Nutrient concentrations were much lower in summer in the SML
compared to spring due to drawdown by primary producers. The TEP, profile at Station
CCS in spring, in surface waters showed concentrations of TEP, very different from each
other, despite being taken from samples at similar depths (the difference in concentration
being approximately doubled). Such a difference was not observed in the chlorophyll a
profile at the same depth. This may be explained by the observed net decrease in

temperature of 0.05 “C (Figure 4.3a).
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The highest average chlorophyll @ concentration (2.1 + 0.1 pg I™") in the SML was found
at Station A in spring, without a corresponding high average TEP, concentration (2.9 +
1.6 umol I') (Table 4.2). TEP, concentration was associated to chlorophyll a at Station
CS2 in summer, where a significant and positive linear relationship between TEP, and
chlorophyll @ was found (Figure 4.5; R*= 0.816, n = 6, p < 0.05). Relationship between
TEP. and biological and physicochemical variables (temperature, salinity, density,
chlorophyll a, TOxN, nitrite, ammonium, phosphate and silicate) at the stations A, CCS

and CS2 in spring and summer 2015 are reported in appendix 4.

6
=4 A y =10.55x + 1.408
% R?=0.816 n = 6 p<0.05
£
2
&U
-2 1

[
0 L L
0 0.2 0.4 0.6

Chl (ug I'")

Figure 4.5 TEP, (umol I"") versus chlorophyll a (ug I'") at station CS2 in summer (whole water column, ™ red
squares indicate samples in the SML; ® blue circles indicate samples in the BML).

TEP, concentration decreased along the transect from coast to the shelf edge in summer,
associated with an increase in salinity (Figure 4.6b). However, no similar pattern was
found in spring (Figure 4.6a) nor for chlorophyll a in both seasons. The mean TEP : Chl
a ratio was generally lower in the SML with respect to the BML except for the Station
CCS in summer (Table 4.1). Very low TEP : Chl a ratio averages in the SML at stations
A (24.9 + 12.7 pg Xeq. pg chl™) and CCS (43.7 + 33 pg Xeq. pug chl™) in spring were
observed (Table 4.1). TEP to chlorophyll ratio showed much higher values in summer in
comparison to the spring in surface waters at all stations (Table 4.1). This is consistent
with the hypothesis that TEP is a by-product of primary production in spring and an
overflow production during nutrient limitation in summer. The contribution of TEP, to
the pool of POC was estimated as the percentage of TEP-carbon present in POC. This
was calculated by dividing the concentration of TEP, by the sum of the concentration of

POC, plus half of the concentration of TEP., multiplied by hundred. Half of the
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concentration of TEP, was used to take into account that standard GF/F filters used for
POC determination may retain only ~ 50% of TEP (Passow and Alldredge, 1995). The
percentage of TEP, in the pool of POC was ~ 30% at the stations A and CCS in the SML
in spring and at Station CS2 in the SML and in the BML. A much higher percentage ~
50% was found at the stations A and CCS in spring in the SML and in the BML and in
summer in the SML (Table 4.1).

a)
y =-3.9503x + 142.68
12 R?=0.06976
n=10 p>0.05
— 10
=
o 8 ® A (SML
e (SML)
3‘5 6 A (BML)
&
= 4 - CCS (SML)
CCS (BML)
2 °
0
35 35.05 351 3515 352 3525 353 3535 354
Salinity
p) 4
1 ° y = -6.9449x + 250.05
R2 = 0.52055
n=18 p<0.01
= 10 ® A (SML)
o 8 A (BML
£ (BML)
35 6 CCS (SML)
a
& A CCS (BML)
5 ®cs2 (sML)
€S2 (BML)
0
34.6 34.8 35 35.2 35.4 35.6 35.8
Salinity

Figure 4.6 Relationship between TEP, (umol ') and salinity along the transect from coast to shelf edge for the
SML and the BML in a) spring and b) summer.
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4.3 Box model: Estimation of the production and fate of TEP
4.3.1 Description and method

Within this study a simple box model is used to estimate TEP. formation and
accumulation rates, export flux, consumption and residence time at three stations in the
Celtic Sea. The box model (Figure 4.7) considers a steady state system where the export
rate of TEP, at the SML is equal to the deposition rate at the bottom of the water column.
The only loss term considered in the model is TEP. degradation due to bacterial
remineralization and implicitly deposition to the sea-bed. Estimations of TEP, fluxes and
relative sinking rates at SML and bottom are calculated with and without bacterial
consumption to evaluate the potential impact of the bacterial remineralization on TEP

export.

TEPCﬂ,,,,, TEP [TEPC]SML
C exp
I sink,,,
SMLD
[TEP ... TEPb,,
S _bacteria_|

TEPCWE ____|>
TEP,..

sink,,, sinkb,,,

Wdepth

Figure 4.7 Box model describing the fate of the TEP, and fluxes. The white arrow indicates TEP, production, the
black arrow indicates export of TEP, from the SML, white dashed arrow indicates the fraction of TEP, removed
due to potential bacterial remineralization. [TEP gy, - average TEP, concentration in the SML (umol I
), TEP_ form - TEP. formation rate in the SML (umol I d"), TEP, exp - TEP. export flux (mmol m? d

Y, sinkgyy, - TEP, sinking rate at the SML (m d™'), [TEP | gy - average TEP, concentration in the BML (umol
'), TEP, 4cc - potential accumulation rate of TEP, in the BML (umol I"! d™") without bacterial uptake, TEP, yes
- TEP, residence time (days), TEP’C’upt - TEP, loss due to bacterial uptake (mmol m? d™"), sinkpg,; - potential

TEP, sinking rate without bacterial uptake (m d™), sink’,;ott - potential TEP,, sinking rate with bacterial uptake
(m d"), SMLD - Surface Mixed Layer Depth (m), W gepen - total depth of the water column (m).

Given the average concentration of TEP, in the SML, in order to calculate the potential
flux of TEP,, an estimation of its formation rate is needed. A study conducted by Wurl ef
al. (2011), estimated TEP, formation rates at three different locations (North Pacific,
Offshore Hawaii and Arctic Ocean) from June 2009 to April 2010. Analysis of the Wurl

et al. (2011) data in this present study reveals a linear relationship between TEP,.
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concentrations and TEP. formation rates in the SML. Due to the fact that the dataset
reported by Wurl et al. (2011) covers a different areas of the globe, in this work it has
been assumed that this relationship can be universally applicable. This relationship

(Figure 4.8) was used in this study to estimate the TEP, formation rate in the SML.

80
[
704 vy=2.118x-0.201
R2=0.701 n=16 p<0.01
60

TEP_ (umol I'Y)
P, N W D WU
o o o o o

o

0 5 10 15 20 25 30
TEP, Formation rate (umol I d?)

Figure 4.8 Relationship between TEP, (umol 1) concentration and TEP, formation rate (umol 1" d™!) extrapolated
from data published in Wurl ez al. (2011).

TEP, formation rate (umol I'' d™') in the SML is calculated using the Eq. (4.2) derived

from the linear regression in Figure 4.8.

[TEP,_] +b
TEP form = c,:lML (4.2)

where:

m = 2.118 (slope of the linear regression curve)

b = — 0.201 (y axis intercept)

[TEP_]sy; = average TEP, concentration in the SML (umol 171)
TEP, form = TEP, formation rate in the SML (umol 17'd™")

The TEP, formation rate estimated in the SML is used in Eq. (4.3) to calculate the flux of
TEP, exported from the SML and its associated sinking rate Eq. (4.4)

TEP, oy, = TEP, ;orm SMLD (4.3)
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TEP_ .xp

[TEP Jsus (4.4)

SinkSML =

where:

SMLD = Surface Mixed Layer Depth (m)

TEP, .., = TEP, export flux (mmol m~2d™")

[TEP_]sy; = average TEP, concentration in the SML (umol 171)
sinkgy; = TEP, sinking rate at the SML (md™1)

The potential TEP, accumulation rate and TEP, residence time in the BML are calculated

in Eq. (4.6, 4.7 and 4.5) by assuming that TEP, produced in the SML is not consumed by

bacteria.

BMLD = W 4.,i, — SMLD (4.5)
TEP

TEP 4 = ﬁ (4.6)
[TEP |gm.

TEP = — 4.7

cres TEPC ace ( )
where:

W 4epen = total depth of the water column (m)

BMLD = depth of the water column between the SMLD and the bottom (m)
TEP, ,.. = potential accumulation rate of TEP, in the BML (umol 171d 1)
[TEP_]gy. = average TEP. concentration in the BML (umol 171)

TEP.,.; = TEP. residence time (days)

The sinking rate of TEP, at the bottom of the water column is calculated by taking into

account no bacterial consumption (Eq. (4.8)).

TEP_ .y

[TEP g (4.8)

sinkyyy =
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where:
sink,,,;; = potential TEP, sinking rate without bacterial uptake (m d™1)

The potential loss of TEP, due to bacterial uptake and the resulting TEP, sinking rate at
the bottom of the water column are also calculated in Eq. (4.9 and 4.10). Due to the lack
of information in literature on the degradation rate of TEP,, two different approaches were
used to quantify the most likely losses of TEP, due to bacterial remineralization. The first
approach assumes that the bacteria degradation rate of TEP, is similar to that of semi-
refractory POC of 0.008 d' (Fujii ef al., 2002). This value was chosen on the basis of a
study which indicates that the degradation rate of TEP should be similar to that of POC
(Passow et al., 2001). The second approach uses a degradation rate determined for a

generic carbohydrate of 0.53 d™! (Mari et al., 2017).
TEP?,,. = TEP .y, P” (4.9)

TEP, oxp — TEP’gupt
[TEP |y,

sink?,,, = (4.10)

where:
PP = TEP, degradation rate by bacteria (d~')

TEP?,,, = TEP, losses due to bacterial uptake (mmol m~2d™")

sink?,,, = potential TEP, sinking rate with bacterial uptake (m d1)

4.3.2 Results

The highest and lowest TEP, formation rate were estimated at Station A in summer (3.8
umol 1" ™) and spring (1.5 pmol I d™), respectively (Table 4.2 and Figure 4.9). The
flux of TEP, from the SML to the bottom of the water column ranges from 44 mmol m>
din summer at Station CS2 to 112 mmol m™ d”' in spring at Station CCS (Table 4.2 and
Figure 4.9). The sinking velocity of TEP, was generally lower in the SLM than near the
bottom at each Station and season, except for the Station A in spring where a net decrease
of ~6 m d"' was established. Station CCS in spring showed an increase in the sinking
velocity from the SML to the BML of ~ 50 m d™' (Table 4.2 and Figure 4.9). The highest
accumulation rate and the lowest residence time of TEP. were found at Station CCS in
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spring (1.4 pmol 1" d” and 1.1 d). Conversely the lowest accumulation rate and the
highest residence time of TEP, were predicted at the Station CS2 in summer (0.2 pmol I
"d"! and 8.3 d) (Table 4.2 and Figure 4.9). Residence time in the BML was only ~ 5 days,
which indicates that processes such as bacterial remineralization and/or sinking may have
an important role in removing TEP, from the water column in the Celtic Sea. After
applying the bacterial remineralization factor of 0.08 d™' no significant decrease of TEP,
flux was established. Also no significant change on the sinking velocity of TEP, was
detected in any station or season. By contrast, the bacterial remineralization factor of 0.53
d! , leads to a substantial net decrease of TEP, flux reaching the bottom, with a consequent
decrease in the apparent sinking velocity of TEP, close to the bottom at each station and

season (Table 4.2 and Figure 4.9).
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4.4 TEP in the aggregation model
4.4.1 Description

Several studies have reported the crucial role of TEP for the aggregation and potential
sinking of particles (Dam and Drapeau, 1995; Logan et al., 1995; Engel, 2000a; Fabricius
et al., 2003; Engel ef al., 2004; Engel, 2004). Due to its stickiness TEP can act as a glue
(Passow, 2002) and being responsible for the formation of fast sinking aggregates (Mari
et al., 2017). However, because the density of TEP is lower than that of seawater the
buoyancy/sinking of these aggregates has been proposed to be sensitive to the ratio of
TEP to other particles (of different density) in the aggregate (Mari et al, 2017).
Furthermore, the formation rate of these aggregates depends on the size and concentration
of particles (e.g. phytoplankton cells, POC and detritus) in seawater (Jackson, 1990; Hill,
1992; Logan et al., 1995). In this study a novel approach was used to model the TEP
aggregation process and its impact on POC and TEP flux. The sinking and buoyancy of
aggregates containing TEP was investigated at the Stations A, CCS and CS2 in spring
and summer. Theoretical aggregate composition, aggregate density, sinking rate and the

flux of TEP and POC were estimated.

4.4.2 Method

The analysis was performed by assuming that the concentration of TEP, at each depth
and station was enough to form an aggregate (i.e. all material was in aggregated particles,
rather than free particles). Following the experiment conducted by Mari ef al. (2017), the
aggregate was assumed to be composed of TEP,, particulate organic matter and minerals
(i.e. inorganic fraction). This inorganic fraction may be composed of carbonate from
coccolithophores and foraminifera, or a siliceous compound called opal from diatoms
(Marti et al., 2017). For each Station and at each depth TEP,, POM and mineral masses
were used to calculate the relative contribution of each fraction to the aggregate and the
density and sinking rate of the aggregate. Furthermore, TEP. and POC concentrations
were used to calculate the potential fluxes of TEP. and POC respectively. Given the
uncertainty in various parameters used in the estimation of particle density, sinking rate
and fluxes, a Monte Carlo style approach was used to explore parameter space and present
densities, sinking rates and fluxes with representative uncertainties. Due to the unknown
distribution of each parameter, some assumptions were made and a uniform distribution
was used. For each parameter 10,000 values were randomly sampled from the uniform

distributions. The ensemble of parameters was used to compute density, sinking rate and
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fluxes of the aggregate. Equation symbols with description and unit are given in Table

4.3. Parameter symbols, description, range and unit are given in Table 4.4.

The concentration of POM which does not contain TEP, (POM,,,,, rgp) Was computed
as described in equation Eq. (4.11). Following evidence that standard GF/F filters used
for POC determination may retain only ~ 50% of TEP (Passow and Alldredge, 1995), the
concentration of POC was corrected by taking into account that the amount of TEP
retained on a GF/F filter may vary from 50% to 100% of its original amount. To this end
the concentration of TEP, was reduced in a range from 100% to 50% of its original value.
This was obtained by multiplying the concentration of TEP, for the variable percentages
of TEP, in POC (TEP_ pgc ; Table 4.4). This new concentration of TEP, was subtracted
from the pool of POC to quantify the fraction of POC which does not contain TEP..
Afterwards POM,,,,, rgp Was estimated as two times the corrected POC (Riley, 1971;
McCave, 1975; Klaas and Archer, 2002), to account for the non-carbon component of

POM (e.g. N and P) (Eq. (4.11)).
POM,,,, 1zp = (POC — (TEP, - TEP po¢ )) -2 (4.11)

Little is known of TEP composition. The only thing that is well known is that TEP is an
acidic polysaccharides which may contain fucose, rhamnose, arabinose and galactose
(Myklestad et al., 1972; Myklestad, 1995; Zhou et al., 1998). Therefore, to convert the
concentration of TEP, to that of its mass the molar weight of a generic polysaccharide
(C6H120¢) was used, which has similar carbon percentage by mass to Gum Xanthan. The
mass of TEP, ,, was determined by dividing the molar weight of CcH;,0¢ by the number
of moles of carbon in the polysaccharide and multiplying by the TEP, concentration (Eq.
(4.12)).

Molar mass¢ y,,0,

TEP,,, = TEP, ( ) (4.12)

nmolesc,y,0,

To determine the fraction of mineral, measurements of turbidity from a turbidity meter
(WET Labs, ECO-BB) from CTD casts in m™ s (metre per steradian -“standard unit of
radiant intensity”) were used. A conversion factor of 321.207 (from the manufacturer)
was used to convert the turbidity unit from m™ sr' to Nephelometric Turbidity Units

(NTU). Subsequently, a range of calibration factors (Turb,,;; Table 4.4) were used to
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convert the turbidity in (NTU) to the Total Suspended Solids (TSS) (ug I'") (Eq. (4.13)).
Afterwards, the mineral mass was estimated by subtracting POM ,,,, Tep and TEP from
the TSS (Eq. (4.14)).

TSS = Turbypy Turb., - 1000 (4.13)

Mineral = TSS — POM,,,,rgp — TEP. (4.14)

The relative contribution of each fraction to the aggregate (%) was calculated using the

equations Eq. (4.15), Eq. (4.16) and Eq. (4.17).

TEP,,,
%rep, = - X
¢ TEP.,, + POM,,,, rep + Mineral

100 (4.15)

o POM y
°POM T TEP__+ POM,,,1zp + Mineral

100 (4.16)

o B TEP,.,, %
OMineral = TEP.,, + POM,,, rgp + Mineral

100 (4.17)

The density of the aggregate containing TEP, pgg4r (kg m™), was calculated using the
equation Eq. (4.18) adapted from Mari et al. (2017). To constrain the porosity the range
reported in Table 4.4 was used. This range was chosen based on the typical values of

porosity reported in the literature for various aggregate types, shown in Table 4.5.

Yorep, %pom
Paggr = Pw ~ Paggr + (1 - paggr) [ 100 ) PrEPc T\ 7100 ) PPoM

%y
+ <M) PMineral ] (4’- 18)

100

The aggregate density along with the sea water density were used in Stoke’s Law to

calculate the sinking velocity, Vg4, (m d) of the aggregate (Eq. (4.19)). The range of

seawater viscosity was calculated by using the minimum and maximum values of

temperature and salinity observed at the three Stations during the sampling period. The

aggregate was assumed to be spherical and three different ranges of particle size were

investigated: small (2 4 - 10 um), medium (2 10 - 40 um) and large (2 40 - 160 pm). The
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three ranges of particle size were chosen from the Table 4.5, where the smallest and
biggest size of TEP particles from three different studies and locations (Santa Barbara
Channel, Monterey Bay and Diatom culture) were considered as a representative sample

of an aggregate containing TEP.

2 Paggr—P
Vaggr=§g$r2

(4.19)
TEP and POC fluxes were calculated by multiplying their respective concentrations by
the calculated aggregate velocity (Eq. (4.20) and Eq. (4.21)). All fluxes were converted
to mmol m~ d™! for literature comparison purposes.

TEP, = TEP.V (4.20)

aggr

POCfy,,, = POCV (4.21)

aggr
As part of this study the ballast effect of dense particles (e.g. mineral) on aggregate
composition, sinking rate and fluxes was investigated. Its more likely, it seems that there
is a lot of mineral in the aggregates when using this method. This may or may not be
reasonable. Therefore, to investigate this assumption a variant of the approach described

above was used, where the mineral fraction was removed and the aggregate was only

composed of TEP, and POM.
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Table 4.3 Equation symbols, description and units.

Symbol Description Unit
TEP, concentration of TEP, pmol 1!
concentration of POC 1
POC centration o umo
concentration of mineral I
Mineral He
concentration of POM without TEP pmol 1!
POMnon TEP ¢
Total S ded Solid I
Tss uspended Solids ug
turbidit NTU
TurbNTU Y
TEP,,, concentration of TEP, pg 1!
percentage of TEP in the aggregate %
YrEP,
percentage of POM in the aggregate %
Ypom
0 percentage of mineral in the aggregate %
A)Mineral
density of the aggregate kg m?
puggr
density of the seawater kg m*
Pw
sinking velocity of the aggregate md’
Vaggr
flux of TEP mmol m? d’!
TEPcflux ¢
flux of POC mmol m™ d”!
POCypy
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Table 4.4 Parameter symbols, description, range and unit.

Description Range Unit Ref.*
Symbol
density of the TEP, 700 - 840 kg m* (4]
PTEP,
density of the POM 1080 - 1700 kg m* [11[31[5]
Pprom
density of mineral 2100- 2600 kg m* [6]
PMineral
porosity of the aggregate 90 — 99 % [8]
paggr
TEP present in the pool of 50 - 100 % [2]
TEP poc
POC
range of calibration 1-3 mg I [7]
Turbml
factors
, aggregate radius small 2-5 um [8]
medium 5-20
large 20-80
seawater viscosity 1.26x107 - 1.41x107 kgms! wk
1
7 acceleration of gravity 9.81 ms? -

**Calculated by using min and max values of temperature and salinity observed at the three stations
* References

[1] Bruland and Silver, 1981 [5
[2] Passow and Alldredge, 1995 [6
[3] Turner, 2002 [7
[4] Azetsu-Scott and Passow, 2004 [8

Ploug et al., 2008
Chen et al., 2011
Nasrabadi ef al., 2016
see Table 4.3

—_—
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Table 4.5 Porosity and particle size values from different aggregate types, from different studies at

different locations.

Location

Santa Barbara
Channel

Monterey Bay

Diatom culture

Northern
California

Panama Basin

Southern

California Bight

phytoplankton-

derived aggregates

(lab.)

phytoplankton-

derived aggregates

(lab.)

phytoplankton-

derived aggregates

(lab.)

Aggregate type

Activated sludge

Activated sludge

Zoogloea ram igera

Mold pellets

Computer-

generated aggregate

Computer-

generated aggregate

Necessary for
advective flow in
sheared fluid

Marine snow
particles

TEP

TEP

TEP

Suspended
aggregates

Marine snow

Marine snow

S. costatum

(2 weeks)

S. costatum

(5 weeks)

S. costatum

(2 weeks)

Porosity
(%)**
99.9
91£0.15
66+0.10
83 +£0.03

98.4

97.5

98.4

99.5

99.3

99.6

99.2 +0.003

98.9 +0.009

98.4 +0.004
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Particle size
(diameter)**
100 pm
100 pm
100 pm
100 pm

100 pm

100 pm

100 pm

100 pm

up to Imm

11410 pum,
161 +£222
pm,11 £8 pm

8+9um, 13 £
6 pm, 10 +4
um, 10 £ 9 pm

4+2 um,

4+£3 um
Median 600 um
Modal 300 pm

2 mm, 3.4 mm,
4.6 mm

29+ 1.3 mm

2.8+ 0.5 mm

2+ 0.7 mm

1.7+ 0.3 mm

Ref.*

(61 [11]

(51[11]

(o1[11]

[12]

[12]

[13]

(10]

[14]

[15]



phytoplankton- E. huxleyi 0.959+0.018 1.5+ 0.3 mm [15]
derived aggregates

(lab.) (3 weeks)
fecal pellets (lab.) Appendicularian fp 43.4+0.1 0.63 £ 0.09 mm [15]
fecal pellets (lab.) Copepod fp 65 0.10 = 0.02 mm [15]
Culture (lab.) S. costatum - 2.51 £ 0.83 mm [16]
Culture (lab.) E. huxleyi - 1.67 + 0.68 mm [16]
Culture (lab.) Mix of S. costatum - 2.02 £ 0.48 mm [16]

and E. huxleyi

“value (mean = SD)

" References

1] Yano et al., 1961

2] Mueller et al., 1966

3] Mueller et al., 1967

4] Kajihara, 1971

5] Goodarz-Nia, 1977

6] Tambo and Watanabe, 1979
71 Alldredge, 1979

8] Smith and Coackley, 1984

9] Logan, 1986

| Asper, 1987

] Logan and Hunt, 1987
] Alldredge et al., 1993
] Sternberg et al., 1999
] Ploug et al., 1999
] Ploug et al., 2008
]

]
0
1
2
3
4
5
6] Iversen and Ploug, 2010

— e e e e e e

[ [
[ (1
[ (1
[ (1
[ (1
[ (1
[ (1
[ (1

4.4.3 Results

Overall the results showed that in both approaches, (aggregate with and without the
mineral fraction) in the majority of the cases the aggregate was positively or neutrally
buoyant with ascending velocity and upward fluxes of TEP and POC. To give an idea of
the results an example with aggregate particle size ranging from 40 to 160 um is reported
in Figure 4.10 for the Station A in summer. When the aggregate was composed of TEP,
and POM, TEP, had to reach ~ 60% of the total composition of the aggregate in order to
make the aggregate neutrally buoyant (Figure 4.10a). With the addition of the mineral
fraction, mineral had to reach ~ 60% of the total aggregate composition to make the
aggregate negatively buoyant and get it to sink. (Figure 4.10b). However, in both
approaches (with or without the mineral fraction) TEP, had to be less than 40 % of the
total aggregate composition to allow the aggregate to sink. The results for the aggregate
sinking velocity from the model with the mineral and no mineral and three particle size
ranges were compared with that estimated from the box model for the three stations (see
section 4.3.2) and reported in Table 4.6. Although all of them showed non-comparable
velocity values, on the basis of the results of sinking velocity from the box model it was
assumed that the model with TEP, POM and mineral and particle size ranging from 40 to
160 um may be the one closer to reality. To this end it was necessary to increase the

mineral fraction in the aggregate by acting on the calibration factor (Turb.,;). Due to no
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data being available on the mineral for the study area, the TSS used to estimate the mineral
fraction in this modeling approach was inferred to be from 1 to 3 times the turbidity
values. Furthermore, the conversion factor used to convert the turbidity unit from m™ st
! to Nephelometric Turbidity Units (NTU) is a rough approximation. This produced a
considerable uncertainty in the fraction of the mineral in the model results. For
comparison purpose with the box model the mineral fraction in the aggregate was
increased by changing the range of the calibration factors (Turb.,;) from 1 to 3 to 1 to
20 for the particle size ranging from 40 to 160 um. The results produced and reported in
Table 4.6 for all the stations gave velocity values consistent with that of the box model in
each station. An example of aggregate composition, density, velocity and fluxes of TEP,
and POC for Station A in summer is reported in Figure 4.10c. Results showed that at
Station A in summer the aggregate should sink at an average velocity of ~ 19 m d”', which
was close to that estimated for the same station in summer with the box model. The mean
TEP. and POC fluxes in Station A in summer estimated by this method were 83.3 + 89.6
mmol m™ d” and 292.3 + 332 mmol m™ d' (Figure 4.10c). Results of the TEP in the
aggregation model with and without the mineral fraction for the three Stations in spring
and summer have been inconclusive, therefore are not shown here. This was caused by
the huge computational uncertainties of this modeling approach in estimating aggregates
containing TEP sinking rate and TEP and POC fluxes. For the above reasons these results
will not be further discussed in this Chapter. However, this simple modeling exercise
shows how TEP dynamics is complex to resolve and that future work needs to be done in
the direction of getting turbidity measurements. This will allow to constrain the mineral
fraction in the aggregate, reducing the computational error and getting more appreciable

and realistic results.
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4.5 Modelling the effect of TEP on particle aggregation and export
4.5.1 Method

An experimental-modelling approach was used for the mechanistic investigation of the
fate of carbon exported, due to TEP and the potential effect of TEP on the marine
ecosystem in terms of CO, uptake, carbon sequestration and C : N stoichiometry of
organic matter. For this purpose the latest version of ERSEM published by Butenschon
et al. (2016) was used to derive a new formulation describing TEP dynamics. A
comprehensive description of the development of TEP in ERSEM, the equations and the
approach used to model TEP into ERSEM is given in Chapter 3. In this Chapter the
addition of TEP to the standard ERSEM is evaluated. Station A in the Celtic Sea and
Station L4 in the Western English Channel were used as test cases for model
development. /n situ observations of TEP collected at Station A were used to conduct a
sensitivity study and to tune the parameters of the TEP model. The skills of the TEP
model in reproducing general ecosystem properties (chlorophyll a, nutrients distribution)
were assessed at Station L4 against both observations and a reference simulation carried
out with the standard ERSEM. It should be stressed that the model developed in this study
is a preliminary tool meant to explore the potential impact of TEP on carbon export and

not to make TEP predictions.

4.5.2 Model assessment: test case Celtic Sea (Station A)

The TEP model (ERSEM with the TEP parameterisation) and the standard ERSEM were
implemented in the Celtic Sea and run for 10-years (2006 — 2015). Both models were run
by using the set-up developed for the Celtic Deep (Station A) under the UK Shelf Seas
Biogeochemistry programme and described in Aldridge et al. (2017). The TEP model
was run by using the set-up of the reference with the addition of the specific parameters
for the representation of TEP dynamics in the standard ERSEM, which are reported in
Table 4.7.
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Table 4.7 Parameter symbols, description, value and unit used in the TEP model.

Symbol Description Value Unit Ref.*
TEP density 770 kg m? [1]
PTEP,
POC density 1390 kg m* [2]
Proc
Phytoplankton density 1120 kg m* [3]
pPhyto
Aggregate porosit; 90 % 4
porosity ggregate p y 0 [4]
Sinking velocity of the sinking 10 md! [5]
rm
aggregate
Daily fraction of POC and 0.045 d! [6]
aggr
Phytoplankton going to the aggregate
Daily fraction of TEP, going to the 0.18 d! [5]
aggrrep
aggregate
Aggregation threshold 0.01 - [6]
aaggr
9 Aggregation factor lor0 - -
? Daily fraction of floating aggregate 0.1 d! [6]
going to the sinking aggregate
. Daily fraction of TEPc available to  0.008 d! [7]
bacteria
rR10 Daily fraction of sinking aggregate 0.008 d! [7]
available to bacteria
rR11 Daily fraction of floating aggregate  0.008 d! [7]

available to bacteria

* References
1
3
4
5
6
7

[2] average value of the range of values reported in literature Table 4.4

Van lerland and Peperzak, 1984

average value of the range of values of porosity reported in Table 4.6

Oguz, 2017

no available value from literature, value chosen on the basis of a sensitivity analysis

[
[
[
[
[
[7] Fujii et al., 2002

—_ e e e e

TEP density (p,,, ) was calculated by averaging the values from literature reported in

Table 4.4. Due to a lack of information on the specific density of POC (ppo¢) 1n literature,
its value was chosen as an average of the range of values reported in Table 4.4 for POM,
which includes a variety of different sinking particles ranging from fecal pellets to marine
snow. The density of phytoplankton (ppsy.,) Was assumed to be similar to that of diatoms
(Van Ierland and Peperzak, 1984). The value of porosity (poresity) used for the aggregates
containing TEP was extrapolated as an average value from the range of porosity values
reported in Table 4.3, which covers a wide range of possible aggregate types. The values

of the sinking aggregate velocity (rm) and the instantaneous rate of TEP, going to the
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aggregate per day (aggrrgp) used in this study were obtained from Oguz, (2017b). No
information on the daily aggregation rate of POC and phytoplankton was found in
literature. For this reason, the parameters regulating aggregation and mass exchanges
between the two aggregate pools (floating and sinking) were manually tuned to maximize

the agreement between observed and simulated TEP (Figure 4.11).

Celtic Deep St. A 26/07/2015

TEP, (umol I1) TEP, (umol I1) TEP, (umol I1)

0O 4 8 12 16 0 4 8 12 16 0 15 30 45 60

b)

Depth (m)

—-801} 1 L 1 L J
L] L] d

—-100+ 1 F 1 F 1

— aggr 0.01 alpha aggr 0.01 — beta 0.01
aggr 0.045 — alphaaggr0.1 beta 0.1
— aggr0.1 — alphaaggrl — betal
e obs. e obs. e obs.
-120

Figure 4.11 Sensitivity analysis conducted at Station A in the Celtic Sea on the 26th July 2015 for the following
parameters: a) daily fraction of POC and Phytoplankton aggregate going to the aggregate per day (aggr), b)
aggregation threshold (@444;) and c) daily fraction of floating aggregate going to the sinking aggregate per day

(). Each line indicates a TEP, profile from the TEP model run with the different parameters setting used against
the TEPc observations (obs.). The yellow dashed line in a), b) and c) represents the TEP, profile closest to the
TEP observations from which aggr, @444, and R values are used in the TEP model to simulate TEP dynamics

and results are presented in this chapter. The black dashed line indicates observed Surface Mixed Layer Depth
(SMLD).

A sensitivity analysis was carried out by using in situ observations of TEP collected at
Station A in summer 2015 (26™ July 2015) during the SSB programme. The analysis was
used to test sensitivity of the simulated TEP, to the variation of each single unknown
parameter (Figure 4.11a, b, c). For this purpose, three different runs of the TEP model
were performed with different values (about an order of magnitude from each other) for

each individual parameter and the results were plotted against the TEP, observations. The
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analysis revealed that the modelled TEP, is sensitive to the daily fraction of POC and
phytoplankton going to the aggregate everyday (aggr) (Figure 4.11a) and the daily
fraction of the floating aggregate going to the sinking aggregate everyday (8) (Figure
4.11c) in the SML. A lower variation of TEP, was found for aggr in the BML (Figure
4.1a). Conversely, TEP, is less sensitive to the variation of the aggregation threshold
(aaggr) (Figure 4.11b). Parameters allowing the model to achieve agreement between
simulated and observed TEP, (Figure 4.11a, b, ¢ yellow dashed line) were used to
simulate TEP at Station A in the Celtic Sea and at Station L4 in the Western English
Channel and the results are presented in this chapter (section 4.5.3 Model assessment: test
case Western English Channel (Station 4) and section 4.5.4 Results simulation at Station

A).

The daily fractions of sinking (rrR10) and floating aggregate (rR11) and the fraction of the
“free” TEP, (rr5) (i.e. TEP non-associated to other particles) available to bacteria are
assumed to have a similar bacterial degradation rate to that of the semi-refractory POC
(Fujii ef al., 2002). However, this assumption may not reflect reality because the “free”
TEP still in the form of DOC might be more accessible to bacteria in respect to the
aggregates with a consequent higher degradation rate. The TEP model with the
parameters reported in Table 4.5, along with the reference were used to investigate the
effect of TEP on particle aggregation and carbon export at Station A in the Celtic Sea for
the year 2015 after a 9 years spin-up period.

4.5.3 Model assessment: test case Western English Channel (Station L4)

Station L4 in the Western English Channel was used as a test case to develop the new
parameterization of TEP into ERSEM and test its skills. Although there is no information
on TEP for that area L4 is a well studied and characterized area, with a long time-series
of oceanographic data collected by the Western Channel Observatory (WCO) and
ERSEM has been used and improved at L4 for a long time by the Plymouth Marine
Laboratory (PML) with good results (Polimene et al., 2013; Polimene et al., 2015; Sailley
et al., 2015; Butenschon et al., 2016). For the above reasons Station L4 was the ideal

place to assess the skills of the TEP model.

Station L4 (4° 13> W 50° 15’ N) is located about 16 km southwest of Plymouth, in the
Western English Channel (Figure 4.12). It has a maximum depth of 50 m and it is
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characterized by a strong seasonality with deep vertical mixing in winter and strong
stratification during summer. Two distinct algal blooms are regularly observed. The first
in spring, dominated by diatoms and the second in late summer, dominated by
dinoflagellates (Widdicombe et al., 2010). Summer is characterized by low nutrient

concentrations (Smyth et al., 2009).

\

L4 - JseersN

/. Eddystone

25 20' 15 410" W

Figure 4.12 Western English Channel, Station L4 (Wyatt et al., 2010).

In the Western English Channel at Station L4 both the TEP model and the reference
ERSEM were run for a 13-year period (2003-2015). Here, model simulations are
presented from the year 2005 onwards when all the main biogeochemical state variables
had reached a stable seasonal cycle, without spurious trends due to initial conditions.
Model parameters (for both the TEP model and standard ERSEM) were taken from
Butenschon ef al. (2016) while the TEP-specific parameters are those reported in Table
4.7.

The mass balances for carbon (Figure 4.13a), nitrogen (Figure 4.13b), phosphorus (Figure
4.13c) and silicium (Figure 4.13d) from the TEP model were compared with that of the
reference to evaluate that the introduction of TEP into the standard ERSEM does not
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cause imbalances in mass conservation. The analysis highlighted no significant
differences between the reference and the TEP model for all the investigated variables
(Figure 4.13). To assess the TEP model skill, TEP model results were compared to results
from the reference and in situ observations of chlorophyll a (Figure 4.14a), particulate
organic carbon (Figure 4.14b), nitrate (Figure 4.14c), ammonium (Figure 4.14d),
phosphate (Figure 4.14¢) and silicate (Figure 4.14f) collected at Station L4 in surface
waters by the Western Channel Observatory (WCO) from 2005 to 2015. Statistical
analysis, Pearson correlation (Figure 4.15a) and RMSE (Figure 4.15b) were performed.
A complete evaluation of the model skill for the reference at L4 is presented in
Butenschon et al. (2016). Therefore, this study has only investigated the differences in
performance between the reference and TEP model. Overall the metrics results reported
in Figure 4.15, indicate a mild deterioration of the model performance due to the
introduction of TEP. All the variables analyzed perform less well in the TEP model in
respect to that of the reference. In situ observations of chlorophyll a, particulate organic
carbon and nutrients collected at Station L4 in surface waters from 2005 to 2015 reported
in Figure 4.14 are monthly averages. Therefore in order to give an idea of the variability
of these observations the same data for the year 2015 only are shown in Figure 4.16 with

the relative error bars.

L4 mass balance
5le—10 nitrogen

1.2[® ] b)
4l

~ 0.9t
|
£ | 3~$N\
S 0.6F | | 1 A .
g | (\H vV X
€ 0.3} \ /l — reference |l 2+ \\/
\J TEP model
OO ~ N L 1 1 .
le-11 _phosphorus sole—10 _ silicium

mmol m~2

3.2[¢) ] d '
NJ\/\\V 3.2t :

24 N 24

16 K { 16\ |

0.8} 1 o8l ) l

0 ' ' ' 0,0 ' ' *
2%06 2008 2010 2013 2015 2006 2008 2010 2013 2015
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Figure 4.13 Mass balance for a) carbon, b) nitrogen, c¢) phosphorus and d) silicium at Station L4 in the Western
English Channel from the 2006 to the 2015 for the reference (standard ERSEM) and the TEP model. Note the
low scale of the y axis.
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Figure 4.14 Surface: a) chlorophyll a, b) particulate organic carbon, c) nitrate, d) ammonium, ¢) phosphate and
f) silicate concentrations at Station L4 from 2005 to 2015 from fieldwork observations, reference and TEP model.
For comparison with POC from observations the modelled POC from the reference and TEP model includes:
particulate carbon from phytoplankton (diatoms, nano-, pico- and micro-phytoplankton), zooplankton (micro-
zooplankton and nano-flagellates), bacteria and particulate organic matter (small-, medium- and large size). Plus
particulate carbon from sinking and floating aggregates (only for TEP model).

a) Pearson
0.9
0.6
0.3
0
Chl POC NO3 N PO4 Si04
-0.3
b) RMSE
30 M reference
20 B TEP model
10
0 =

Chl POC NO3 NH4 PO4  SiO4

Figure 4.15 Statistical analysis: a) Pearson correlation, b) root mean square error (RMSE) of surface chlorophyll
a, particulate organic carbon and nutrients at Station L4 from 2005 to 2015 of fieldwork observations against
reference and TEP model.
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St. L4 Surface (2015)
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Figure 4.16 Surface: a) chlorophyll 4, b) particulate organic carbon (POC), ¢) nitrate, d) ammonium, ¢) phosphate
and f) silicate concentrations at Station L4 for the year 2015 from fieldwork observations, reference and TEP
model. The red error bar indicates the SD of the monthly averaged values. See Figure 4.14 for information on
modelled POC.
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4.5.4 Results simulation at Station A
4.5.4.1 TEP configuration versus observation and reference

To investigate the capability of the TEP model to reproduce the observed surface
chlorophyll in the years 2014 and 2015 at Station A in the Celtic Sea, the modeled
chlorophyll from the TEP model was compared with the observed chlorophyll and the
chlorophyll from the reference. Results highlight that the TEP model underestimates the
surface observed chlorophyll, especially during peak times (Figure 4.17).

St. A surface chlorophyll (2014-2015)

— TEP model
- - reference ||
e obs.

=
° o
-

Chl (ug I71)
¥,

Jul 2014 Nov 2014 Feb 2015 Jun 2015 Sep ﬁOlS Dec 2015
Dates

Jan2014 Apr 2014

Figure 4.17 Surface chlorophyll @ (1 m depth) observed (Celtic Deep 2 SmartBuoy) at Station A in the Celtic
Sea, compared with the reference and TEP model.

The TEP, profiles (Figure 4.18a), show the concentration of the TEP, in sinking and
floating aggregate, the concentration of the “free” TEP, (TEP non-associated to other
particles) and the sum of the sinking and floating TEP.. The match of TEP, (sinking plus
floating) with the observations shown in Figure 4.18 a, suggests that the model is based
on reasonable assumptions. However, it needs to be considered that TEP observations
displayed in Figure 4.18 are not independent data as they were also used in the tuning
process of the model. Consequently, further analyses using totally independent
observations are required to properly assess the model capability to simulate TEP. Both
models (reference and TEP model) were able to reproduce the observed chlorophyll
profile (Figure 4.18b). However, none of them was able to simulate the deep chlorophyll
maximum (DCM) at the correct depth. When comparing the modeled chlorophyll with
the observed chlorophyll, the results indicate that the reference overestimates the
concentration of chlorophyll at the DCM. Conversely the TEP model produces values
closer to the observations. Modeled POC in both models (reference and TEP model) was

not in good agreement with the observations (Figure 4.18c). This is due to the fact that
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even the standard ERSEM is not able to reproduce POC dynamics. The Figure 4.19 gives
an overview of the distribution of TEP, and chlorophyll concentrations in the water
column in July 2015. The observed DCM was at 27 metres depth (Figure 4.18b).
However, the TEP model predicted the DCM at 40 metres depth (Figure 4.18b and Figure
4.19b). Looking at the simulation of TEP, for the whole of July (Figure 4.19a) the results
indicated a high concentration of TEP, from the surface up to ~ 20 metres depth, followed
by a net decrease of TEP, to the DCM (~ 40 meters depth) and an increase of TEP, from
the DCM to the bottom.

Celtic Deep St. A 26/07/2015

TEP, (umol I-1) Chl (ug I1) POC obs. (umol I-1)
4 8 12 16 0 1 2 3 0 10 20 30
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A} 1 1
= - ; !
g 1 1 1
£ —60 i i : 1
Q
3 | l :
1 1 ]
1 ' 1
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1 1 1
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-100 \| — floating K .
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~120 4 8 12

POC model (zmol I1)

Figure 4.18 Vertical profiles of a) TEP., b) chlorophyll and ¢) POC from fieldwork observations and model
(reference and TEP model) at Station A in the Celtic Sea on the 26™ July 2015. TEP, profiles show: the
concentration of TEP, in sinking and floating aggregates, the concentration of the “free” TEP, (non-associated to
other particles) and the sum of the sinking and floating TEP,. The latter was used to compare the TEP, model

output with the observations. The black dashed line indicates observed Surface Mixed Layer Depth (SMLD). See
Figure 4.14 for information on modelled POC.
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Figure 4.19 Simulation results from the TEP model of a) TEP, and b) chlorophyll a in July 2105 at Station A in
the Celtic Sea.

Observed TEP concentrations from the 13™ April 2015 were used to test the capability of
the TEP model to reproduce the observed vertical profiles of TEP,, chlorophyll and POC
(Figure 4.20). TEP, results (Figure 4.20a) showed that on the 13" April the TEP model
was not able to reproduce the TEP., chlorophyll and POC profiles. The TEP model
simulation of TEP, and chlorophyll concentrations in the water column for April 2015,
showed very low concentrations of TEP (Figure 4.21a) and chlorophyll (Figure 4.21b) in
the water column from the beginning of the month to about the 20" of April. The seasonal
stratification occurred at the end of the month with the consequent development of a
phytoplankton bloom (Figure 4.21b). The higher concentration of chlorophyll observed
on the 13™ April without a correspondence in the TEP model simulation (Figure 4.20b)
indicates a temporal shift of the TEP model in predicting the seasonal stratification and
the spring bloom. This shift may explain the low concentrations of TEP,, chlorophyll and
POC predicted by the TEP model (Figure 4.20).
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Celtic Deep St. A 13/04/2015
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Figure 4.20 Vertical profiles of a) TEP., b) chlorophyll and ¢) POC from fieldwork observations and model
(reference and TEP model) at Station A in the Celtic Sea on the 13™ April 2015. TEP, profiles show: the

concentration of TEP, in sinking and floating aggregates, the concentration of the “free” TEP, (non-associated
to other particles) and the sum of the sinking and floating TEP... The latter was used to compare the TEP, model

output with the observations. The black dashed line indicates the observed Surface Mixed Layer Depth (SMLD).
See Figure 4.14 for information on modelled POC.
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Figure 4.21 Simulation results from the TEP model of a) TEP. and b) chlorophyll @ in April 2105 at Station A in
the Celtic Sea.
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4.5.4.2 CO; air-sea flux, DIC and NO;

A year-long simulation of the TEP model against the reference for the year 2015 was
investigated. The modeled CO, flux between the atmosphere and the sea surface indicated
an uptake of CO, from the atmosphere from April to November and a release of CO, from
the sea to the atmosphere during the rest of the year in both model runs (Figure 4.22a).
The change in direction of the flux of CO; during the year is highlighted by a spike in the
variation in percentage between the two models in April and November (Figure 4.22b).
The CO, fluxes were in good agreement with each other (Figure 4.22a). The only
significant difference in the flux of CO; between the TEP model and the reference was
found in November with a value of ~ 20 mmol C m™ d' (Figure 4.22b). Both models
estimated that on an annual scale Station A in the year 2015 was a source of CO; to the
atmosphere and released 886 mmol m? y™' of CO, (reference) and 927 mmol m? y™' of

CO; (TEP model).
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Figure 4.22 Simulation results from the TEP model and the reference of a) CO, air-sea flux, b) variation in
percentage of the CO, air-sea flux (TEP model and reference) and CO, air-sea flux difference between the TEP
model and the reference at Station A in the Celtic Sea for the year 2015.

Results of surface water DIC and NOs showed that from April to November for a given
amount of nitrogen there was more uptake of DIC in the TEP model (Figure 4.23). The
NO; estimated from the TEP model (~ 3 pmol 1) was about half of that of the reference
(~ 7 umol 1) during winter months (from January to April and from November to
December) (Figure 4.23b). In contrast, no significate difference in the concentration of
NO; in surface waters was found from April to November between the reference and the

TEP model (Figure 4.23b). In surface waters TEP, reached a peak value of 22 pmol 1" in
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May and a second lower peak of 14 pmol 1" between June and July. The highest peak of
TEP, corresponded to a period of NO; limitation and an increase DIC uptake. Overall,
the nitrogen concentration in the TEP model (Figure 4.24b) was lower compared to that
of the reference (Figure 4.24a) in the whole of 2015. Aggregates containing TEP do not
export only TEP, POC and phytoplankton biomass. A fraction of nitrogen, phosphorus
and silicium proportional to that of TEP, goes into the aggregates. Therefore, it also acts
to remove nutrients from the surface, causing a lower NOs concentration in the TEP

model compared to the reference run in winter (Figure 4.23b).
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Figure 4.23 Simulation results from the TEP model and the reference of surface water a) Dissolved Inorganic

Carbon (DIC), b) nitrate (NO;) and TEP, at Station A in the Celtic Sea for the year 2015.
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Figure 4.24 Simulation results of nitrate (NOs) for a) the reference and b) the TEP model at the Station A in the
Celtic Sea for the year 2015.

4.5.4.3 TEP and POC fluxes and sinking POC molar ratio

The simulated export of TEP, ranged from 0.002 mmol C m™ d' during winter months
to 102 mmol C m™ d”' in June, with an annual export of 5304 mmol C m™ y"' (Figure
4.25a). The exported POC in the TEP model was much higher than that of the reference
from April to November. POC export in the TEP model ranged from 0.06 mmol C m™ d°
! during winter months to 137 mmol C m™ d' in June, with an annual export of 8107
mmol C m™ y™ (Figure 4.25b). In contrast POC export in the reference ranged from 0.3
mmol C m? d”' during winter months to 23.5 mmol C m™ d”' in June, with an annual
export of 2151 mmol C m™ y' (Figure 4.25 b). Exported TEP was subtracted from the
total exported POC in the TEP model to determine the contribution of TEP, to the total
carbon export. This new POC no TEP export ranged from 0.06 mmol C m™> d' during
winter months to 35.3 mmol C m™ d”' in June, with an annual export of 2802 mmol C m”
2 y'! (Figure 4.25b). When comparing POC export in both models without the contribution
of TEP,, results indicate that both models give similar results. In the TEP model, TEP,
contributed ~ 65% to the export of POC on an annual basis in the year 2015.

The presence of TEP, in aggregates increased the export of carbon-rich POC (Figure
4.25b), with a higher C : N ratio than to that of the reference (Figure 4.26). The molar

ratio of the sinking POC from the TEP model (Figure 4.26) showed a high C : N ratio
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from May to November in the BML, with the highest ratio of 30 in June. In contrast, the

molar ratio of the sinking POC from the reference was closer to the Redfield ratio of 6.6.
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Figure 4.25 Simulation results from the TEP model and the reference of fluxes of a) TEP, and b) Particulate
organic carbon and the flux of POC minus TEP, ). The cyclic pattern of TEP and POC export in both the TEP
model and the reference may be determined by the fact that the exported primary production is consumed by
microorganisms (i.e. zooplankton and bacteria).
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Figure 4.26 Simulation results of the molar ratio of particulate organic carbon : particulate nitrogen (C : N) for a)
the reference and b) the TEP model.
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4.5.4.4 Carbon budget

To investigate the fate of the organic carbon exported with the aggregates, a carbon
budget of the TEP model was performed and compared with that of the reference model
(Figure 4.27). The results showed that the addition of TEP in the standard ERSEM
(reference) changes the dynamics of the system. In particular, TEP increases the export
of organic carbon and nutrient from the water column to the sediments. This caused a
decrease in the percentage of gross primary production respired by the planktonic
community in the water column from 94% to 68%. This decrease is mirrored by an
increase in benthic respiration in the TEP model, which is ~ 30% higher in respect to the
reference. The TEP model also simulates an increase of organic carbon and biomass in

the benthic system.

St. A carbon budget 2015

reference TEP model
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biomass i biomass i
(-0.07 %) pelagic (-1%) pelagic
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biomass
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(7 %) (31 %)

Figure 4.27 Simulation results of the carbon budget for the reference and the TEP model at Station A in the Celtic
Sea for the year 2015.

4.6 Discussion
TEP observations collected in spring and summer at three Stations in the Celtic Sea along
with three different modeling approaches were used to address the following objectives:
- Discover the vertical distribution of TEP in the Celtic Sea.
- Determine the major key processes controlling TEP vertical dynamics.

- Understand how TEP dynamics can affect particle aggregation and sinking.
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- Estimate the fate of carbon exported by aggregates containing TEP in the Celtic
Sea.

- Estimate TEP formation, accumulation rate and residence time.

Observations

TEP concentrations in the Celtic Sea have been reported for the first time and they are
within the range of previous studies with a similar water column depth (Table 4.8). The
concentration of TEP was generally higher in the SML than in the BML, and tended to
be higher at the stations where chlorophyll a concentration was also higher, as also
reported in other field studies (Passow and Alldredge, 1995; Hong ef al., 1997; Passow,
2002). During this study no correlation between TEP and chlorophyll a was found at
stations A and CCS in summer. Similar cases were reported in literature for coastal
Antarctic waters (Passow et al., 1995) and in the Adriatic Sea (Schuster and Herndl,
1995). However, at the Station CS2 in summer TEP, was associated to chlorophyll a,
with a significant and positive linear relationship (Figure 4.5). The TEP/Chlorophyll
relationship varies over time and space and can be predicted at the horizontal scale, but
not at the vertical scale (Ortega-Retuerta et al., 2017). This relationship is also species
specific (Jennings et al., 2017), indicating that the TEP/Chlorophyll relationship cannot

be used as a reliable indicator of TEP production due to the interaction of multiple factors.

The relationship between TEP and autotrophic biomass was investigated through the
analysis of TEP : Chlorophyll a ratio and the regression equation between both variables.
This was compared with information available in literature (Table 4.8). Several studies
reported a strong connection between the TEP : Chlorophyll a ratio and the stage of
phytoplankton blooms. Generally during the first stage of the bloom a low TEP :
Chlorophyll a ratio is observed, as the bloom develops nutrients are depleted, resulting in
a decrease of the phytoplankton biomass and the increase of the TEP : Chlorophyll a ratio
(Corzo et al., 2000). A low TEP : Chlorophyll a ratio was observed in the SML at stations
A and CCS in spring (Table 4.2). This may suggest an early phytoplankton growth stage,
due to the fact that nutrients were not limiting (Figure 4.2; Figure 4.3) (Prieto et al., 2006).

The slope of the linear regression (b) of TEP and chlorophyll a (log-transformed)
relationship at the Station CCS in spring (0.48 pg Xeq. pg Chl @ ') and at the Station CS2
in summer (0.47 pg Xeq. pg Chl a ') were within the range reported in the literature (0.65

+0.26 pg Xeq. ug Chl a ', Passow, 2002; Corzo et al., 2005) and close to those reported
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in Table 4.8. The slope of the linear regression (b) is generally larger than one (Passow,

2002) and is used for comparison across different systems (Corzo et al., 2005).

Table 4.8 Comparison of TEP concentration (ug Xeq. I'"), TEP : Chlorophyll a ratio (ug Xeq. pg Chla ™), TEP (log;o
ug Xeq. I'") versus chlorophyll a (log;o pg I'") equation between different studies with comparable water column depth.
For TEP concentration these values are indicated: average (minimum — maximum). The TEP to chlorophyll fits are for

logarithms to base 10.

Location Season Depth TEP TEP : Chla TEP/Chl a ref.**
(m) (ng Xeq.I")  (ug Xeq. ug Chla™) (log1o ng Xeq. ")
Santa Barbara winter, 0-75 - 27.8 - [1]
Channel summer
(29-252)
Otsuchi Bay spring - 1344 206.8 - [2]
(24-2321)
Gulf of Cadiz summer 0-100 118 281.5 - [3]
(25-609)
Gerlache Strait - 0-100 - 32.7 log TEP = 0.67* log Chl + 1.52 [4]
(0-283)
Gulf of Cadiz/ - 0- 200 - - log TEP = 2.14* log Chl + 0.20 [5]
Strait of
Gibraltar (25-205) (42-2708)
Antarctic - 0-200 15.4 40.9 log TEP = 0.38* log Chl + 1.08 [6]
Peninsula
(0-48.9) (0-1492)
Mediterranean - 0-200 21 453 log TEP =0.17* log Chl + 1.43 [7]
Sea
(5-94) (0-12,368)
Celtic Sea St. A spring 0-100 79.1 471.6 log TEP =-0.26* log Chl + 1.74 [8]
(33-120) (15-1102)
Celtic Sea St. A summer 0-100 120 (60-235) 608.1 Not related [8]
(88-2018)
Celtic Sea St. spring 0-150 60.7 73.9 log TEP = 0.48* log Chl + 1.73 [8]
CCS
(25-139) (20-126)
Celtic Sea St. summer 0-150 78.5 453.2 Not related [8]
CCS
(62-111) (110-728)
Celtic Sea St. summer 0-195 62.8 524.2 log TEP = 0.47* log Chl + 2.17 [8]
CS2
(23-100) (239-1221)

(*) Slope of the linear regression (b)

ek
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TEP is usually associated with primary producers (Passow and Alldredge, 1994; Mari and
Kigrboe, 1996; Mari and Burd, 1998; Passow ef al., 2001) and higher concentrations are
found within the euphotic zone and in the coastal areas compared to the open ocean
(Passow and Alldredge, 1994; Engel and Passow, 2001). This is in agreement with the
results from this study, showing a clear decreasing pattern of TEP, concentration found
along the transect from coast to the shelf edge in the SML and in the BML in summer
(Figure 4.6b), which is also associated with an increase of salinity. This suggests that TEP
may be produced in coastal seas or transported from land and exported to the open ocean
via surface mixing. This mechanism might depend on TEP lifetime, considering that TEP
can include refractory compounds (i.e. sulfated polysaccharides) difficult to be consumed
quickly (Alldredge et al., 1993; Passow, 2002a; Radi¢ et al., 2005b). Morever, the box
model suggests that its residence time in the water column is probably quite short (~ 5

days).

The contribution of TEP, to the pool of POC for the Southern Ocean has been estimated
by the use of chlorophyll a to carbon ratio (Ortega-Retuerta et al., 2009). The estimation
established that TEP, can contribute about 18% to the total detrital POC pool, suggesting
that TEP has a longer residence time compared to that of phytoplankton or bacterial POC.
In this study the contribution of TEP, to the pool of POC was investigated by taking into
account that only ~ 50% of TEP, may be retained on GF/F filters (Passow and Alldredge,
1995). The estimation for the Celtic Sea during spring and summer showed that TEP, can
contribute up to 50% to the total pool of POC, which is much higher than that reported
by Ortega-Retuerta et al. (2009) for the Southern Ocean. However, this number is
uncertain considering that it is only a rough estimation of the potential contribution of

TEP.

In this study Station A showed an irregular vertical pattern with an increase of TEP,
concentrations near the bottom of the water column for spring and summer. Typically,
TEP, concentration is highest in the SML and decreases with depth (Corzo et al., 2005;
Ortega-Retuerta et al., 2009). This increase of TEP, may be explained by the peculiarity
of the seafloor (muddy site), which may determine an interaction between the water
column and the seafloor, leading to a re-suspension of TEP, particles stored in it. It may
also be attributed to abiotic processes of aggregation of aged Dissolved Organic Matter

(DOM) (Wurl et al., 2011) such as detritus aggregation, disaggregation and degradation
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which can provide a constant supply of DOM that can coagulate enriching the pool of

TEP. (Biddanda and Pomeroy, 1988).

Box model

TEP, abiotic formation, residence time and turnover rate depend on environmental factors
such as POC concentration, UV radiation and microbial activity (Wurl et al., 2011).
Aggregates containing TEP produced by diatoms have shown a residence time of more
than 11 days and bacteria seem to be able to produce refractory TEP, with an even longer
residence time (Piontek et al., 2009). In the Celtic Sea TEP, residence time in the BML
at the three stations ranged from 1.1 day in spring at the station CCS to 8.3 days in summer
at the Station CS2, with an average value of 5.2 days which is closer to that estimated
(4.6 days) in the North Pacific, Offshore Hawaii and Arctic Ocean from June 2009 to
April 2010 (Wurl et al., 2011) and is within the range reported in the literature (from 0.3
to 34 days) (Wurl et al., 2011).

An important quantity of TEP sinking in the form of aggregates has been observed in
sediment traps (Newton et al., 1994; Passow et al., 2001). In the Santa Barbara Channel
estimated sedimentation rate of TEP, at 500 m depth ranged from 0.54 to 5.4 mmol m>
d”!, which contributes ~ 30 % to the flux of POC (Engel and Passow, 2001). The flux of
TEP. in a North Norwegian Fjord at 100 m depth reached a maximum of 32 mmol m™ d°
! (Reigstad and Wassmann, 2007). In the absence of information on the direct
measurement of TEP flux in the Celtic Sea, the results from the box model were compared
with Primary Production (PP) estimated in the Celtic Sea during spring and summer
phytoplankton blooms. The PP at the shelf edge in the Celtic Sea at the beginning of the
spring bloom is estimated to be ~ 70 mmol m™ d”', reaching 120 mmol m™ d”' during a
late bloom (Rees et al., 1999). However, the PP in summer in the Celtic Sea ranges from
16 to 32 mmol m™* d”' (Hickman et al., 2012). In the Celtic Sea the box model estimated
an average TEP flux of 84+53 mmol m™ d™' in spring, 72 + 29 mmol m™ d”' in summer.
The potential maximum share of TEP in PP in the Celtic Sea in spring and summer can
be inferred from the highest PP value reported in the literature for the area (120 mmol m’
2 d") and the average flux of TEP in spring and summer (77 mmol m™ d") from the box
model. This suggests that ~ 64 % of the PP could potentially support TEP production in
the Celtic Sea during spring and summer phytoplankton booms. This high percentage
could be in part explained by the fact that the carbon content of TEP is on the same order

of magnitude as that of phytoplankton (Engel and Passow, 2001).
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The box model was assumed to be a steady state system, with a loss of TEP due to
bacterial remineralization. Evidence indicates that the TEP degradation rate is similar to
that of POC (Passow et al., 2001) and the TEP can include refractory compounds (i.e.
sulfated polysaccharides) (Alldredge and Passow, 1993; Passow et al., 1994; Radi¢ et al.,
2005b). Therefore, the degradation rate of TEP may be similar to that of semi-refractory
POC of 0.008 d"' (Fujii ef al., 2002). However, in literature a degradation rate much
higher of 0.53 d™! for a generic carbohydrate (i.e. TEP) has been reported (Harvey et al.,
1995; Hamanaka et al., 2002; Mari et al., 2017). Due to this contrasting information on
the TEP degradation rate both values were used. Only the flux of TEP, at the bottom of
the water column, calculated after bacterial uptake by using higher degradation rate (0.53
d™!) made a noticeable reduction in the TEP fluxes. While applying this high degradation
rate the average flux of TEP in the Celtic Sea in spring and summer at the bottom of the
water column was 36.2 + 16.2 mmol m™~ d”'. Comparing this new flux of TEP, with the
highest PP value, the result showed that TEP, can make up for ~ 30% of the PP in the
Celtic Sea in spring and summer blooms. This is half of the value estimated without
considering bacterial uptake. Bacterial consumption of TEP, increased from ~ 0.7% (by
using the lower degradation rate) to ~ 40% (by using the highest degradation rate).
However, TEP, losses in the water column might be much higher due to other potential
losses from zooplankton grazing and photodegradation, none of them considered in this

study.

ERSEM

TEP dynamics are poorly studied in marine ecosystem models (Oguz, 2017b). In this
study a novel formulation describing TEP dynamics was implemented within ERSEM in
order to improve a mechanistic understanding of the role of TEP in the biogeochemical
carbon cycle. The standard ERSEM model implemented at Station A in the Celtic Sea
successfully reproduced the major features of the site. The introduction of TEP reduced
the performance of the model in reproducing chlorophyll ¢ and nutrient concentrations,
which are less representative of reality. This was mainly caused by the fact that the
formation of aggregates containing TEP and their export removes TEP, POC and
phytoplankton biomass as well as nutrients from the surface waters, making the
ecosystem more oligotrophic. The TEP model increased the carbon and nutrient export
from the water column to the sediments, resulting in an increase of the benthic respiration

of ~30% in respect to the reference. This change from pelagic to benthic respiration, can
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be explained by the modelled decrease in DIC in surface waters, which was more in the
TEP model respect to the reference. This was caused by the fact that much less of the
organic carbon (~30%) was respired back to the water column. The decrease in surface
DIC should lead to an increase of the CO, uptake from the atmosphere into the sea.
However, this effect may be partially balanced by the reduced GPP, due to reduced
nutrients in the TEP model. The 30% increase of the benthic respiration in the TEP model
in respect to the standard version of the model, suggested that TEP as a source of extra
sinking organic carbon may have a very important role in carbon sinking and per-nitrate
carbon drawdown and may play a significant role in the Biological Shelf Sea Carbon
Pump (BSSCP). However, in the Celtic Sea the nitrate concentration in winter is much
more likely to be ~ 7 pmol I"' as predicted by the reference, than ~ 3 pmol "' as predicted
by the TEP model. Therefore, this suggests that without TEP the system would keep and
remineralise more material in the water column, with higher nitrate concentration and less
drawdown of CO,. The peak value of TEP, in surface waters in May, which corresponded
to a period of NO; limitation and increased DIC uptake, may be linked to the process of
carbon overconsumption (Mari et al., 2017). The presence of TEP. in aggregates
increased the export of carbon-rich POC with a higher C : N ratio in respect to that of the
reference. C : N ratio of TEP has a mean value above 20, which is above the Redfield
ratio (Engel and Passow, 2001; Mari et al., 2001).The molar ratio of the sinking POC
from the TEP model showed a high C : N ratio in the BML from May to November,
reaching a maximum of 30. Due to a lack of observations on TEP and POC export in the
Celtic Sea it has been difficult to estimate if the values predicted by the model are realistic
for the area of study. However, POC export in both models (reference and TEP model),
the latter upon removal of TEP, to POC export, gave similar results. This indicates that

TEP, may account for ~ 65% of total exported POC on an annual basis in the year 2015.

Models comparison

Strengths, weaknesses and usability of the three different modeling approaches are
reported in Table 4.9. The section below compares and discusses the results from the box
model and ERSEM with TEP parameterisation (Table 4.10) at Station A in the Celtic Sea
in spring and summer. Each modeling approach has different limitations, this produced
uncertainty in the results, that made it difficult to estimate the aggregates containing TEP
sinking rate and TEP export. Furthermore, the lack of direct measurements made it
difficult to quantify carbon export at Station A. Nonetheless, the two independent

approaches produced results with the same order of magnitude, suggesting that TEP,
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export at Station A on the 26" July 2015 ranged from 48 to 102 mmol C m™ d™". In spring,
TEP. export from ERSEM was not comparable with the results from the box model,
because of the reduced performance of the model in reproducing spring variables. The
results of the sinking rate of the aggregates containing TEP from the box model showed
a sinking velocity range from 13 to 17 m d”', with an average of ~ 15 m d”'. In contrast in
ERSEM a fixed sinking rate of 10 m d"' was used, which was extrapolated as an
approximation of the maximum sinking flux of aggregates in the euphotic zone reported
in Oguz (2017b). These results indicate that the most likely sinking rate of aggregates
containing TEP in this study should be ~ 10 m d”. However, aggregates collected in situ

with a size smaller than 500 pm had a sinking rate from 4 to 42 m d”' (Kriest, 2002).
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Table 4.10 Summary of the different approaches (box model and TEP
model in ERSEM) used at the Station A in the Celtic Sea in spring and
summer to discover the role played by TEP in carbon cycling

B ERSEM
Station A (03/04/2015) ox
model
.. 13* 10**
Aggregates  containing TEP
sinking rate (m d™)
2 4-1 02
Carbon export (mmol C m™ d™)
4 .01
TEP, export (mmol C m> d™) 6 0.0
Station A (26/07/2015) Box ERSEM
model
.. 17*% 10**
Aggregates  containing TEP
sinking rate (m d™)
2 41 74
Carbon export (mmol C m™ d™)
102 48

TEP, export (mmol C m> d™)

(*) mean sinking rate (in the SML and bottom) without bacterial uptake
(**) fixed sinking rate

4.6 Conclusion

The vertical distribution of TEP in the Celtic Sea was mapped for the first time and
appears to be site specific. The observations highlight that the three stations have different
characteristics. Station CCS showed an export of TEP from spring to summer in the BML.
Station A showed a potential benthic interaction due to possible resuspension of TEP
from the seafloor. Station CS2 showed a strong relationship between TEP and chlorophyll
a in summer, suggesting that at this site chlorophyll @ may be a good biological indicator
of TEP concentration in summer. However, this is only a particular case since chlorophyll
a cannot be used as a reliable indicator of TEP at the other sites investigated. The
horizontal distribution of TEP showed a decrease pattern of TEP concentration along the
transect from the coast to the shelf edge in both SML and BML, highlighting that TEP is
mainly produced in coastal seas and eventually exported to the open ocean via surface

mixing.

TEP plays a crucial role in particle aggregation process and consequent carbon export. In
the Celtic TEP is potentially very important in driving the sinking of carbon and per-

nitrate carbon drawdown. This process may play a significant role in the Biological Shelf
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Sea Carbon Pump by increasing the export of organic carbon with higher C : N ratio and
by changing the partitioning of the exported organic carbon and its fate in the marine

ecosystem (i.e. increasing benthic respiration).

These results suggest that TEP dynamics is quite complex. However, in the three
investigated areas of the Celtic Sea TEP appears to be controlled by the phytoplankton
community in the SML. Conversely in the BML, TEP dynamics seem most likely
controlled by physical forcing such as export (Station CCS) and benthic interaction
(Station A).
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Chapter 5 Distribution of TEP in the North Sea in summer

5.1 Introduction

Shelf seas cover only 7% of the global ocean surface area and they are accountable for
10-30% of the global marine primary production (Gattuso ef al., 1998), playing a key role
in the global carbon cycle (Walsh, 1991; Mackenzie et al., 2004). The North Sea makes
an important contribution to sequestration of CO, from the atmosphere, through physical
and biological processes, i.e. the Continental Shelf Pump (CSP) (Tsunogai ef al., 1999;
Thomas et al., 2004; Borges et al., 2005). Nevertheless, the mechanisms and their
seasonality are still not fully understood (Prowe et al., 2009). The North Sea has a shallow
permanently mixed southern region and a seasonally stratified northern region. It has been
recognised as a heterotrophic system (Thomas ef al., 2005) with a strong sink for
atmospheric CO; (Thomas et al., 2004). The CO, taken up from the atmosphere by the
North Sea is exported to the North Atlantic Ocean, making the North Sea a very efficient
CSP (Thomas et al., 2005). The North Sea in summer has been characterized by an excess
of Dissolved Inorganic Carbon (DIC) uptake (~ 40 pmol kg™") without a corresponding
nutrient uptake (Prowe et al., 2009), which may involve a non-Redfield pathway for
carbon fixation (carbon overconsumption) (Toggweiler, 1993; Thomas et al., 1999;
Koeve, 2005). This process could be particularly effective if carbon-rich material, such
as gel-like Transparent Exopolymer Particles (TEP) are formed, as these sink out of the

surface layer and could increase the CSP efficiency.

This study was conducted during the International Beam Trawl Survey (IBTS) in August
2014 and 2015 and during SmartBuoy cruises in the year 2015 carried out by the Centre
for Environment, Fisheries and Aquaculture Science (Cefas) on board of the RV Cefas
Endeavour in the North Sea. In this Chapter the spatial distribution of TEP in the North
Sea in summer during the two years of the survey and the seasonal cycle of TEP at
SmartBuoy sites will be shown and discussed. To the best of my knowledge this was the
first survey of its kind and it will supplement the lack of literature on the distribution and
role played by TEP in the North Sea in summer. The main objectives of this Chapter are
to discover and investigate the seasonality and dynamics of TEP in the North Sea in the
context of the carbon cycling. To this end TEP observations were used to study the spatial
and temporal distribution of TEP in the North Sea. Furthermore, physicochemical factors
controlling TEP distribution were evaluated and discussed. In the last part of the Chapter
processes controlling TEP dynamics and the implications of TEP cycling for the North
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Sea productivity were evaluated. This was achieved by using a combination of different

approaches (i.e. observations, statistical analysis and modelling).

5.2 Materials and methods
5.2.1 Data collection

Discrete samples of seawater for TEP analysis were collected from the 76 sampling
stations (Figure 5.1) at the subsurface (from 4 m depth from a continuous water supply,
part of the Ferrybox) and at the bottom (using a 10 L Niskin bottle) across the North Sea.
In the year 2014 five replicates of a TEP sample were collected from the Ferrybox and
the Niskin bottle to evaluate the comparability of the two different sampling methods (e.g.
to determine if possible TEP particle disaggregation occurred in the sample from the
continuous water supply). The results indicate a variation between the two methods of +
1.2 % in terms of TEP concentrations. Seawater samples for TEP detection were
processed onboard as described in section 2.2 and later analysed in the UEA laboratory
as described in section 2.6. Particulate Organic Matter (POM) samples from surface and
bottom were collected (only in the year 2015) from 45 stations equally distributed over
the sampling area and analyzed with a CHN analyzer to determine Particulate Organic
Carbon (POC) and Particulate Organic Nitrogen (PON), as described in section 2.11.
Subsurface samples for chlorophyll a determination were collected at 50 stations
distributed at regular intervals within the sampling area and analysed by high liquid
performance chromatography (HPLC), as described in section 2.12 by Cefas. Information
on the surface water characteristics (temperature, salinity, fluorescence, turbidity and
photosynthetic yield) were obtained by the Ferrybox system installed onboard. CTD casts
were used to obtain the physico-chemical properties (temperature and salinity) of the
water masses in the North Sea. Samples for phosphate (POy,), silicate (SiO4), nitrate and
nitrite (TOxN), were collected from surface and bottom waters, equally distributed over
the sampling area. Nutrient concentrations were determined using the analytical method
described in Woodward and Rees, (2001). The typical precision of the analytical results
was between 2-3%. The detection limits for nitrate and phosphate were 0.02 pmol 1, for
nitrite 0.01 pmol 1", for ammonia 0.05 pmol 1", while silicate concentrations were well
above the limit of detection. A weekly median composite map of chlorophyll a from
MODIS (Figure 5.2) was provided by Plymouth Marine Laboratory, showing the spatial
distribution of chlorophyll a during the last week of the survey (from 29™ August to 04"
September 2014). The map highlights the beginning of an algal bloom off the east coast
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of England, at 55.85° N, 1° W (Figure 5.2). On 4™ September 2014 water samples for
analysis of TEP, chlorophyll @ and phytoplankton community were collected at 55.8° N,
1° E from the Ferrybox. The sample for phytoplankton community determination was
fixed in Lugol iodine solution and subsequently analysed under an inverted microscope,
at the Cefas Laboratory in Lowestoft. The results show a concentration of Karenia
mikimotoi in the sample of approximately 900,000 cell 1" (Elisa Capuzzo, personal

communication).

Figure 5.1 Map of the 76 sampling stations within the North Sea.

153



29 AUG — 04 SEP 2014 MEDIAN CHL

~ PML Remote Sensing Group

02 0.03 0.04 006 008 02 03 04 050807 ]

Figure 5.2 MODIS weekly median composite map of chlorophyll a (ug I'") from 29h August to 04 September
2014 (Plymouth Marine Laboratory — Remote Sensing Group). The frame highlights the beginning of an algal
bloom.

5.2.2 Cluster analysis

The North Sea covers a vast area with different regions. Therefore, in this study a cluster
analysis was used in order to split the entire North Sea dataset of each variable (TEP,
chlorophyll a, temperature, salinity, nutrients, POC and PON) into different regions with
similar characteristic. Sea surface temperature (SST), surface salinity and density
differences between the bottom and the surface of the water column were used to perform
the cluster analysis. Before the cluster analysis sea surface temperature (SST), surface
salinity and density differences were standardized to zero mean and unit variance, in order
to get the same numerical scale for these three variables. Afterwards these variables were
used in the clustering algorithm to divide the data into classes. These variables were
chosen for two reasons. Firstly, surface temperature and salinity provided information on
the spatial variation of the surface water masses. Secondly, the differences between
bottom and surface densities of the water provided information on the vertical
stratification of the water column. The clustering algorithm was described in Oliver ef al.
(2004). This method groups data according to Ward’s linkage (Ward, 1963). This method

was able to pick up distinct features of the North Sea area within the dataset. The cluster
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analysis was applied to the two different years of the survey (2014 and 2015) and was
performed by using the computer program Matlab. The resulting clusters are reported in
Figure 5.3a for the year 2014 and in Figure 5.3b for the year 2015. A major difficulty in
this cluster analysis was to determine how many clusters (or regions) should be used to
describe the main features of the North Sea. For this purpose analysis from two to five
different clusters was performed (not shown). The results indicated that using five clusters
was the best way to pick up the main features of the North Sea (Figure 5.3). The following
five regions were identified within the North Sea: Southern Coastal (SC), Southern Mixed
(SM), Transitional (T), Northern Stratified (NS) and Northern Coastal (NC).

Figure 5.3 Cluster analysis describing the five different regions of the North Sea: Southern Coastal (SC), Southern
Mixed (SM), Transitional (T), Northern Stratified (NS) and Northern Coastal (NC) in the year a) 2014 and b)
2015.

To evaluate the reproducibility of the cluster analysis between the two years of the survey,
the variation of temperature and salinity in the surface and the bottom of the water column
in the two different years (2014-2015) for each of the five regions were compared. The
cluster analysis has given similar results for both years. The results in Figure 5.4 show
the variation in temperature and salinity in the five different regions within the North Sea.
In particular, a clear difference between the southern mixed region and the southern
coastal region of the North Sea and the northern stratified region and the northern coastal
region of the North Sea was found for the temperature. Salinity showed similar, low

variation in all regions except for the northern coastal region. This high variation in
155



salinity in the region northern coastal region might be linked to the exchange of water

masses with the Atlantic along the Norwegian coast.
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Figure 5.4 Box-whisker plot of the cluster analysis describing the five different regions of the North Sea: Southern
Coastal (SC), Southern Mixed (SM), Transitional (T), Northern Stratified (NS) and Northern Coastal (NC) in the
year a) 2014 and b) 2015. The box indicates the lower and the upper quartile. The horizontal line within the box
represents the median. The whiskers indicate the lower and higher data points. The red crosses indicate outliers.
The outliers were classified as two times the interquartile range from the median.

5.2.3 Box model

The box model method described in section 4.3.1 was applied in this chapter to estimate
TEP, formation/accumulation rate, export flux, consumption and residence time at all the
sampling stations of the survey in the North Sea for the years 2014 and 2015. Profiles of
temperature at each sampling station were used to determine if the water column was
mixed or seasonally stratified. The box model equations were applied within the cluster
analysis, along with the information on the water column. The results were divided into
the five different regions and classified as mixed or stratified according to the profile of
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the temperature. The scheme shown in Figure 5.5a was applied at stations with
stratification. Otherwise the scheme shown in Figure 5.5b was applied. The box model
consists of a steady state system where even in mixed water column particles can sink

and reach the bottom and no re-suspension occurs.

Stratified Mixed
a) b)
TEP,.. tgp LTEPclsw TEP,.. tgp. [TEPd
Cexp Cexp
C——> Bsin. —_—> sink
SMLD
[TEP_]... TEP D, TEP,,
_tén bacteria | | E’ bacteria "
TEPC acc E ————:-ﬁ> ,E —_——: _l>
TEP,..
sink,,, sink®,,, sinkb,,,
Wdepth Wdepth

Figure 5.5 Box model describing the fate of TEP, and fluxes in a) stratified region and a b) mixed region of the North
Sea. White arrow indicates TEP, input, the black arrow indicates export of TEP, from the SML, the white dashed arrow
indicates the fraction of TEP. removed due to potential bacterial remineralization. [TEP]spyy - average TEP,
concentration in the SML (umol I™"), TEP_form - TEP. formation rate in the SML (pmol I''dh, TEP, exp - TEP:

export flux (mmol m™ d™), sinkgyy, - TEP, sinking rate at the SML (m d™"), [TEP_]gyy - average TEP, concentration
in the BML (umol 1), TEP, 4¢ - potential accumulation rate of TEP, in the BML (umol 1" d™') without bacterial
uptake, TEP,.s - TEP, residence time (d), TEP?up, - TEP, loss due to bacterial uptake (mmol m? d™), sinkpgy -

potential TEP, sinking rate without bacterial uptake (m d™"), sinkgott - potential TEP, sinking rate with bacterial uptake
(md"), SMLD - Surface Mixed Layer (m), W gepen - total depth of the water column (m).

5.2.4 Statistical analyses

To explore the potential factors controlling TEP distribution, statistical analyses were
performed using different software packages. Data were considered together or separated
into different groups, according to the result from the cluster analysis. Figures were
created in Microsoft Office Excel, Matlab and PRIMER 7 (Plymouth Routines In
Multivariate Ecological Research). Regression analysis, t-test and cluster analysis were
performed using Matlab. Multivariate analysis was conducted using PRIMER 7 statistical
software with PERMANOVA+. Data were normalized before further analysis, with
resemblance matrices constructed based on Euclidean distances. Relationships between
regions with similar characteristics were visualised by principal coordinates analysis

(PCO), with data significance assessed by PERMANOVA (999 permutations). Data
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vectors were overlaid onto PCO plots of regions. Vector direction indicated correlated
data, whilst vector length indicated the degree of data correlation. Relationships were

considered to be significant when p < 0.05.

5.4 Results: distribution of TEP in summer 2014
5.4.1 Characterisation of environmental conditions

Environmental condition of the North Sea in summer 2014 are shown in Figure 5.6.
Surface and bottom temperature indicated a clear division between the northern
seasonally stratified region and the southern mixed region of the North Sea (Figure 5.6a
and b). Temperature was higher in surface waters (range 12.71-20.58 °C, mean 15.60 +
1.95 °C, Figure 5.6a) respect to that of bottom waters (range 7.32-20.80 °C, mean 11.42
+ 4.44 °C, Figure 5.6b). The warmest water was found along the Dutch and German
coastline. The lowest temperature was observed in the bottom waters of the northern
region of the North Sea. Lower salinity was observed in surface waters (range 31.54-
35.13, mean 34.36 + 0.75, Figure 5.6¢) in respect to that of bottom waters (range 32.94-
35.39, mean 34.84 + 0.47, Figure 5.6d). Lower salinity was found in the southern North
Sea along the Dutch and German coastlines, which is linked to the presence of river
inputs. Low salinity was observed in surface waters near the Norwegian coastline, which
results from the outflow of surface waters from the Baltic. Nutrient concentrations were
generally low in surface waters. TOxN concentration in surface waters ranged from 0.1
to 3.1 pmol 1" with a mean value of 0.3 £ 0.6 pmol I"' (Figure 5.6e). A high peak of TOxN
concentration (3.1 pmol 1) was found in the middle of the northern North Sea region and
a second peak of lower intensity was recorded in the northwest area of the North Sea
along the UK coastline. However, TOxN remained low within the southern region of the
North Sea. PO4 and Si0j in surface waters followed similar spatial patterns ranging from
0.01 to 0.32 pmol 1", with a mean value of 0.08 + 0.09 pmol I"" (Figure 5.6f) and from
0.1 to 0.64 pmol 1", with a mean value of 1.21 + 1.18 pmol I"' (Figure 5.6g) respectively.
Both presented a high concentration in the southern North Sea region and close to the
coastline, suggesting the important contribution of riverine inputs. POy also showed a

peak concentration in the northwest North Sea area close to the UK coastline.

158



64T

(;.1 owt) s1oyem ooegms ut dyeoi[is (3 °( [ jown) s1opem ooegms ur ojeydsoyd (3 (|| [ow) s1ojem does ul
auniu snjd jeniu (9 ‘SI9jem WOR0Q pue 298NS Ul AJrurfes (P-0 ‘sidjem Woyoq pue doejIns ul (O,) danjerddwo) (q-. 4] (g JOWWNS Ul 8dS YLON U} JO UOHIPUOD [BIUSWUOIAUY 9°G 2InJ1]

0¢

25

(4%

£¢

s¢

9¢

NoZ9

‘\ﬁ_i,_s.,m wo&wz,w, ,.Ao (Do) ouaﬁom..:o_a wummr:m,.?

Ayuyes wopog (p



5.4.2 TEP observations in 2014

Analyses of water samples revealed high TEP, concentrations in surface waters (average
of 14 + 4.8 pmol I'") relative to bottom (average of 11.8 + 4.9 pmol I'") waters (Figure
5.7a, b), with the highest concentrations near the Netherlands coast for both surface (35.8
umol I''; Figure 5.7a) and bottom (34.4 umol I"'; Figure 5.7b) waters and at 10 meters
depth (34.7 umol I'") in the algal bloom (Figure 5.7 ¢; 55.8 °N, 1°E). The phytoplankton
community determination analysis, showed a concentration of Karenia mikimotoi of
approximately 900,000 cell I"'. Blooms of Karenia mikimotoi have long been reported to
produce prolonged blooms in the North Sea between July and August (Davidson et al.,
2009). Distribution of TEP, was correlated with that of chlorophyll in the southern mixed
region (Figure 5.7c, d). Peaks of chlorophyll a were observed in the algal bloom (Figure
5.7 ¢; 55.8°N, 1°E) (12.2 ug I'") and surface (5.9 pg I'") and bottom (4.5 pg I'") waters of
the Netherlands coast, which were associated with high TEP, concentrations. Extremely
low chlorophyll a concentrations (below the detection limit) were observed in the central

North Sea in surface and bottom waters.

The seasonally stratified northern region (Figure 5.8) showed higher TEP, concentrations
in surface with respect to the bottom waters, with the highest difference along the
Shetland Isles (16.4 pmol 1""). A second high difference in TEP, concentrations was found
in the algal bloom (12.8 pmol I'"). The southern mixed region (Figure 5.8) had generally
higher TEP, in the bottom waters, however this did not apply to southern coastal waters
of the Netherlands coast. Overall the TEP. concentration in surface and bottom waters

was significantly positively correlated (R*= 0.33, p < 0.001, n = 76).
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Figure 5.7 Spatial distribution of TEP, content (umol "' for a) surface (4 meters depth) and b) bottom waters; c)
chlorophyll (pg I'") surface and d) bottom waters during summer 2014 in the North Sea. The frame highlights an
algal bloom (55.8°N, 1°E) of Karenia mikimotoi.
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Figure 5.8 TEP, concentration (pmol 1'1) differences between surface and bottom waters during summer 2014 in
the North Sea.

5.4.3 Cluster analysis for 2014

A box plot of TEP, concentrations in surface and bottom waters for each of the five
regions of the North Sea is shown in Figure 5.9. Surface and bottom waters in all regions
had a similar median TEP, concentration of ~ 10 umol I"', except for the southern coastal
region where surface and bottom waters had a median concentration of TEP, of ~ 30 pmol
I"" (Figure 5.9). The southern mixed region had the widest range of TEP, concentrations
in surface waters (Figure 5.9a). Results from the cluster analysis in the North Sea for the
year 2014 are shown in graphs (Figures 5.10, 5.11, 5.12 and 5.13) and summarised in
tables (Tables 5.1, 5.2 and 5.3). Only regressions of variables which showed statistically
significant correlations within the five different regions of the North Sea for the year 2014

are reported in tables and presented here.
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Figure 5.9 Box-whisker plots of TEP, (umol I"") concentrations in a) surface and b) bottom waters during summer
2014 in the five different regions of the North Sea: Southern Coastal (SC), Southern Mixed (SM), Transitional
(T), Northern Stratified (NS) and Northern Coastal (NC). See Figure 5.4 for an explanation of box and whisker
plots.

A significant positive relationship between the concentrations of TEP, and chlorophyll a
(Figure 5.10 and Table 5.1) was observed in the North Sea in surface (R*= 0.35, p <
0.001, n = 54; Figure 5.10b and Table 5.1) and bottom waters (R*= 0.52, p < 0.001, n =
25; Figure 5.10b and Table 5.1). From the five identified regions within the North Sea
area a significant positive relationship between TEP, and chlorophyll a was found only
in the southern mixed region in surface (R*= 0.49, p < 0.001, n = 20; Figure 5.10a and
Table 5.1) and bottom waters (R*= 0.29, p < 0.05, n = 19; Figure 5.10b and Table 5.1).
A positive relationship between the TEP, concentration and temperature was found in the
North Sea in bottom waters (R*= 0.35, p < 0.001, n = 74; Figure 5.11b and Table 5.2).
Salinity and the TEP, concentration had a negative significant correlation in the North
Sea in bottom waters (R*= 0.37, p < 0.001, n = 74; Figure 5.11d and Table 5.2). Negative
significant correlations were found between the concentration of TEP. and inorganic
nutrients (Figure 5.12 and Figure 5.13) in surface and bottom waters. TEP, was negatively
correlated with NH, in surface waters in the North Sea (R2 =0.13,p<0.05,n=51; Figure
5.12b and Table 5.3) and in the southern mixed region (R*=0.24, p <0.05, n= 17; Figure
5.12b and Table 5.3). Si04 showed a negative correlation with TEP, in the North Sea in
surface (R*= 0.12, p < 0.05, n = 51; Figure 5.12d and Table 5.3) and bottom waters (R*
= 0.26, p < 0.05, n = 24; Figure 5.13c and Table 5.3). A further significant negative
correlation for SiO, was observed in surface in the southern mixed region (R*=0.25, p <
0.05, n = 17; Figure 5.12d and Table 5.3) and in the northern stratified region (R*= 0.14,
p < 0.05, n = 22; Figure 5.12d and Table 5.3). No correlation was found for TOxN and
POy, in surface (Figure 5.12a, ¢) and bottom waters (Figure 5.13a, b). However, TEP,
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concentrations increased when surface nutrients became limited for phytoplankton

(Figure 5.12).

In addition to the regression analyses between single paired variables a multivariate
analysis (PCO) was carried out in order to obtain an in depth understanding of the
relationships among all variables. Due to a lack of data points in the years 2014 for the
bottom waters, principal coordinates analysis (PCO) was only applied to surface data.
The PCO analysis (Figure 5.14) revealed that PCO1 and PCO2 accounted for 57 % of the
total variation in the analysis. The distribution of the five regions of the North Sea (Figure
5.14) reflected the results of the cluster analysis. Spatial distribution of the different
regions in the North Sea indicated a statistically significant difference between regions
(PERMANOVA; p = 0.001). PCO also showed similar relationships between variables
which were addressed previously by the single paired regression analysis. However, PCO

analysis provides a summary of relationships and interactions among variables.
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Figure 5.10 Plots of TEP, (umol I"") versus chlorophyll @ (ng I'") concentrations in a) surface and b) bottom
waters during summer 2014 in the five different regions of the North Sea: Southern Coastal (SC), Southern Mixed
(SM), Transitional (T), Northern Stratified (NS) and Northern Coastal (NC). The black line represents the linear
regression curve for all the data points.
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Table 5.1 Regression analysis of TEP, (umol 1) versus chlorophyll a (pg I'') concentrations in surface and
bottom waters during summer 2014 in the five different regions of the North Sea: Southern Coastal (SC), Southern

Mixed (SM), Transitional (T), Northern Stratified (NS) and Northern Coastal (NC).

Variable Depth Region Regression R’ n pvalue
Chlorophyll a Surface All regions y=2.44x+11.12 0.35 54 <0.001
SM y=3.32x+7.36 0.49 20 <0.001
Chlorophyll a Bottom Allregions  y=3.34x+9.79 0.52 25 <0.001
SM y=1.97x +10.77 0.29 19 <0.05
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Figure 5.11 Plots of TEP, concentration (umol I"") versus temperature (°C) and salinity in a-c) surface and b-d)
bottom waters during summer 2014 in the five different regions of the North Sea: Southern Coastal (SC), Southern
Mixed (SM), Transitional (T), Northern Stratified (NS) and Northern Coastal (NC). The black line represents the
linear regression curve for all the data points.
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Table 5.2 Regression analysis of TEP, concentration (umol 1) versus temperature (°C) and salinity in surface and bottom
waters during summer 2014 in the five different regions of the North Sea: Southern Coastal (SC), Southern Mixed (SM),

Transitional (T), Northern Stratified (NS) and Northern Coastal (NC).

Variable Depth Region Regression R’ n pvalue
Temperature Bottom All regions y =0.65 x+ 4.33 0.35 74 <0.001
Salinity ‘ Bottom All regions y =-6.29x +230.6 0.37 74 <0.001
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Figure 5.12 Plots of TEP, (umol 1'1) versus nutrient concentrations a) TOxN, b) NHy, ¢) POy, d) SiO, in surface
waters during summer 2014 in the five different regions of the North Sea: Southern Coastal (SC), Southern Mixed
(SM), Transitional (T), Northern Stratified (NS) and Northern Coastal (NC). The black line represents the linear

regression curve for all the data points.
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Figure 5.13 Plots of TEP, (umol I"") versus nutrient (umol I"") concentrations a) TOxN, b) POy, ¢) SiOy in bottom
waters during summer 2014 in the five different regions of the North Sea: Southern Coastal (SC), Southern Mixed
(SM), Transitional (T), Northern Stratified (NS) and Northern Coastal (NC). The black line represents the linear
regression curve for all the data points.

Table 5.3 Regression analysis of TEP, (umol I'") versus nutrient (pmol l'l) concentrations in surface and bottom waters
during summer 2014 in the five different regions of the North Sea: Southern Coastal (SC), Southern Mixed (SM),

Transitional (T), Northern Stratified (NS) and Northern Coastal (NC).

Variable Depth Region Regression R’ n p-value
NH,4 Surface All regions y=-544x+17.5 0.14 51 <0.05
SM y=-5.14x + 16.83 0.25 17 <0.05

SiO, Surface Allregions y=-1.648x +16.28 0.13 51 <0.05
SM y=-1.83x+16.94 0.26 17 <0.05

NS y=-2.92x+15.56 0.15 22 <0.05

SiO, Bottom All regions y=-1.64x + 16.58 0.26 24 <0.05

167



North Sea 2014 Surface

Normalise

Resemblance: D1 Euclidean distance

4 Region
SC

¥ SM

AN o NS
S = @ NC

PCO2 (22.6% of total variation)

A
NH4
S104 P04
41
Temperatuse
-6 1 I I I |
I I I I 1
-2 0 2 4 6

PCO1 (34.6% of total variation)

Figure 5.14 Principal coordinates plot (PCO) showing relationships between variables in the five different regions
of the North Sea: Southern Coastal (SC), Southern Mixed (SM), Transitional (T), Northern Stratified (NS) and
Northern Coastal (NC); in surface waters in the year 2014.

5.4.4 Box model for 2014

Results from the box model for the year 2014 are summarised in Table 5.4. The SMLD
in the stratified regions was ~ 30 meters depth. The water column depth ranged from 20.4
+ 1.9 meters in the southern coastal region to 123.9 + 56.7 meters in the northern coastal
region. The highest and lowest TEP, formation rate were estimated in the southern coastal
region (15.1 £ 0.3 pmol I d") and in the transitional mixed region (5.7 + 1.2 pmol I' d
" respectively. The export of TEP. from the surface to the bottom of the water column
ranges from 189.2 + 50.5 mmol 1" m™ d' in the transitional stratified region to 308.8 +
23 mmol I'' m™ d” in the southern coastal region. The lowest and the highest potential
sinking velocity of TEP, was predicted in the mixed regions Southern Coastal (9.7 £ 0.9
m d) and transitional (22.8 + 1.5 m d). Accumulation of TEP, below the mixed layer
deep in the stratified regions ranged from 2.6 + 1.5 pmol I"' d”' in the northern coastal
region to 6.0 £ 2.7 pumol 1" d”! in the transitional stratified region. On the contrary the
residence time of TEP, ranged from 1.9 + 1.2 days in the Transitional stratified region to

4.2 £ 1.9 days in the northern coastal region. The use of a bacterial remineralization factor
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0f 0.08 d' did not result in a significant decrease in TEP, flux, nor in change in the sinking
velocity of TEP.. In contrast the bacterial remineralization factor of 0.53 d”' produced an
increase on the loss of TEP,, a substantial net decrease in TEP, flux and a consequent

decrease in the sinking velocity of TEP..

169



0LT

(UONEBIASD PIEPUB)S F ONJBA UBIW)

uo13a1 o1310ads a3 ur suorye)s Jo oquiny ()

(L10T “17 12 eN) “(;_P) €S°0 = qd ‘@IEIPAYOQIED DLI0UST € JO JET) 0} IB[IWIS LLIG)OE] A OIET UOTEPRISOP °dHL 4
(200z “1v 12 1) “(;_P) 8000 = ¢qd “DOd AI0)BLDI-IWOLS JO YeY) O} JE[IWIS BLIANOR] Aq el UONEPLISIP *dHL %

9)

L9STEETl  69FSLT  OEFTI 9LFLS  LLFEEL  LOSTLR0L  POFOT  61FTh  S1F9T  1TF06  SEFIEl 8ISFIOZ  60FrL  0TFSSI  poumens | N
(1¢€)

CETFS06  6STFPIE  PSFROl  €11FSTW  PIIFEL €9EF b11 SOFLT  STFIS VIFCH  TTFOI §TEISI 89T ISI pIEL9 TeF0bl pognens | o
(03]

QEEFI69 €9F8LT  FFCII Y8 F9°ET C8FLET  LITFTO0I  POFST TIF6T LTFO9  SHFT6  IEFECEl  SOSFT68I 9IF69  SEFSHI  POYnens .
(@)

0EFSLY - LOFLOI  STF9TC - YICFSEYl  €0FTT - - - SIF8TC CTWFSOLL  TIFLS 9TFCIl  POXIN *
(02)

1'9FL1E = PIFIL 6TFI'ST = 601 F 901 90F 91 : = = 6TFTST  TLLFE66I  TTFE9  9pFCEl  POXIN Ws
(@)

6’1 FH0T - SFOFST  60F96 - TUFLEYL  TOFST - - - 60FL6 €CFYY0E  COFTSI  90F6IE PN IS

uoIgay

w4 g AQTNS " Bpuas L Mbpuas Bo9yurs w'™addl  S™idAL dAl PdAl ™MAPdall  ™MSyus e 11 ol ggy  ™SPdar] ey

(,.p ) ayerdn [e110)oeq YIIM djer Sunjuls °dH [, [enuajod — :cmu::w “(;-p ) oxerdn [eLI2}OBQ JNOYIM BJBT FUDUIS
°ddL renudjod — #09yugs ‘(| p , w joww) oxeldn [eL12}oeq 0} ANP SO °dHL — E:mm A.L ‘() own 20udpISaI °qH I, - 524’ g 7.1 ‘yerdn [errajoeq ynogym (p | [owrt) TN 9Y) Ul °dH.L JO S)BI UONB[NWNIOE
renuajod — 2272 g g1 (1 jow) TING oY) U UOReNUa0U0d gL - WA g7.L] (P W) TINS o Je apex Sunyurs *ga L — TWSyups (| p _ w jowrww) Xnfg }10dxa *qq L — 224 g.L ‘(| p 1 10wr) TINS oy ut yer

uoneuLIoy *q L - 4042 .1 ‘(|1 [owr) TS Y Ul uonenuaou0d °qa L - MS[gg.L] ‘(ON) [8S80D) UISYLON Pue (SN) PAGIENS WIAYHON (L) [BUOHISULIL (N'S) PIXIA LIAYINOS (D) [BISLOD) UIAYINOS
‘89S LION U} JO SUOIFAI 9AIJ 9} UI ] () J8aA Y} 10J SIdJeM PIXIW pUL PAJIIens Ul 8IS YLON dY) Ul Saxn[j pue °JH [, JO 218} oY) SuIqLIosap [9pOW X0q Y} WOIj SINSI oy} SuIsLrewrwns 9[qe], G d[qeL



5.5 Results: distribution of TEP in summer 2015
5.5.1 Characterisation of environmental conditions

Environmental conditions of the North Sea in summer 2015 are shown in Figure 5.15.

Surface and bottom temperature in summer 2015 showed similar patterns to those found
in summer 2014. The temperature was higher in surface waters (range 12.10 - 19.13 °C,
mean 15.12 = 1.61 °C, Figure 5.15a) in respect to that of bottom waters (range 7.07 -
19.13 °C, mean 10.54 + 3.48 °C, Figure 5.15b). Lower salinity was observed in surface
waters (range 32.79 - 35.28, mean 34.73 £ 0.48, Figure 5.15¢) in respect to that of bottom
waters (range 33.63 - 38.73, mean 35.36 + 0.82, Figure 5.15d). Similar to 2014 a low
salinity was found in surface and bottom waters in 2015 in the southern North Sea along
the Dutch and German coasts. No clear evidence of low salinity in surface waters near
the Norwegian coast was detected in the year 2015. Nutrient concentrations were
generally low in surface waters. TOxN concentration in surface waters ranged from 0.04
to 2.15 pmol I"', with a mean value of 0.32 + 0.48 pumol 1" (Figure 5.15¢). A peak
concentration of TOxN (2.15 umol 1) was found in the southern region of the North Sea
along the UK coast. However, TOxN remained low elsewhere within the North Sea area.
PO, in surface waters ranged from 0.01 to 0.28 pmol I"', with a mean value of 0.08 + 0.08
umol I"' (Figure 5.15f). POy presented high concentrations along the UK coast, with peaks
in the southern North Sea region (0.28 pmol 1) and along the Orkney Isles (0.25 pmol I
1. Si04 was very low in the North Sea except for a peak concentration (3.79 pmol 1) in

the southern North Sea along the Dutch and German coasts.
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5.5.2 TEP observations in 2015

In 2015, as for the year 2014, TEP, showed high concentrations in surface (average of
10.4 +4.4 pmol I'") relative to bottom waters (average of 7.6 + 3.2 pmol I'") (Figure 5.16a,
b). The highest TEP, concentrations were found in surface waters along the Scottish coast
(26.4 umol 1) and near the Shetland Isles (24.1 pmol I'"). These high TEP, concentrations
were associated with high surface chlorophyll a concentrations (~ 2 pg ') and may be
linked to an algal bloom. Chlorophyll @ concentrations (Figure 5.16¢, d) ranged from 0.19
pg I to 2.11 pg 1", with a mean value of 0.62 + 0.43 pg 1" in surface waters and from
0.04 ng 1" t0 3.61 pg 1", with a mean value of 0.52 + 0.79 pg I in bottom waters. Bottom
waters of the northern stratified North Sea region showed extremely low chlorophyll a
concentrations. Overall the North Sea (Figure 5.17) showed higher TEP, concentrations
in the surface waters with respect to the bottom waters, with the highest difference along

the Scottish coast (19 pmol I'") and the Shetland Isles (16.9 pmol 1.

a) Surface b) Bottom

TEP, (umol I'")

Chlorophylla (ugl?!)

Figure 5.16 Spatial distribution of TEP, content (umol 1) for a) surface (4 meters depth) and b) bottom waters;
¢) chlorophyll a (pg 1'1) surface and d) bottom waters during summer 2015 in the North Sea.
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Figure 5.17 TEP, concentration (umol I'") differences between surface and bottom waters during summer 2015
in the North Sea.

5.5.3 Cluster analysis for 2015

Results from the cluster analysis in the North Sea for the year 2015 are shown in graphs
and summarised in tables. Only regressions of variables which showed statistically
significant correlations within the five different regions of the North Sea for the year 2015
are reported in the tables and presented here. Box plots of TEP, concentrations in surface
and bottom waters for each of the five regions of the North Sea are shown in Figure 5.18.
Surface TEP, in all regions had a similar median TEP, concentration of ~ 10 pmol 1'1,
expect for the northern coastal region which showed a median value of TEP, of ~ 15 umol
I (Figure 5.18a). The northern stratified region had the widest range of TEP.
concentrations in surface waters. In the bottom waters the median TEP. concentrations
decreased with the increase of latitude from the southern coastal region, to the northern

coastal region (Figure 5.18b).
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Figure 5.18 Box-whisker plots of TEP, (umol I'") concentrations in a) surface and b) bottom waters during
summer 2015 in the five different regions of the North Sea: Southern Coastal (SC), Southern Mixed (SM),
Transitional (T), Northern Stratified (NS) and Northern Coastal (NC). See Figure 5.4 for an explanation of box
and whisker plots.

TEP. concentrations showed a significant positive relationship with chlorophyll a in
surface and bottom waters in all the North Sea area (R*= 0.43, p < 0.001; R*=0.56, p <
0.001, n=61; Figure 5.19a, b and Table 5.5), the transitional region (R2 =0.299, p <0.05;
R*=0.77, p <0.001, n = 24; Figure 5.19a, b and Table 5.5) and northern stratified region
(R*=0.55, p < 0.001; R*= 0.42, p < 0.001, n = 22; Figure 5.19a, b and Table 5.5). No
significant correlations were detected between TEP, and chlorophyll a concentrations in
surface and bottom waters in other regions of the North Sea. TEP, was positively
correlated with temperature in the North Sea in bottom waters (R*= 0.61, p < 0.001, n =
61; Figure 5.20b and Table 5.6). Another positive significant correlation with temperature
was found in the transitional region in surface waters (R*=0.28, p < 0.05, n = 24; Figure
5.20a and Table 5.6) and bottom waters ( R*= 0.21, p < 0.05, n = 24; Figure 5.20b and
Table 5.6). On the contrary salinity showed a negative significant correlation in the North
Sea in bottom waters (R*= 0.18, p < 0.001, n = 61; Figure 5.20d and Table 5.6) and in
the transitional region in surface (R*= 0.22, p < 0.05, n = 24; Figure 5.20c and Table 5.6)
and bottom waters (R*= 0.23, p < 0.05, n = 24; Figure 5.20d and Table 5.6). Negative
significant correlations were found between TEP. and inorganic nutrients (Figure 5.22)
in bottom waters. TEP, was negatively correlated with POy in the North Sea (R*= 0.32,
p < 0.05, n = 22; Figure 5.22b and Table 5.7) and SiOy in the North Sea (R*= 0.26, p <
0.05, n = 22; Figure 5.22¢ and Table 5.7), in the transitional region (R*= 0.58, p < 0.05,
n = 7; Figure 5.22¢ and Table 5.7) and in the southern mixed region (R*= 0.88, p < 0.05,
n=735; Figure 5.22¢ and Table 5.7). No correlation was found for TOxN in surface (Figure
5.21a) and bottom waters (Figure 5.22a). However, TEP, concentrations increased when

surface nutrients became limited for phytoplankton (Figure 5.21). POC was positively
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correlated with TEP, in surface in the North Sea area (R2 =0.27, p <0.05, n=31; Figure
5.23a and Table 5.8), in the northern stratified region (R*= 0.48, p < 0.05, n = 17; Figure
5.23a and Table 5.8) and in bottom waters in the transitional region (R*= 0.93, p < 0.001,
n = 9; Figure 5.23b and Table 5.8). PON showed a positive significant correlation with
TEP. in surface in the North Sea (R2 =0.35, p <0.001, n = 31; Figure 5.23c and Table
5.8), in the northern stratified region (R*= 0.43, p < 0.05, n = 17; Figure 5.23¢ and Table
5.8), in bottom waters in the North Sea area (R*= 0.45, p < 0.001, n = 34; Figure 5.23d
and Table 5.8) and in the transitional region (R*= 0.6, p < 0.05, n = 9; Figure 5.23d and
Table 5.8).

The PCO analysis conducted in the year 2015 in surface (Figure 5.24a) and bottom
(Figure 5.24b) waters, revealed that PCO1 and PCO2 accounted for 60% in the surface
waters and for 74% in the bottom waters of the total variation in the analysis. The spatial
distribution of the different regions in surface and bottom waters of the North Sea
indicated a statistically significant difference between regions (PERMANOVA; surface
waters p = 0.012; bottom waters p = 0.0041). PCO also showed similar relationships
between variables, which were addressed previously by the single paired regression

analysis.

a) Surface b) Bottom

TEP_(umol I')

0 1 2 3 0 1 2 3 4
Chlorophyll a (ug I™") Chlorophyll a (ug 1)
Figure 5.19 Plots of TEP, (umol I'") versus chlorophyll @ (ng I'") concentrations in a) surface and b) bottom
waters during summer 2015 in the five different regions of the North Sea: Southern Coastal (SC), Southern Mixed

(SM), Transitional (T), Northern Stratified (NS) and Northern Coastal (NC). The black line represents the linear
regression curve for all the data points.
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Table 5.5 Regression analysis of TEP, (umol 1) versus chlorophyll a (ug 1) concentrations in surface and
bottom waters during summer 2015 in the five different regions of the North Sea: Southern Coastal (SC), Southern
Mixed (SM), Transitional (T), Northern Stratified (NS) and Northern Coastal (NC).

Variable Depth Region Regression R n p-value
Chlorophyll a Surface All regions y=6.45x + 6.08 0.43 61 <0.001
T y=851x+5.30 0.30 24 <0.05
NS y=711x+4.72 0.55 22 <0.001
Chlorophyll a Bottom All regions y=2.85x+6.0 0.56 61 <0.001
T y =3.04x +5.45 0.77 24 <0.001
NS y=3.69x +5.74 0.43 22 0.001
a) Surface b) Bottom
40 - 40 ,
SC
[ ] SM
< 30 o T -
- [ ] NS -
[e) ) NC o
\g'f 20 ° ° \E%
© %o ° ©
o %° . o o
E 10 e [ .‘ ® e E
%0® ¢ ¢ % A R ° °
0 : : : 0 : :
12 14 16 18 20 5 10 15 20
Temperature (°C) Temperature (°C)
c) Surface d) Bottom
40 ' 40 :
< 30 < 30
- ® —
: s e .
3 20 o 3 20 ° °
&0 Mo °s &" % o, o
= 10 of &loo® E 10/
L I
0 : : : 0 : : :
32 33 34 35 36 32 34 36 38 40
Salinity Salinity

Figure 5.20 Plots of TEP, (umol l']) versus temperature (°C) and salinity concentrations in a-c) surface and b-d)
bottom during summer 2015 in the five different regions of the North Sea: Southern Coastal (SC), Southern
Mixed (SM), Transitional (T), Northern Stratified (NS) and Northern Coastal (NC). Black line represents linear
regression curve for all the data points.
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Table 5.6 Regression analysis of TEP, concentration (umol 1) versus temperature (°C) and salinity in surface and
bottom waters during summer 2015 in the five different regions of the North Sea: Southern Coastal (SC), Southern
Mixed (SM), Transitional (T), Northern Stratified (NS) and Northern Coastal (NC).

Variable Depth Region Regression R n p-value
Temperature Surface T y=1.77x + 18.05 0.28 24 <0.05
Temperature Bottom All regions y=0.72x + 0.02 0.62 61 <0.001

T y=1.0x+0.27 0.22 24 <0.05
Salinity Surface T y=-6.15x +222.7 0.22 24 <0.05
Salinity Bottom All regions y=-1.53x+61.73 0.18 61 <0.001
T y =-6.66x +243.10 0.23 24 <0.05
a) Surface b) Surface
40 40 ,
SC
= 30| ¢ T = 30
= ® s =
g ® NC g
2 207, 2 201 4
&o & o . &o [ ] : . o
F 10fe® o ~ 10 @ °
.‘.. ® o ° .4: o o %
0 : : 0 : :
0 0.5 1 1.5 0 0.1 0.2 0.3
TOXN (umol I”") PO, (umol I')
) Surface
40 '
‘—: 30}
g
2 20 .
D.o d ° °
H 10} & ° ) 1
R =
()
0 L L
0 1 2 3 4
SiO,, (umol I'")

Figure 5.21 Plots of TEP, (umol 1) versus nutrients concentrations a) TOXN, b) POy, ¢) SiO; in surface during
summer 2015 in the five different regions of the North Sea: Southern Coastal (SC), Southern Mixed (SM),
Transitional (T), Northern Stratified (NS) and Northern Coastal (NC). The black line represents the linear

regression curve for all the data points.
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Figure 5.22 Plots of TEP, (umol I"") versus nutrient (umol I"") concentrations a) TOxN, b) POy, ¢) SiO, in bottom
waters during summer 2015 in the five different regions of the North Sea: Southern Coastal (SC), Southern Mixed
(SM), Transitional (T), Northern Stratified (NS) and Northern Coastal (NC). The black line represents the linear

regression curve for all the data points.

Table 5.7 Regression analysis of TEP, (umol 1) versus nutrient (pmol l'l) concentrations in surface and bottom waters
during summer 2015 in the five different regions of the North Sea: Southern Coastal (SC), Southern Mixed (SM),

Transitional (T), Northern Stratified (NS) and Northern Coastal (NC).

Variable Depth Region Regression R? n p-value
PO, Bottom All regions y=-8.64x +12.24 0.32 22 <0.05
SiO, Bottom All regions  y=-1.053x+12.17 0.27 22 <0.05

T y =-0.90x +10.05 0.59 7 <0.05
SM y=-1.93x +20.46 0.88 5 <0.05
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Figure 5.23 Plots of TEP, (umol 1) versus POC (umol I"") and PON (umol I"") concentrations in a-c) surface and
b-d) bottom waters during summer 2015 in the five different regions of the North Sea: Southern Coastal (SC),
Southern Mixed (SM), Transitional (T), Northern Stratified (NS) and Northern Coastal (NC). The black line
represents the linear regression curve for all the data points.

Table 5.8 Regression analysis of TEP, (umol ") versus POC (umol I"') and PON (pmol 1']) concentrations in surface
and bottom waters during summer 2015 in the five different regions of the North Sea: Southern Coastal (SC), Southern
Mixed (SM), Transitional (T), Northern Stratified (NS) and Northern Coastal (NC).

Variable Depth Region Regression R? n p-value
POC Surface All regions y=0.22x +4.51 0.27 31 <0.05
NS y =0.40x - 2.34 0.49 17 <0.05

POC Bottom T y=0.18x +4.26 0.94 9 <0.001
PON Surface All regions y=6.26x - 1.11 0.36 31 <0.001
NS y=6.76x - 2.33 0.44 17 <0.05

PON Bottom All regions y=15.30x+0.36 0.46 34 <0.001

T y=3.55x + 1.98 0.61 9 <0.05
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Figure 5.24 Principal coordinates plot (PCO) showing relationships between variables in the five different regions of
the North Sea: Southern Coastal (SC), Southern Mixed (SM), Transitional (T), Northern Stratified (NS) and Northern
Coastal (NC); in a) surface and b) bottom waters in the year 2015.

5.5.4 Box model 2015

Results from the box model for the year 2015 are summarised in Table 5.9. The SMLD
in the stratified regions was ~ 30 meters depth. The water column depth ranged from 20
metres in the southern coastal region to 192 metres in the northern coastal region. The
highest and lowest TEP, formation rate were estimated in the northern coastal region (8.6
umol I'' ) and in the transitional stratified region (4.2 + 1.2 pmol 1" d™") respectively.
The export of TEP, from the surface to the bottom of the water column ranged from 104.4
mmol m™~ d” in the southern coastal region to 429.8 mmol m™ d”' in the northern coastal
region. The lowest and the highest sinking velocity of TEP, was predicted in the southern
coastal (9.6 m d”') and northern coastal region (23.9 m d'). Accumulation of TEP, below
the mixed layer deep in the stratified regions ranged from 3 pmol 1" d”! in the northern
coastal region to 3.2 + 1.1 umol I'' d”' in the transitional stratified region. The residence
time of TEP, ranged from 1.7 days in the Northern Coastal region to 3.3+1.1 days in the
Northern Stratified region. As in the section 5.4.4 the application of the bacterial
remineralization factor of 0.08 d' did not have a significant impact on TEP, flux, nor in
the sinking velocity of TEP.. By contrast the bacterial remineralization factor of 0.53 d!
produced an increase in the loss of TEP,, with a consequent net decrease in TEP, flux and

sinking velocity of TEP..
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5.6 TEP incubation experiments
5.6.1 Method

During the survey in the year 2015 onboard incubation experiments were conducted by
James Fox (University of Essex). Seawater samples were collected from different regions
across the North Sea in order to obtain a representative sample of the phytoplankton
community for the North Sea. Samples were taken from the underway non-toxic seawater
supply (~ 4 metres depth) onboard, filtered through a 200 um mesh in order to remove
mesozooplankton (Sieburth et al., 1978; Calbet, 2008) and placed into an acid washed 25
litre polycarbonate (Nalgene) carboy. From this start point (0 h) samples were taken for
TEP, chlorophyll a and inorganic nutrient concentration determinations. For each
treatment 5 litres of this water was spiked with nutrients, added alone and in combination,
at concentrations of F/2 algal growth medium (8.82 x 10 M NaNO;, 3.62 x 10° M
NaH,PO,4, 1.06 x 10 M Na,Si03; Guillard, 1975). Treatments were divided in (Figure
5.23) treatment one (N + P + Si) comprised of nitrogen (N), silica (Si) and phosphorus
(P) addition, as well as F/2 trace metals and vitamins. Treatment two also contained P,
Si, vitamins and metals, but no N. Treatment three consisted of only N addition.
Following nutrient spiking, water was distributed into 1.2 L polycarbonate (Nalgene)
bottles, sealed and placed in an on-deck incubator. Bottles were incubated for a period of
48 h at 20% surface irradiance and cooled by surface seawater. At end point (48 h)
samples were taken for TEP analysis. In-between experiments all bottles and sampling
equipment were thoroughly rinsed and acid-washed. An Orion 3-star benchtop pH metre
(Thermo Scientific, USA) was used to measure the pH of all treatment bottles at the start
(0 h) and end (48 h) of all experiments and no significant changes were recorded. TEP
samples were collected in triplicate and analysed at UEA laboratory following the method
described in sections 2.2 and 2.6. Chlorophyll a and nutrient concentrations at the starting
point (0 h) were collected and analysed by James Fox at the University of Essex. No
information on the chlorophyll @ and nutrient concentrations is available for the end point

(48 h) of each bioassay.
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Figure 5.25 Scheme of the on-deck incubation experiment conducted in the North Sea in the year 2015. Three

different treatments were used: (N + P + Si) comprised of nitrogen, phosphorus and silica, (P + Si) comprised of
phosphorus and silica and (N) comprised of only nitrogen.

5.6.2 Results

Results from the four incubation experiments are reported in Figure 5.25 and summarised
in Table 5.10. The addition of nutrients clearly stimulated the production of TEP, in
respect to the control at the end (48 h) of the incubation experiments. Treatment two (P +
S1) showed the highest concentration of TEP, at the end point (48 h) during experiments
one, two and three. Treatment three (N) at the end point (48 h) had the lowest
concentration of TEP, in all four experiments. Nevertheless, it was higher in all four
experiments with respect to the control. These results suggest that the addition of
phosphorus and silica might have created an imbalance in the available nutrients. This led
to a consequent increase of TEP, production in 48 h. This may be explained by the fact
that in all the experiments (Figure 5.26 and Table 5.10) nitrogen was limiting to
phytoplankton from the beginning of the experiment due to an N : P ratio < of 16 in the
water sample (Table 5.10). The addition of phosphorus and silica, but not nitrogen by
increasing the imbalance in the nutrient ratio enhanced the release of TEP.. The lower
concentration of TEP, in treatment two for experiment four (Figure 5.26d) might be
explained by the fact that it was the only sample where nitrogen at the beginning of the
experiment was higher in respect to the other experiments (Table 5.10). In contrast the

addition of only nitrogen may have caused an inhibition of TEP, production.
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Figure 5.26 Plots of TEP, (umol I"") concentrations in the four experiments (a, b, ¢ and d) at starting point control
0 h and after 48 h for the control and the three different treatments: (N + P + Si) comprised of nitrogen, phosphorus
and silica, (P + Si) comprised of phosphorus and silica and (N) comprised of only nitrogen.

Incubation experiments where specific nutrients were added to a natural phytoplankton
community are well documented in literature and show a relationship between nutrient
limitation and the concentration of nutrient (Moore et al., 2013). A lack of nutrient may
cause stress (physiological response to nutrient limitation), deficiency (alteration of the
elemental stoichiometry N : P = 16 ) and nutrient co-limitation (lack of two or more
nutrients all necessary to phytoplankton growth) in a phytoplankton community. This
affects the growth rate of phytoplankton cells and phytoplankton yield (Moore et al.,
2013) and may stimulate phytoplankton to release of TEP. Even though no information
of chlorophyll a and nutrient concentrations is available for the end point (48 h) of each
bioassay, the results highlighted that nutrient limitation is not the only mechanism that
enhance the release of TEP by phytoplankton. Several other processes may be also
implicated in the mechanism that release TEP (e.g. the co-limitation of one or two

nutrients or a secondary response from phytoplankton due to the addition of a nutrient).
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5.7 Seasonal cycle of TEP
5.7.1 Method: TEP sample collection and analysis

In the year 2015 TEP samples were collected during cruises servicing the SmartBuoy.
Samples of TEP were collected from three different SmartBuoy sites (Figure 5.27): West
Gabbard (51.94° N, 2.10° E), Warp (51.50° N, 1.03° E) and Dowsing (53.53° N, 1.05° E).
Samples were obtained using a Niskin bottle and the Cefas SmartBuoy. A Cefas
SmartBuoy is a floating buoy equipped with instruments to provide high frequency
measurements of physicochemical parameters (e.g. temperature, salinity, fluorescence
etc.) of the surface seawater (~ 1 m depth). It is also equipped with an autonomous water
sampler, which at regular time steps take samples of seawater and preserves them in bags
prefilled with a saturated solution of mercuric chloride (Johnson et al., 2013). TEP
samples from the Niskin were processed onboard, as described in section 2.2 and later
analysed in the UEA laboratory as described in section 2.6. Bags of seawater from the
SmartBuoys were provided by Cefas and analysed at UEA following the same protocol
used for the sample collected with the Niskin. Chlorophyll a data was provided by Cefas

and analysed as described in Greenwood et al. (2010).

06 North
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Irish Sea Dowsing
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West Gabbard
°
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Figure 5.27 Map showing the location of the SmartBuoy sites: West Gabbard, Warp and Dowsing along the UK
coast (Cefas, 2018).
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5.7.2 Results

The SmartBuoy sites exhibit the highest concentrations of TEP, of the North Sea. All
three sites showed similar concentrations in surface and bottom waters in each season
with a lower TEP, concentration during spring and summer, in respect to winter (Figure
5.28). Those comparable TEP. concentrations in surface and bottom waters were
determined by the physicochemical characteristics of the water column (well mixed area).
West Gabbard and Warp (Figure 5.28a, b) showed high concentrations of TEP. in
February and November 2015, which may be attributed to riverine inputs from the
Thames and Scheldt/Rhine. Alternatively, TEP, could have been resuspendend from
sediments during winter storms due to the shallow water column and the well-mixed
water column. Dowsing (Figure 5.28c) had the lowest TEP, concentration in surface and
bottom waters, which might be explained by the fact that it receives waters from the North
Atlantic though a southward transport along the east coast of the UK. This causes rapid
biological processes during summer time (Johnson et al., 2013) that could have removed
TEP from the water column. Samples collected with Niskin do not always agree with the
samples collected from SmartBuoy (Figure 5.29). This was further investigated with a
TEP aggregation experiment described in section 5.7.2.1. The maximum TEP,
concentration value at the SmartBuoy sites was recorded in surface waters in October
2015 for Warp (Figure 5.29b), which is closer to the maximum concertation of TEP,
observed in the Ross Sea in spring (Hong ef al., 1997). West Gabbard TEP, showed a
decoupling with chlorophyll a in surface waters (Figure 5.30), which has been observed

in culture experiments (Kahl ef al., 2008).
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Figure 5.28 Seasonal cycle of TEP, concentration (umol 1") collected with Niskin bottle (4 m depth) at three
different Smartbuoy sites, a) West Gabbard, b) Warp and c¢) Dowsing in surface and bottom waters in the year
2015.
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Figure 5.29 Seasonal cycle of TEP, concentration (umol 1"") at the SmartBuoy sites, a) West Gabbard, b) Warp
and in surface waters in the year 2015. Comparison between samples of TEP, collected with the Niskin bottle (4
m depth) and from the SmartBouy (~ 1 m depth).
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Figure 5.30 Seasonal cycle of TEP, (umol I"") and chlorophyll a (ug 1) concentrations at the SmartBuoy site
West Gabbard in surface waters in the year 2015. Comparison between samples of TEP, (collected with the
Niskin bottle and from the SmartBuoy) with chlorophyll a.
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5.7.2.1 SmartBuoy bag testing

To investigate the differences found between the samples of TEP collected with the
Niskin bottle and the samples collected by the SmartBuoy, three experiments were
undertaken. It was hypothesized that the higher concentration showed by the sample
collected by the SmartBuoy, in respect to that collected with the Niskin could be attributed
to the aggregation process of the TEP precursor in the SmartBuoy bag during the months
(1 - 3 months) after water collection, due to the wave motion of the SmartBuoy in the sea.
To test this hypothesis the same plastic bags used in the SmartBuoy (provided by Cefas)
were filled with a sample of seawater previously spiked with a saturated mercuric chloride
solution and placed on a shaker for different periods of time to reproduce wave motion
and enhance TEP aggregation processes. In order to exclude any interference or alteration
produced by the addition of mercuric chloride to the sample a subsample was taken before
and after the addition of the preservative and used as a reference. Previously mercuric

chloride had been tested as a suitable method to preserve TEP sample (section 2.10.6).

5.7.2.2 Method and results

Seawater (20 litres) was collected from Sheringham beach (59.94° N, 1.21° E) on 1* July
2016. 300 ml of that seawater was analysed in triplicate to determine TEP concentration.
The remaining seawater was preserved with saturated mercuric chloride solution (32 g of
HgCl, in 1 L H,0) (Johnson et al., 2013) and used to fill 250 ml plastic bags to carry out
the three different experiments. In the first experiment (Figure 5.31a) the bags were
horizontally placed in a shaker, agitated at the speed of 100 RPM and sampled at the
beginning of the experiment (0 h) and after 12, 24, 48 and 168 hours. In the second
experiment (Figure 5.31b) the speed was reduced to 50 RPM, the bags were placed
vertically and sampled after 12 and 24 hours from the starting point. In the third
experiment (Figure 5.31c) the bags were placed in a rotatory shaker at two different
speeds, 5 and 10 RPM and sampled after 48 hours and one month. Due to a lack of
information on the aggregation of TEP in preserved seawater a variety of approaches and
durations were used to cover a spectrum of possible aggregation mechanisms. The three
experiments gave similar results. Treatments were close to the reference indicating no
further aggregation had occurred. However, experiment one showed lower TEP,
concentration in all the treatments in respect to that of the reference, which may be related

to the high speed used (100 RPM). This might have produced the opposite effect of
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breaking up TEP particles. During flocculation experiments in the laboratory with
phytoplankton cultures or seawater with wild phytoplankton, TEP is produced from the
coagulation of TEP precursors released by phytoplankton (Passow, 2000). This is
achieved by producing a laminar shear which enhance particle aggregation. The fact that
the three experiments did not show an increase in TEP, concentration may be explained
by the use of a preservative, that by killing microorganism in the sample did not allow
the production of TEP precursors and the increase of TEP concentration. In contrast in
culture experiments there is a continuous release of TEP precursors, which can coagulate
to form TEP. Furthermore, it is quite likely that in the sample of seawater used in those

experiments precursors where already aggregated in the form of TEP.
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Figure 5.31 TEP, concentrations (umol 1) during the SmartBuoy bag testing experiments. Three experiments:
a) experiment 1 reference and sample treated with HgCl, placed in a horizontal shaker and agitated from 0 h to
168 h at 100 RPM (Revolutions Per Minute); b) experiment 2 reference and sample treated with HgCl, placed in
a vertical shaker and agitated from O h to 24 h at 50 RPM; c) experiment 3 reference and sample treated with
HgCl, placed in a rotation shaker and agitated from 0 h to 48 h at 5 and 10 RPM and up to a month at 10 RPM.

5.8 Discussion

Spatial and temporal distribution of TEP

This study is the first attempt to investigate the spatial and temporal distribution and the
role of TEP in the North Sea. A single modelling study conducted in the North Sea
showed that summers are characterized by an excess of DIC uptake (~ 40 pmol kg™),
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without a corresponding nutrient uptake (Prowe et al., 2009). This phenomenon, called
carbon overconsumption (Toggweiler, 1993; Thomas et al., 1999; Koeve, 2005) has been
associated with the formation of TEP. This study observed an average concentration of
TEP, of ~ 10 pmol 1" in summers 2014 and 2015 in surface and bottom waters, which is
close and may explain the DIC overconsumption (~ 40 pmol kg™) predicted for the North

Sea in summer by Prowe et al. (2009).

In the North Sea in the two years of the survey TEP, showed concentrations ranging from
1.8 pmol I to 35.8 pmol I"' in surface waters and from 4.5 pmol 1" to 34.4 umol I in
bottom waters. However, samples of TEP collected from Cefas SmartBuoy had much
higher concentrations in surface waters reaching ~ 100 pmol I in August 2015 and a
maximum of ~ 160 pmol I"" in October 2015 at the Warp site. Those concentrations are
in line with the one reported in literature for comparable areas. In 2015 TEP, exhibited a
background concentration of ~ 5 umol "' in respect to the 2014, which might be liked to
an interannual variability in DOC due to the accumulation of DOC on the shelf between
years (Chaichana, 2017). This accumulation of DOC may lead to the formation of TEP
from abiotic processes and explain why appears to be a background concentration of TEP,
in 2015 but not in 2014. In both years surface and bottom TEP, were correlated with
higher TEP, concentrations in surface waters with respect to that of the bottom waters.
The variation in the concentration of TEP, in surface and bottom waters was correlated
positively with latitude and negatively with longitude, which might be explained by the
hydrodynamic characteristics of the North Sea of a shallow southern region and a
seasonally stratified northern region (Thomas et al., 2004). TEP, concentrations in surface
and bottom waters between the two years of the survey demonstrated statistically
significant positive correlation (R*=0.13 p=0.001 n =74 and R*=0.25 p=<0.001 n =
62 respectively; Figure 5.32). The North Sea showed strong interannual variation in TEP,
concentrations in coastal regions, which was driven by the presence of specific annual
algal blooms (i.e. the algal boom along the Dutch coast in the year 2014 and the algal
bloom along the Scottish coast and near the Shetland Isles in the year 2015).
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a) Surface TEP,
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Figure 5.32 Spatial distribution of TEP, concentration (pmol 1'1) differences in a) surface and b) bottom waters
in the North Sea between summer 2015 and 2014.

The phytoplankton community in the northern North Sea is often nutrient limited (Lenhart
et al., 2004). Coastal regions of the southern North Sea have a high input of nutrients due
to mixing, (responsible for organic matter resuspension from the sediment) along with
river input. Despite this high nutrient input, the high concentrations of suspended matter
determine light limited conditions for the phytoplankton (Lenhart et al., 2004) resulting
in an extracellular release of TEP by phytoplankton with a significant source of dissolved
organic carbon (DOC) (Aluwihare et al., 1997). This may explain the higher
concentrations of TEP found in the coastal regions of the North Sea in both 2014 and
2015. High TEP concentrations have often been observed during diatom blooms (Passow
and Alldredge, 1994; Passow and Alldredge, 1995; Grossart et al., 1997; Mari and Burd,
1998; Passow et al., 2014), as well as during blooms dominated by dinoflagellates
(Alldredge et al., 1998). The southern North Sea along the Netherlands coast, shows two
areas with a specific phytoplankton taxonomic composition: a coastal area dominated by
diatoms during the whole year and an offshore area dominated by dinoflagellates during
the summer and autumn. In recent years, especially in coastal areas, a change in the
phytoplankton taxonomic composition has been observed, with an increase in the
dominance of dinoflagellates during summer (Alvarez-Fernandez and Riegman, 2014).
The results of this study showed highest TEP, concentrations associated with the algal
bloom of the dinoflagellate Karenia mikimotoi in the year 2014. In the same year a further

algal bloom associated with high TEP, productions was detected along the Netherlands
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coast. The year 2015 showed high TEP. concentrations in surface waters along the

Scottish coast and near the Shetland Isles were also associated to algal blooms.

Physico-chemical factors controlling TEP distribution

Seasonal stratification or mixing of the water column may be responsible for the vertical
and spatial distribution of TEP across the whole North Sea. Moreover, high TEP
concentrations have been reported in the presence of a salinity gradient, which might
increase the formation of TEP (Passow, 2002; Radi¢ et al., 2005). However, the gradient
of salinity recorded in the northern coastal region in the year 2014 was not associated

with high TEP concentrations.

With phytoplankton being the most likely source of TEP (Passow et al., 2001; Passow,
2002), a direct relationship between TEP and chlorophyll a concentrations might be
expected (Passow and Alldredge, 1995; Ramaiah and Furuya, 2002; Wurl and Holmes,
2008; Ortega-Retuerta et al., 2009). Nevertheless, several studies reported a temporal or
spatial decoupling between TEP and chlorophyll a concentrations with a negative
relationship (Garcia, 2002; Corzo et al., 2005). For instance, Malpezzi et al. (2013)
observed a positive correlation between TEP and chlorophyll a concentrations at
Chesapeake Bay in the year 2007. However, no clear relationship was found in 2008.
During an algal bloom chlorophyll a can be used as a reliable predictor of TEP production
(Passow et al., 2001). However, since TEP production by phytoplankton is highly
variable and influenced by a variety of factors including: the physiological state of
phytoplankton (Passow and Alldredge, 1995) , the environmental conditions (Hong et al.,
1997), species composition (Passow and Alldredge, 1994) and turbulence (Passow,
2002), phytoplankton biomass could be a poor indicator of TEP production. Furthermore,
a study conducted in the NW Mediterranean Sea suggested that TEP can be predicted
from chlorophyll a concentration on a horizontal scale (Ortega-Retuerta et al., 2017). In
this study, a clear relationship between TEP. and chlorophyll @ was found on a spatial
scale in surface and bottom waters in 2014 and 2015. However, looking at the five
different regions of the North Sea it is evident that the southern mixed region in the year
2014 (surface and bottom) and the transitional and northern stratified regions in the year
2015 (surface and bottom) dominated the TEP. to chlorophyll a relationship. This
indicates that the TEP./Chlorophyll a relationship is quite variable and generally depends
on the spatial scale. Therefore, this relationship cannot be used as a reliable indicator of

TEP production.
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According to several experimental studies TEP is mainly released during nutrient
limitation (Mari et al., 2005; Ortega-Retuerta et al., 2010; Pedrotti et al., 2010; Ortega-
Retuerta et al., 2017). However, is not clear how nutrient stoichiometry affects TEP
production (Girdes et al., 2012). Ortega-Retuerta et al. (2010) reported a negative
correlation between TEP and phosphorus concentrations in the NW Mediterranean Sea.
In this study only in 2015 in the North Sea was found a negative correlation between TEP,
and PO, in bottom waters. Usually phosphate is limiting to phytoplankton productivity
only when it is lower than 0.06 pmol I"" (Moll, 1998; Johnson ef al., 2013). In the two
years of the survey most of the time PO, in surface waters was lower than 0.06 pmol 1",
No correlation was found between TEP, and NOs. This might be explained by the fact
that the North Sea is a nitrogen limited system and NOj in surface waters was quite low
(~ 0.3 pmol I'"). Nitrogen limitation in the North Sea was confirmed by the Redfield
stoichiometry (N : P=16: 1). The N : P ratio in surface waters in both years was below
16, making the North Sea nitrogen limited (Moore et al., 2013). Furthermore, TEP
incubation experiment showed that when nitrogen is limiting to primary production or
when there is an imbalance in the available nutrients, phytoplankton increases the release
of TEP. Negative correlations were found between TEP, and SiO4 in the North Sea in
surface and bottom waters in 2014 and in bottom waters in 2015, which were not linked
to riverine influences. The positive correlation found between TEP, and the POC and
PON in surface and bottom water supported the hypothesis that TEP is an extra source of
sinking carbon. However, TEP being a carbon rich compound a positive relationship with
POC : PON ratio would be expected. This study did not show clear evidence of that. In
this study, the contribution of TEP to the pool of POC in the North Sea might have been
underestimated. Indeed GF/F filters used for POC sampling only retain ~ 50% of TEP
(Passow and Alldredge, 1995).

TEP seasonal cycle in the year 2015, showed high concentrations of TEP in winter at the
SmartBuoy sites: West Gabbard and Warp. This high TEP during winter time could in
part be explained by riverine inputs from the Thames and Scheldt/Rhine that during
winter storms may have transported TEP previously produced in rivers or TEP precursors
to the SmartBuoy sites. Another explanation of this may be that during winter storms, due
to the shallow water column and the well-mixed water masses TEP or TEP precursors
could be re-suspended in the water column from sediments. Despite the estimated

residence time of TEP in the North Sea waters is days, the SmartBuoy sites are located in
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an area where a continuous supply of TEP may occur from terrestrial inputs even during
the absence of in situ phytoplankton blooms. These results reinforced the evidence that

TEP distribution is controlled by environmental factors.

Processes controlling TEP dynamics

In the marine environment TEP dynamics is controlled by several processes such as
formation rate, residence time, turnover and sinking which depend on POC concentration,
UV radiation, microbical activity (Wurl et al., 2011), TEP. age and its chemical
composition (Passow, 2002). TEP residence time in seawater has been reported to be
variable, ranging from 0.3 to 34 days (Wurl et al., 2011). This seems linked to the nature
of the aggregates containing TEP. For instance, aggregates containing TEP produced by
diatoms have a residence time of more than 11 days and bacteria may produce aggregates
containing TEP with an even longer residence time (Piontek et al., 2009). The North Sea
showed a residence time of TEP ranging from a minimum of 1.9 + 1.2 days in the
transitional region to a maximum of 4.2 + 1.9 days in the northern coastal in 2014 and
from a minimum of 1.7 days in the northern coastal region to a maximum of 3.3 + 1.1
days in the northern stratified region in 2015. The average residence time for the North
Sea was 2.7 = 1 days, which is about half of that estimated (4.6 days) in the North Pacific,
offshore Hawaii and the Arctic Ocean from June 2009 to April 2010 (Wurl et al., 2011).
This indicates that in the North Sea TEP may be quickly consumed and/or exported from

the surface water to the sediments.

An important fraction of TEP sinks in the form of aggregates (Newton et al., 1994;
Passow et al., 2001). Therefore, it is of primary importance to estimate the export of TEP
and its contribution to the total carbon export. Several studies have reported estimations
of TEP flux. For instance in the Santa Barbara Channel the estimation of the
sedimentation rate of TEP, at 500 m ranges from 0.54 to 5.4 mmol C m> d'], with a
contribution of ~ 30 % to the flux of POC (Engel and Passow, 2001). Flux of TEP, in a
North Norwegian Fjord at 100 m depth reached a maximum of 32 mmol C m? d
(Reigstad and Wassmann, 2007). However, no information is available on TEP flux in
the North Sea. Therefore, in this study the results from the box model were compared
with the Primary Production (PP) estimated for the North Sea in other studies. Average
PP in the North Sea in summer has been reported to be 75 mmol C m™ d™', reaching 10.8
mol C m™ during three months of summer (Fernand ef al., 2013). In this study the North

Sea showed similar TEP export in all the five regions and in the two different years. The
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estimation of TEP export had a high uncertainty. The box model results estimated a TEP
export of ~ 0.2 mol C m™ d”' for the North Sea and an export of ~ 28 mol C m™ for three
months in summer. That was about three times higher than the PP reported for the North
Sea in previous studies. This huge discrepancy could be determined by different factors,
such as the relationship extrapolated from Wurl ef al. (2011) used to estimate the
formation rate of TEP in this study, the assumption that all TEP produced in surface is
exported, difficulty in quantifying the loss of TEP due to bacterial and zooplankton
consumption and/or the steady state assumption used in this analysis which may not be
applicable to the North Sea. TEP export estimated in 2014 was consistent with the export
estimated in 2015, but both values are an overestimation of the real export of TEP for the
North Sea. Another challenge that the scientific community is facing is the determination
of the sinking rate of aggregates containing TEP. A few studies have reported some values
and related assumptions, ranging from upward sinking velocity of aggregates containing
TEP (Mari ef al., 2017) to modelling the aggregates containing TEP sinking rate in the
euphotic zone (10 m d'; Oguz, 2017b), to aggregates smaller than 500 pm with a sinking
velocity of 4 to 42 m d' (Kriest, 2002). Aggregates containing TEP in the North Sea
showed a similar sinking velocity between regions and years with an average of ~ 15 m

d”!, which is in line with the sinking velocities reported in literature.

5.9 Conclusions

The distribution of TEP was mapped for the first time in the North Sea. TEP,
concentrations observed in summers 2014 and 2015 in the North Sea may explain the
overconsumption of dissolved inorganic carbon observed during summer in the North
Sea. The results indicated that elevated TEP production occurs during algal blooms, i.e.
the bloom of the dinoflagellate Karenia mikimotoi observed in 2014 along the UK coast.
The results also highlighted that in the coastal areas of the southern North Sea, where the
phytoplankton community in summer was dominated by the dinoflagellates Karenia

mikimotoi in 2014, TEP production was comparable to that of diatoms.

A clear relationship between TEP, and chlorophyll a concentrations was found within
this study in areas of the North Sea, southern mixed region (surface and bottom waters)
in 2014 and in transitional and northern stratified regions (surface and bottom) in 2015,
but not in the other regions within the North Sea. However, due to the high variability of
the TEP/Chlorophyll a relationship, this study supported evidence that phytoplankton
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biomass cannot be used as a suitable indicator of TEP production, as it strongly depends
on the physiological state of phytoplankton, as well as being affected by a wide range of

physico-chemical and biological variables.

TEP sinking rate estimated from the observations suggested that TEP was likely in the
form of large sinking aggregates. This study highlighted that TEP export is high and may
account for a considerable fraction of the total exported carbon. It was not clear how
nutrient stoichiometry affects TEP production, results suggested that nutrient limitation
and other environmental factors were responsible for high TEP production in the North
Sea. This high TEP production seems to be associated with carbon overconsumption and
may enhance the efficiency of the Continental Shelf Pump (CSP) for the export of organic
carbon to the seafloor, making the North Sea more efficient in the sequestration of

atmospheric CO; and the export of carbon from the shelf to the Atlantic Ocean.

199



Chapter 6 Discussion and synthesis

6.1 Introduction

The main aim of this research was to investigate the role played by TEP in carbon cycling
in NW European shelf seas. To this end, cruise surveys and experimental-modelling
approaches have been used. This last chapter summarises and discusses the main findings
in relation to the research hypotheses and objectives stated in section 1.9.3. Furthermore,

suggestions for further research are presented.

6.2 TEP in the NW European shelf seas: evaluation of the hypotheses

Hypothesis 1: Transparent exopolymer particles are produced in situ in shelf seas as a
by-product of phytoplankton productivity and will therefore have similar spatial and

temporal patterns as primary productivity and related variables, e.g. chlorophyll.

In this study the spatial and temporal distribution of TEP in the NW European shelf seas
was investigated in two different systems (North Sea and Celtic Sea). The Celtic Sea is a
system characterised by a low river input, with waters reaching 200 m depth and a primary
production during the stratified period ranging from 16 to 32 mmol m” d' (Hickman et
al., 2012) with an average of ~24 mmol m™ d'. In contrast, the North Sea is a more
complicated system characterised by two different regions, a shallow southern region
(<50 m) affected by terrestrial and anthropogenic nutrient inputs, with a permanently
mixed water column throughout the year (Emeis ef al., 2015) and a northern seasonally
stratified region, influenced by Atlantic waters (Emeis et al., 2015), with a net export of
particulate organic matter and nutrient to the deeper layers (Thomas ef al., 2004). The
North Sea during summer exhibits a primary production of 75 mmol m™ d”', which is ~ 3
times higher than that of the Celtic Sea. In the North Sea TEP, concentration was ~ 4
times higher than that of the Celtic Sea, which is consistent with the idea that higher
primary production would lead to higher TEP production. This finding reinforces the
evidence of a link between primary production and the production of TEP and its
abundance in the euphotic zone and in coastal seas in comparison to the open ocean

(Passow and Alldredge, 1994; Engel and Passow, 2001).
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Due to the complexity of the North Sea, with its northern stratified and southern mixed
regions, five regions with different properties were identified in the data collected during
this study: a Southern Coastal region (SC), a Southern Mixed region (SM), a Transitional
region (T), a Northern Stratified region (NS) and a Northern Coastal region (NC).
Concentrations of TEP, detected during this study in the two shelf seas, in bottom and

surface waters are shown in Figure 6.1.
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Figure 6.1 Box and whisker plots of TEP, (umol I"") concentrations in a) surface and b) bottom waters in the
Celtic Sea and the North Sea. Celtic Sea three stations: Station A in spring (A SP) and summer (A SU), Station
CCS in spring (CCS SP) and summer (CCS SU), Station CS2 in summer (CS2 SU) in the year 2015. For the
North Sea five different regions are shown: Southern Coastal (SC), Southern Mixed (SM), Transitional (T),
Northern Stratified (NS) and Northern Coastal (NC) in the year 2014 and 2015. The box indicates the lower to
the upper quartile. The horizontal line within the box represents the median. The whiskers indicate the lower and
higher data points. The red crosses indicate outliers. The outliers were classified as two times the interquartile
range from the median.
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The North Sea in summer 2014 and 2015 showed concentrations of TEP, in surface and
bottom waters much higher (12.5 + 5.1 pmol 1" and 9.8 + 4.7 umol 1", respectively)
compared to that of the Celtic Sea (3.3 + 1.5 pmol I'' and 5.2 + 2.7 umol I}, respectively)
in spring and summer 2015. In addition, the North Sea was characterised by higher
variability in TEP, concentrations between the five different regions. This was attributed
to environmental factors which controlled the TEP, distribution on a regional scale in the
two years of the survey (i.e. temperature, salinity, water circulation, river inputs) (section
5.8). Furthermore, seasonal stratification or mixing of the water column may be the major
factor responsible in controlling the vertical and spatial distribution of TEP, across the
North Sea (section 5.8). Similarly, TEP, in the Celtic Sea was associated with a salinity
gradient from the coast to the shelf break (section 4.2.2). The annual cycle of TEP, at
SmartBuoy sites showed the highest TEP, concentrations found during this research (e.g.
153 pmol I'' of TEP, at Warp in October 2015). TEP, concentrations were high in winter
in respect to that in summer, which may be explained by riverine inputs from the Thames

and Scheldt/Rhine or resuspension and aggregation of TEP precursors (section 5.7.2).

In this study two different pathways have been hypothesized to be responsible for the
production of TEP in shelf seas. In the first pathway TEP is produced during
phytoplankton primary production. This was evident in coastal areas of the North Sea
where phytoplankton blooms were observed, and in spring in the Celtic Sea where
nutrients were not limiting to primary production. The highest TEP concentrations in the
North Sea were seen in phytoplankton blooms (section 5.4.2 and 5.5.2) and in coastal
areas (section 5.4.2 and 5.7.2). A statistically significant relationship is seen between
chlorophyll and TEP concentrations over the North Sea which is dominated by the high
TEP concentrations in productive areas (section 5.4.3 and 5.5.3), all of which supports
the idea that primary productivity is related to TEP production. This has also been
established in several studies where high TEP concentration has been associated with
phytoplankton blooms (Passow and Alldredge, 1994; Kozlowski et al., 1995; Passow et
al., 1995; Riebesell ef al., 1995; Mari and Kierboe, 1996; Grossart et al., 1997; Hong et
al., 1997; Alldredge et al., 1998; Mari and Burd, 1998; Passow et al., 2001). In the second
pathway TEP production is linked to nutrient limitation. Nutrient limitation is another
factor that may be responsible for the increase in TEP production via overflow production
of carbon-rich TEP precursors, in the absence of nutrients required for the synthesis of
compounds useful to the phytoplankton (e.g. Prowe et al., 2009). It seems that when

phytoplankton are nutrient limited there is a consequent increase in the release of
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extracellular polysaccharides (i.e. TEP precursors) (Myklestad, 1995). High TEP
concentrations in summer associated with low nutrients were observed in the northern
stratified region of the North Sea and in summer in the Celtic Sea. In the Celtic Sea, TEP
concentrations were higher in summer compared to spring, and incubation experiments
indicated that nutrient stoichiometry and an imbalance between nutrients have a direct
effect on the production of TEP, supporting the hypothesis that summer TEP production

was controlled by the lack of nutrient availability (section 5.6.2)

The two proposed mechanisms for TEP production are opposing conditions, which may
occur under different environmental conditions and involve different phytoplankton
communities. For instance, coastal areas of the North Sea are areas of high primary
production, characterised by terrestrial and riverine inputs of nutrients which may lead to
the development of a specific phytoplankton community dominated by diatoms and
Phaeocystis pouchetii (Reid et al., 1990). On the contrary, the northern stratified region
of the North Sea and Celtic Sea are seasonal stratified areas in summer where nutrient
concentrations in surface waters may become limiting. This may promote the
development of a specific summer phytoplankton community. For instance diatoms and
coccolithophores are dominant in the Celtic Sea during late spring (Van Oostende et al.,
2012) and diatoms and flagellates are dominant in summer in the northern stratified region
of the North Sea (Reid et al., 1990). Due to the different environmental conditions and
the different phytoplankton communities, TEP produced under each scenario may have a
different composition, lability and stickiness. Nevertheless, it is not clear how nutrient
stoichiometry affects TEP production (Gérdes et al., 2012). In both scenarios it seems

that nutrients plays a role in the production of TEP.

In both the North Sea and the Celtic Sea a negative relationship between TEP and nutrient
concentrations was observed. This was also confirmed in the TEP incubation experiments
carried out in the North Sea during the survey in summer 2015. In both the North Sea and
the Celtic Sea TEP was correlated to chlorophyll a only in specific areas (Celtic Sea in
the Station CC2; North Sea in the southern mixed region in the year 2014, transitional
and northern stratified region in the year 2015). Therefore, phytoplankton biomass on its
own cannot be used as a suitable indicator of TEP production, as it strongly depends on
the physiological state of phytoplankton, as well as a range of physicochemical and
biological variables (nutrient levels, phytoplankton community composition,

phytoplankton growth phase and turbulence).
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During the two years of the survey in the North Sea high TEP concentrations linked to
phytoplankton blooms were observed. In particular, the phytoplankton bloom observed
in the year 2014 was related to a bloom of the dinoflagellate Karenia mikimotoi (Elisa
Capuzzo, personal communication) . This is supported by the literature where high TEP
concentrations have been found during diatom blooms (Passow and Alldredge, 1994;
Passow and Alldredge, 1995; Grossart et al., 1997; Mari and Burd, 1998) as well as during
blooms dominated by dinoflagellates (Alldredge et al., 1998).

Hypothesis 2: Transparent exopolymer particles aggregate into large particles that sink
out, leading to export of carbon-rich POC. Aggregates containing TEP composition and
size can substantially affect the quality, quantity, degradation and sinking of the exported

carbon.

TEP itself cannot sink because its density is less than that of seawater (from 700 to 840
kg m™) (Azetsu-Scott and Passow, 2004). It can act as a glue (Passow, 2002a) and
promote the formation of fast sinking aggregates (Mari et al, 2017). The
buoyancy/sinking of aggregates containing TEP depends on their density, which depends
on the ratio of TEP to other particles (of different density) in the aggregate (Engel and
Schartau, 1999; Azetsu-Scott and Passow, 2004a; this study). Mari et al. (2017) suggested
that an increase in the production of TEP might determine a decrease of the downward
flux, or in the case of very high TEP production may lead to an upward flux that extends
the residence time of aggregates containing TEP in surface waters (Azetsu-Scott and
Passow, 2004a) and delays their sinking (Mari ef al., 2017). In this study the residence
time of TEP was estimated with the use of a simple box model. The North Sea and Celtic
Sea showed a residence time of TEP comparable to that reported in the literature (from
0.3 to 34 days; Wurl et al., 2011). However, in the North Sea the residence time of TEP
(2.7 £ 1 days) was about half of that estimated for the Celtic Sea (5.2 days), which
indicates that in the North Sea TEP may be more quickly consumed and/or exported from

the surface water to the bottom.

Given that, it is of primary importance to estimate the sinking rate aggregates and the
effect of TEP on it. Few studies have attempted to quantify the effect of TEP on sinking
rates, but it has been argued that high proportions of TEP in aggregates can lead to

buoyant aggregates (Mari ef al., 2017). A modelling study estimated that small marine
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aggregates with a size < 500 pm have a sinking velocity from 4 to 42 m d”' (Kriest, 2002).
Furthermore, another modelling study used a sinking rate of 10 m d' to model the
dynamics of aggregates containing TEP (Oguz, 2017). This research attempted to
estimate a likely sinking rate of aggregates containing TEP in the shelf seas. To this end
independent approaches were used in the North Sea and Celtic Sea. The North Sea
showed a similar sinking velocity between regions and years with an average of ~ 15 m
d'. A comparable result found for the Celtic Sea, where the sinking velocity was on
average of ~ 16 m d™. In spite of the high uncertainty in the calculation of the sinking
rates of aggregates containing TEP, the independent approaches were in generally good
agreement. This value of approximately 15 m d”' may be considered representative of the
sinking rate of aggregates containing TEP in shelf seas. However, it is inconsistent with
the predictions of Mari ef al. (2017), which estimated that summer aggregates are buoyant

due to the high ratio of TEP (more of 5%) to other particles in the aggregates.

Hypothesis 3: TEP production and associated carbon overconsumption occurs in
summer when the phytoplankton community is nutrient limited. The effect increases the
quantity of sinking carbon and therefore increases the efficiency of the continental shelf
pump. By consequence, TEP should play a substantial role in controlling air-sea CO;

flux in shelf seas.

The new formulation developed to describe TEP dynamics in ERSEM was used in the
Celtic Sea to investigate the fate of carbon exported due to TEP and the potential effect
of TEP on the marine carbon cycle in terms of CO, uptake, carbon sequestration and C :
N stoichiometry of the organic matter. In the Celtic Sea TEP increased the carbon and
nutrient export from the water column to the sediments. This determined a consequent
increase of the benthic respiration of ~30%. Increases in benthic respiration can be
explained by observed decreases in DIC in surface waters, caused by the lesser primary
production respired back to the water column. A reduction in surface DIC concentrations
should lead to an increase of the CO; flux from the atmosphere into the sea. However,
this effect may be partially balanced by the reduced GPP due to reduced nutrients in the
model through greater export of fixed carbon and nutrients to the benthos. The TEP model
in ERSEM does not produce realistic results and cannot be used in prognostic mode as it
moves the model away from the state where it is optimized to agree with observations.
As the TEP scheme has such a significant effect on primary production and free

wintertime nutrient levels in the model, this indicates the potentially significant role that
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TEP may play in the carbon cycle in temperate shelf. The increase of the benthic
respiration suggested that TEP as a source of extra sinking organic carbon, may have a
very important role in the biological shelf sea carbon pump. Without TEP the system
would remineralise more material in the water column, resulting in higher nitrate
concentrations and less drawdown of CO,. A peak of TEP, concentrations observed in
surface waters with low NO; concentrations, supported the hypothesis of carbon
overconsumption. TEP, increased the export of carbon-rich POC with a higher C : N ratio.
In the literature it has been reported that TEP has a C : N ratio exceeding 20, which is
above the Redfield ratio (Engel and Passow, 2001; Mari et al., 2001). Sinking POC in the
BML showed a high C : N ratio, reaching a maximum of 30 indicating that TEP, may
have accounted for ~ 65% of the total exported POC. The export of high C : N material
may be a key process in maintaining an effective carbon pump in shelf seas (Humphreys

et al., 2018) and this is a potential mechanism that has not previously been considered.

6.3 The role of other factors in controlling TEP dynamics

The modelling work presented in this thesis assumes that TEP is produced in surface
waters and consequently exported. As with previous studies (Wurl et al., 2011; Mari et
al.,2017) it was assumed here that production of TEP by phytoplankton, the composition
and the density of aggregates containing TEP and bacterial degradation of TEP are the
major factors that may control TEP dynamics. However, it is possible that other factors
play a role in controlling TEP dynamics, in particular in the production, consumption and
export of TEP. Those factors may be related to photodegradation of TEP in the Surface
Microlayer (Mari et al., 2017), specific phytoplankton community (e.g. differential
production of TEP by different phytoplankton communities) (Passow and Alldredge,
1994; Passow and Alldredge, 1995; Grossart ef al., 1997; Alldredge et al., 1998; Mari
and Burd, 1998), production of TEP by bacteria (Schuster and Herndl, 1995; Stoderegger
and Herndl, 1999; Passow, 2002b; Sugimoto et al., 2007; Koch et al., 2014), injection of
air bubbles in surface waters due to wind speed (Wurl et al., 2011; Mari et al., 2017) and

possible resuspension of TEP buried in sediments (this study).

For instance, the box model approach used in this study considers that all TEP produced
in surface waters is eventually exported in form of aggregates containing TEP. However,
another study has predicted that especially during periods of high TEP production the

aggregates formed by TEP may be buoyant, extending their residence time in surface
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waters (Mari et al., 2017). An extension of the residence time of aggregates containing
TEP in surface waters may reduce the amount of the TEP exported due to two processes
that may occur in surface waters: the consumption of TEP by bacteria and the
photodegradation of TEP by UV-B radiation in the Surface Microlayer. These processes
were not considered in this study. This might in part explain the discrepancy found in this
study between the observed primary production and the export rate of TEP predicted by
the steady state box model applied to the Celtic Sea and North Sea datasets.

To account for the retention versus export of aggregates containing TEP the approach
used in ERSEM and in the TEP aggregation model, assumes that the TEP produced in the
surface waters aggregates with other particles, forming two different types of aggregates
containing TEP: sinking aggregates and floating aggregates. Furthermore, the formation
of aggregates containing TEP in ERSEM is supposed to be driven by the stickiness of
TEP, which triggers the formation of aggregates containing TEP. However, other factors
may need to be considered in the aggregation process of TEP such as the age of TEP,
which has been reported to be associated with the stickiness of TEP, the particle size and
the rate of collision between TEP and other particles (Mari et al., 2017). For instance, old
TEP is less sticky, this reduces the capability of TEP to aggregate solid particles and may
have a negative effect on the formation of aggregates containing TEP. The rate of
collision and the size of particles might be other key factors that drive the aggregation
process of TEP (Mari ef al., 2017), which could be taken in to account in future modelling

studies.

The specific phytoplankton community may be another key factor in controlling TEP
dynamics due to the fact that in different periods of the year and in different locations the
phytoplankton community is dominated by different phytoplankton groups (e.g. diatoms),
which release different amounts of TEP. For instance, the dominance of a particular
species in the phytoplankton community and the environmental conditions may play a
key role in TEP production. In this research, the phytoplankton taxonomy was not
investigated, however, a sample of seawater collected in the North Sea in 2014 by Cefas
for phytoplankton taxonomy revealed high TEP concentrations associated with a
phytoplankton bloom dominated by the dinoflagellate Karenia mikimotoi. Whilst there
are a number of other factors requiring further study (e.g. production of TEP by bacteria,

injection of air bubbles in surface waters due to wind speed and possible resuspension of
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TEP buried in sediments), the factors considered in this study are likely to be the primary

drivers of TEP dynamics.

6.4 Further research

To improve our understanding of the dynamics of TEP in shelf seas, future research is

needed in the following areas:

Observations

Improvement of the method of TEP analysis is needed to obtain quantitative data,
improve accuracy and make the analysis quicker, easier and more reliable. This could be
in part achieved by using the TEP photographic method presented as part of this research.
This new method does not improve data accuracy, however, it makes the analysis quicker
and avoids the use of hazardous concentrated solution of sulfuric acid. Furthermore, a
better way to convert TEP in TEP carbon content (TEP.) is needed. Another challenge is
to quantify the fraction of TEP, in the pool of POC due to the evidence that TEP is not
retained quantitatively on the standard GF/F filters used for POC determination (Passow
and Alldredge, 1995). For instance, in this study the fraction of TEP, in the pool of POC
was estimated by subtracting the TEP, concentration from the total POC concentration.
The POC samples used in this research were collected as part of the Cefas POC sampling
programme, therefore it was not possible to use a different filter from the standard GF/F
glass fiber filter. Furthermore, it is not possible to use other filters (e.g. polycarbonate
filter) than the standard GF/F glass fiber filter for POC determination due to the fact that
the method involves the combustion of the filter at a high temperature. In order to get a
valuable dataset it is also necessary to include TEP in routine monitoring programmes to

obtain high-frequency data.

ERSEM

The next step in ERSEM would be to improve the processes used in the current TEP
formulation. For instance, at present the aggregation process considers that floating
aggregates once generated due to mixing and particle collision can further aggregate,
forming higher density particles heavy enough to sink. This process is implicitly used by
assuming that every day a fraction of the sinking aggregates becomes “heavy enough” to
sink. In future research this will require the development of a specific process that links

the floating and sinking aggregate pools. Another important step to improve the model

208



would be the introduction of other processes that control TEP dynamics, such as
production of TEP by bacteria and the consumption of TEP due to zooplankton grazing.
These two processes are not very well studied and documented. For instance, bacteria
produce extracellular polymeric substances (EPS) (Decho, 1990), which might contribute
to the total TEP production (Schuster and Herndl, 1995; Stoderegger and Herndl, 1999;
Passow, 2002; Sugimoto ef al., 2007; Koch et al., 2014). Another way that TEP can be
removed from the surface waters is due to bacterial remineralization (a process already
included in the model). Several studies have reported the capability of bacteria to colonise
TEP (Alldredge et al., 1993; Passow and Alldredge, 1994; Schuster and Herndl, 1995;
Mari and Kierboe, 1996) and a linear positive relationship between TEP and the alpha
and beta glucosidase activity of bacteria has been observed (Smith et al., 1995). However,
the specific degradation rate of TEP is still unknown due to the practical difficulty of
separating formation, degradation and the transformation of TEP by bacteria (Mari et al.,
2017). The only information available is from a study conducted on extracellular
particulate carbohydrates (in part TEP) released by phytoplankton, which has shown a
degradation rate due to bacterial remineralization of 0.53 d™' that is much higher than that
of POC (0.25 d") (Harvey et al., 1995; Mari et al., 2017). Furthermore, zooplankton
grazing on phytoplankton might indirectly affect TEP in the water column by removing
its main producer (phytoplankton). ERSEM has a fixed sinking velocity for aggregates
containing TEP. In the future ideally it would be better to have a variable sinking velocity
calculated by the model as a function of the density of the aggregates and that of the
seawater. To make predictions of TEP (e.g. concentrations, export and dynamics), it
would be necessary to assess the skill of the TEP model against different TEP datasets. It
is of primary importance to make predictions on TEP on a spatial scale and to cover a
considerable portion of the sea, such as the North Sea. This could be achieved by taking

this formulation to the next level with a 3D model to get a spatial distribution of TEP.

TEP in the aggregation model

A limitation in the TEP aggregation model was the uncertainty in the estimation of the
composition of aggregates containing TEP, in particular the fraction of the minerals in
the aggregates. In future research the collection of Total Suspended Solid (TSS) samples
may provide a better estimation of the inorganic fraction of the aggregates containing
TEP. This would substantially reduce the uncertainty in the model and would make this

modelling approach a tool to predict the fate of TEP in the marine environment.
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6.5 Conclusions

This research has addressed the role of TEP in carbon cycling by focusing on processes
in surface waters and the potential export of aggregates containing TEP. The crucial role
that TEP plays in the aggregation of particles is well known. However, there is a lack of
information on the mechanisms of how TEP drives the aggregation process and affects
the retention time in surface waters and sinking velocity of particles (Mari et al., 2017).
This study has demonstrated that TEP can play a potentially significant role in carbon
cycling and export in shelf seas, where its concentration is high relative to the open ocean.

In particular the main findings of this study are:

- The average concentration of TEP of ~ 10 umol 1" observed in both summers
(2014 and 2015) in surface and bottom waters in the North Sea is consistent with
the overconsumption of ~ 40 pmol kg of DIC predicted for the North Sea in
summer by Prowe ef al. (2009). For instance, given a lifetime of TEP of a few
days a continuous TEP production would be needed to maintain this
concentration.

- Higher concentrations of TEP are associated with coastal areas where riverine
inputs, nutrient inputs and phytoplankton blooms play a key role in the production
of TEP.

- The linear positive relationship between TEP and chlorophyll a found in this study
in specific locations indicates that this relationship strongly depends on multiple
factors (e.g. physiological state of phytoplankton, physical, chemical and
biological conditions).

- The ratio of TEP to other particles in aggregates may be a key factor in controlling
the sinking or floating of aggregates containing TEP.

- Despite the uncertainties associated with the analysis, the results indicate that the
sinking rate of aggregates containing TEP maybe in the order of 10 to 15 m d™.

- Nutrient stoichiometry and imbalance between nutrients have a direct effect on
TEP production, although the mechanism is not clear. This is consistent with the
idea of TEP production during phytoplankton blooms, under conditions of nutrient

limitation and associated carbon overconsumption.
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Furthermore, the simple modelling exercises used as part of this research illustrate that
small changes in the production or degradation of TEP and its fraction in aggregates
containing TEP would potentially affect the sinking of particles and therefore this would
have an impact on benthic respiration, carbon export and nutrient balance in shelf seas.
This is a potential key feature of shelf sea carbon cycling that has not previously been
studied. However, the inherent uncertainties associated with TEP analysis, and the
uncertainties in the results of model output are significant. Therefore, further study is
essential to better understand the biogeochemical role of TEP in the marine carbon cycle.
For instance, a more in-depth understanding of how environmental changes affect TEP
production and its chemical composition is needed to improve modelling and
understanding of carbon cycling in shelf seas. This information is critical to elucidating

the role TEP in the shelf sea carbon cycle under future climate change scenarios.
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