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ABSTRACT

Mediterranean-type climates are defined by temperate, wet winters and hot or warm dry
summers and exist at the western edges of five continents in locations determined by the
geography of winter storm tracks and summer subtropical anticyclones. The climatology,
variability and long term changes in winter precipitation in Mediterranean-type climates,
and the mechanisms for model-projected near-term future change, are analyzed. Despite
commonalities in terms of location in the context of planetary scale dynamics, the causes of
variability are distinct across the regions. Internal atmospheric variability is the dominant
source of winter precipitation variability in all Mediterranean-type climate regions, but only
in the Mediterranean is this clearly related to annular mode variability. Ocean forcing of
variability is a notable influence only for California and Chile. As a consequence, potential
predictability of winter precipitation variability in the regions is low. In all regions, the
trend in winter precipitation since 1901 is similar to that which arises as a response to
changes in external forcing in the models participating in the Coupled Model Intercomparison
Project Five. All Mediterranean-type climate regions, except in North America, have dried
and the models project further drying over coming decades. In the northern hemisphere,
dynamical processes are responsible: development of a winter ridge over the Mediterranean
that suppresses precipitation and of a trough west of the North American west coast that
shifts the Pacific stormtrack equatorward. In the southern hemisphere, mixed dynamic-
thermodynamic changes are important that place a minimum in vertically integrated water
vapor change at the coast and enhance zonal dry advection into Mediterranean-type climate

regions inland.
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1. Introduction

Mediterranean-type climates are defined by temperate, wet winters and warm or hot dry
summers. The definition originates in the Mediterranean region itself. Here winter storms
bring precipitation but the subtropical location ensures cold temperatures rarely occur and
the precipitation is generally rain except at high elevations. The summers are dry, apart from
localized regions of convection over land, and the subtropical location and clear skies under
descending air allow for high temperatures. The dynamical origins of the Mediterranean
climate are, in winter, its location at the poleward edge of the winter Hadley Cell and
equatorward flank of the North Atlantic storm track and, in summer, its location under
a vast area of subsidence extending from the North Atlantic subtropical high, across the
Mediterranean and into east Asia and encompassing North Africa as well.

Because of the location of the Mediterranean climate and its generation in terms of
planetary scale dynamics, it is not surprising that there are four other regions of the world
with Mediterranean-type climates. These are the west coast of North America from north-
ern Mexico to Washington State, central Chile, the far southwest tip of southern Africa
and southwest Australia. All these regions have the same winter-dominated precipitation
regime, temperate winter climates and hot or warm, dry summers. The climatological sim-
ilarity of the world’s Mediterranean-type climate regions (MCRs) translates into similar
natural vegetation with sparse woodlands, grasses and shrubs that have been converted into
similar agricultural uses for growing vines (primarily for wine), fruits, olives, wheat and
nuts (di Castri and Mooney 1973), the bases of the so-called Mediterranean diet with its
associated health benefits (Baich-Faig et al. 2011).

All of the MCRs lie in the subtropics to mid-latitudes and on the western edge of con-
tinents. This location ensures a mild, maritime climate in winter with precipitation from
storms in the extratropical storm tracks and, in the summer, warm to hot, dry summers
under the influence of the eastern flanks of subtropical highs (Rodwell and Hoskins 2001;
Seager et al. 2003b). The Mediterranean region itself is actually unique in that winter precip-
itation occurs primarily within the Mediterranean storm track (Trigo et al. 1999; Campins

et al. 2011; Lionello et al. 2006; Flocas et al. 2010), which is distinct from the North Atlantic
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storm track, and the summer subsidence is east of the North Atlantic subtropical high and
more related to a forced response to Asian monsoon heating (Rodwell and Hoskins 1996,
2001; Simpson et al. 2015). Only the climates of Portugal and Morocco are strictly analogous
in climate dynamical context to the four other Mediterranean-type climates.

All MCRs are overall semi-arid as a result of the highly seasonal precipitation and long
dry summers and all struggle with water resources at the best of times. Lying between the
more arid subtropics and the more humid extratropics they are locations of impactful climate
variability and are highly vulnerable to intense and protracted droughts (e.g. Hurrell (1995);
Smith et al. (2000); Risbey et al. (2009); Seager et al. (2014a); Cook et al. (2016); Garreaud
et al. (2018)). Fire is a hazard common to Mediterranean-type climates too (Bowman et al.
2017). In recent years California has experienced withering droughts (Seager et al. 2014a;
Williams et al. 2015) and fires, Chile has also experienced drought and fire (Garreaud et al.
2018), southwest Africa (around Cape Town) is enduring a severe drought (Wolski 2018;
Simpkins 2018) and the Mediterranean and southwest Australia have experienced persistent
dry conditions in recent decades (Allan and Haylock 1993; Kelley et al. 2011; Hoerling et al.
2012; Delworth and Zeng 2014). In addition, climate change caused by rising greenhouse
gases is expected to reduce precipitation in all MCRs other than California (Polade et al.
2017) and warming will increase drought risk (Cook et al. 2014).

Given their same similar climates arising from comparable geographical locations with
reference to continental geography and planetary scale circulation, it might be expected
that the causes and character of climate variability and change would also be similar across
the MCRs. There is an extensive literature addressing climate variability and change for
the Mediterranean, California and, to some extent, Chile and somewhat less for southwest
Africa and southwest Australia. However, while Polade et al. (2017) address climate change
across the MCRs, to our knowledge there has yet to be a study that compares and contrasts
both variability and change across the Mediterranean-type climates and places this within a
mechanistic climate dynamics framework to achieve basic understanding. In this regard the
similarities and differences will be informative as to the underlying processes influencing these
climate regions. While all MCRs face similar climate problems, are the climate processes

generating the variability and change the same or different?
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In this paper we will address the following issues.

i. How similar are the climatology and variability of precipitation and temperature across

the MCRs?

ii. What atmospheric circulation phenomena drive interannual variability of winter pre-
cipitation of the MCRs? What is the relative role of ocean (sea surface temperature,

SST) forcing compared to internal atmospheric variability?

iii. What are the trends in winter precipitation over the past century in the MCRs? Are
they consistent with expectations, based on climate models, of change due to human-

induced climate change?

iv. What are the dynamical and thermodynamical mechanisms that models project will

cause declines in winter precipitation in all MCRs other than California?

v. What are the common processes that lead to similar variability and change across
MCRs and what are the zonally and hemispherically asymmetric processes that lead

to differences across MCRs?

We begin by describing the data and then present a series of observational analyses and
simulations with SST-forced models to examine variability. We will then examine simulations
from the Coupled Model Intercomparison Project Five (CMIP5) to diagnose projections of
radiatively-forced change and determine the mechanisms responsible. A discussion of the
commonalities and differences between MCRs from a climate dynamics perspective will follow

and then we will offer conclusions.

2. Mediterranean-type climate definition and observa-
tional data and model simulations used
a. Mediterranean-type climate type definition

Our definition of MCRs follows the Képpen climate classification which divides climates

with 1), winters that are temperate and the season of maximum precipitation and 2), dry

4



us  summers, into two types: Csa hot summers and Csb warm summers. The categorization is
s that of Leemans and Cramer (1991) and is provided with details at http://iridl.1ldeo.
17 columbia.edu/SOURCES/.UN/.FAQ/.NRMED/.SD/.Climate/.dataset_documentation.html#
ug anchor2. The MCRs are shown on Figure 1. The Mediterranean, California and southwest
1o Australia are dominated by the Csa hot summer type, and Chile and southwest southern
120 Africa by the Csb warm type. Note that, according to the Koppen climate classification, the
21 Pacific Northwest of North America is an MCR. Since, for example, Seattle is not commonly
122 considered to have an MCR (but does have a climate similar to central Chile) we have broken
123 the west coast of North America into the Pacific Northwest and the more commonly con-
124 sidered MCR of California. We also ignore the warm summer MCR in southeast Australia
125 because of its somewhat different location in the context of planetary scale circulations. We
126 recognize that we are adopting a broad brush climatology-inspired definition of MCR. For a
127 more nuanced and detailed description of MCRs see Aschmann (1973). To create climate
s quantities within the MCRs we use shapefiles available from the International Research In-
10 stitute for Climate and Society corresponding to the Csa and Csb locations in Figure 1. The
130 red boxes in Figure 1 are there only to draw attention to the MCR regions that are depicted
1 by the orange and burgundy shading within the boxes. Climate data were averaged over
12 these shaded MCR regions within the boxes. The MCRs are notably different in size with

133 southwest southern Africa the smallest and the Mediterranean the largest.

1 b. Observational data

135 For precipitation and temperature observations over land we use the latest data set
136 from the University of East Anglia Climatic Research Unit CRU TS3.25 which provides
137 data on a 0.5° grid at monthly resolution from 1901 to 2016 (Harris et al. 2014) accessed
133 from http://dx.doi.org/10.5285/c311c7948e8a47b299f8f9c7ae6cb9af. For SST and
130 200hPa heights we use data from the National Centers for Environmental Prediction-National
o Center for Atmospheric Research (NCEP-NCAR) Reanalysis (Kalnay et al. 1996; Kistler
et al. 2001) for 1949 to 2016 accessed from https://iridl.ldeo.columbia.edu/SOURCES/
12 .NOAA/.NCEP-NCAR/.CDAS-1/. To assess if data limitation in the southern hemisphere prior
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to the satellite era influences the results we also conducted the analyses for 1979 to 2016
and found very similar results to those for 1949 to 2016 and hence just show results for
the longer period. In addition we analyzed observed precipitation data from the Global
Precipitation Climatology Center (GPCC) at half degree resolution covering 1901 to 2013
(Schneider et al. 2011), accessed from http://iridl.1ldeo.columbia.edu/SOURCES/.WCRP/
.GCOS/ .GPCC/ .FDP/ .version7/.0p5/ and for the U.S. from the PRISM group at Oregon
State University (Daly et al. 2008) (available at www.prism.oregonstate.edu, accessed

6/21/18).

c. SST-forced atmosphere model simulations

To examine SST-forced variability we use a 16 member ensemble of simulations of
the NCAR Community Atmosphere Model 5.3 (see http://www.cesm.ucar.edu/models/
cesml.2/cam/docs/ugh_3/ug.html#idm218596792640, CAMS5.3) forced by Hadley Centre
SST data HadISST1 (Rayner et al. 2003). Atmospheric trace gas contents were held fixed
(mixing ratios are COy = 3.55 x 1074, CH; = 1.71 x 1075, N,O = 0.311 x 1075, F11 =
0.28 x 1072, F12 = 0.503 x 107%). The 16 members are begun from different initial condi-
tions on January 1 1856 such that the unforced variability in each member is uncorrelated
with that in each other member. We analyze the mean across the ensemble members which
isolates the SST-forced component of the atmosphere simulations common to all members.
The simulations were generated at Lamont and run at T42 spectral resolution with 30 vertical

hybrid-sigma levels.

d. Radiatively-forced model simulations

To examine climate change caused by external forcing, such as changes in the trace gas
content of the atmosphere due to human activity, we use models from the Coupled Model
Intercomparison Project Five (CMIP5, Taylor et al. (2012)). Since we conduct an analysis of
the contributing terms to changes in precipitation we use all the models that make available
all the data needed for evaluation of the moisture budget with sufficient vertical resolution

to perform vertical integrals and at 6 hourly time intervals to allow evaluation of moisture
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transports by transient eddies. These are the same 22 models as in Seager et al. (2014c).
To create a multimodel ensemble mean we first evaluate the mean of ensemble members
for each model using runs continuous between historical and future projections and then
average across models. Thus each model receives equal weight in the multimodel ensemble
mean despite different ensemble sizes for models. For the 1901 to 2005 period we use the
historical all-forcings simulations and for 2006 to 2040 we use the RCP8.5 emissions scenario
projections. All model data are regridded to a common 1° x 1° grid. The list of models,

their origin and some details are provided in Table 1.

3. Climatology and variability of climate for Mediterranean-

type climates
a. Climatology

To understand the large-scale dynamical context of MCRs we plot in Figure 2, for the
November to February and May to August seasons, the land precipitation and sub-monthly
200hPa meridional velocity variance, a common measure of the extratropical storm track
(see, for example, Berberry and Vera (1996); Chang et al. (2002)), and sea level pressure.
In winter, the location of the MCRs poleward of arid subtropical regions with, in North
America and Europe, more humid regions on their poleward side, is clear and arises from their
positioning in, or on the equatorward flank of, the mid-latitude storm track. The storm track
provides the winter precipitation. In the summer, the mid-latitude storm track is weaker
and further poleward and each MCR is on the eastern flank of the subtropical anticyclones
and hence under equatorward flowing, descending air (Rodwell and Hoskins 2001; Seager
et al. 2003a). This provides for the warm or hot and dry summers. The Mediterranean
itself is under a ridge expanding eastward from the North Atlantic subtropical high that is
likely connected to Asian monsoon-induced subsidence (Rodwell and Hoskins 1996, 2001;
Simpson et al. 2015). The commonality of the MCRs in terms of the large-scale dynamics
context is clear and establishes the broad similarity in these climates on five continents.

Figure 3 shows the climatological seasonal cycle of precipitation and temperature for the
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six MCRs. The six MCRs have remarkably similar seasonal cycles: maximum precipitation
in December-January (June-July) and minimum precipitation in July-August (December-
January) in the northern (southern) hemisphere. The temperature seasonal cycles are sim-
ilarly comparable: minimum temperature in December-January (June-August) and maxi-
mum temperature in July-August (December-February) in the northern (southern) hemi-
sphere. Absolute precipitation and temperature do, however, differ across MCRs. In order
from wettest to driest precipitation maxima, the MCRs are: Pacific Northwest, Califor-
nia, Chile, and then Mediterranean, southwest southern Africa and southwest Australia as
a group. In order from warmest to coolest summer temperature maxima, the MCRs are:
Mediterannean, southwest Australia, southwest southern Africa, California, Pacific North-
west, Chile. Figure 1 also shows the annual mean precipitation which makes clear the
variation in seasonal maximum precipitation is reflected in the variation of overall aridity
with the Pacific coast MCRs being less arid than the Mediterranean, southern Africa and
Australian MCRs.

Figure 3 also shows box and whiskers plots of the median, 25th and 75th percentile, the
+2.70 range and outliers (beyond £2.7¢ for a normal distribution) for the temporal distribu-
tion of area mean precipitation for each month in each MCR.. Again there is much similarity
across MCRs. The summer dry season is a time of very little precipitation variability while
the winter wet season has substantial variability. The size of the 25th to 75th percentile range
typically equals a quarter to a third of the value of the monthly mean precipitation but the
full range of monthly precipitation (excluding outliers) varies from next to no precipitation
to twice the normal. The three northern hemisphere MCRs have maximum temperature
variability during the wet season but in the southern hemisphere temperature variability
is more evenly spread through the year. Although not investigated here, we suspect this
inter-hemispheric difference is due to the large area of continents in the northern hemisphere
that get cold in winter causing large land-sea and meridional temperature contrasts that
circulation variability can translate into large amplitude temperature variability (Schneider

et al. 2015).
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b. Interannual variability of winter precipitation
1) OBSERVED RELATIONS

The seasonal cycles clearly suggest that variability of a four month winter season mean
precipitation will be the dominant feature of interannual hydroclimate variability in MCRs
with likely impacts on water resources, hydrology and ecosystems. For the northern hemi-
sphere we define November through February, and for the southern hemisphere we define
May through August, as four month averaged periods to analyze and for convenience refer
to these as the winter seasons. It is recognized that such temporal averaging is rarely ideal
since the phenomena that influence variability within the season and the seasonal cycle itself
occur within a time continuum. Given their subtropical locations and exposure to winter
storm tracks that can be displaced by tropically-forced teleconnections (e.g. Trenberth
et al. (1998); Seager et al. (2003a)), it might be expected that each of the MCRs would be
influenced to some degree by the dominant source of SST-forced interannual variability, the
El Nino-Southern Oscillation (ENSO). Also, given their latitude, it might be expected that
MCRs will be at the equatorward flank of variability induced by the northern and southern
annular modes. In addition, other modes of SST-forced and internal variability could be
important.

In Figure 4 we show the regression of winter mean 200hPa geopotential heights and
SST on concurrent winter mean precipitation anomalies in the MCRs for the 1949 to 2016
period covered by the NCEP-NCAR Reanalysis. To remove long term climate change, to be
considered separately below, these analyses are conducted on data that have been linearly
detrended. Despite the above expectation, only California and Chile show a connection of
winter wetness to ENSO and only weakly so. The association is in the sense of El Nino (La
Nina) winters tend to be wet (dry) but we know based on prior work (Seager et al. 2015;
Jong et al. 2016) that the association for California is largely restricted to the El Nino-wet
side.

Not only is the ENSO influence restricted to those MCRs that border the eastern Pacific
Ocean, but this appears the only ocean influence on MCR winter precipitation variability. For

the Pacific northwest, Mediterranean, southwest southern Africa and southwest Australia the
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results show no regions with statistically significant SST anomalies that appear to be forcing
precipitation variability. For the Pacific northwest the SST anomalies that do appear are
consistent with forcing from the atmosphere in the form of cold /dry (warm/moist) advection
generating enhanced (reduced) ocean to atmosphere surface heat flux and cool (warm) SST
anomalies. The cool waters west of southwest Australia are also consistent with cooling due
to enhanced westerlies. The height anomalies associated with southwest Southern Africa
winter precipitation variability are similar to those previously noted by Reason et al. (2002).

The signal of the northern annular mode shows up clearly in relation to Mediterranean
winter precipitation variability. Wet winters go along with a negative northern annular
mode that would also be a negative North Atlantic Oscillation (NAO) with anomalous high
heights over the subpolar North Atlantic and northern high latitudes and negative heights
over the subtropical Atlantic and subtropical northern latitudes. The height anomalies
are positioned so that during wet winters the Mediterranean region experiences enhanced
westerly flow. Although the annular mode anomalies are hemispheric in scale, the dominant
mode influencing winter precipitation variability in the Pacific Northwest is instead a North
Pacific to North Atlantic wave train that places, during wet winters, strong westerlies over
the region and which appears to arise from internal atmospheric variability. Any influence
of the southern annular mode is not leading for any of the three southern hemisphere MCRs.
Chile instead reflects an ENSO influence, and both southwest southern Africa and southwest
Australia tend to have wet (dry) winters when local westerlies are strong (weak) with only
southwest Australia having some hint of being related to annular mode of variability (and
perhaps more to an Australian regional version of the Antarctic Oscillation as in Meneghini
et al. (2007)).

These results are consistent with, or not inconsistent with, prior work on SST relations
to precipitation variability in MCRs. Seager et al. (2015) review work on California winter
precipitation variability and show that there is a weak correspondence of El Nifio events to
wet winters but no association between La Nina and dry winters. Garreaud et al. (2018) show
an ENSO association to winter precipitation variability in Chile. This is consistent with the
hemispherically symmetric aspects of ENSO-driven climate variability (Seager et al. 2003a)

with the anomalies in Chile occurring in the northern summer (southern winter) before peak
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ENSO events and the impact on California in the following northern winter. We have shown
an association between the NAO and Mediterranean winter precipitation which has been long
known (Hurrell 1995). Recently it has been claimed that the winter NAO is significantly
driven by tropical SST variations (Scaife et al. 2014) but those SST-forced variations do not
appear in our analysis due to the dominant internal atmospheric origin of NAO variability.
For southwest southern Africa an apparent connection of ENSO to precipitation variability
occurs in the dry season (Rowell 2013) and, while Philippon et al. (1985) claimed an
ENSO connection to wet season precipitation variability during 1979 to 1999 for the wider
southwest, this is actually weak in the MCR (see their Figure 5). The association of wet
and dry winters in southwest Australia with anomalous westerlies and easterlies was noted
by Allan and Haylock (1993) and Smith et al. (2000). An association of wet (dry) with
La Nina (El Nino) is obscured in this analysis since it does not reach statistical significance
which is consistent with the ENSO teleconnection to Australia being focused in the east of
the continent and only weakly influencing the Australian MCR (Risbey et al. 2009). That
the ENSO relation to the southern hemisphere MCRs is weak is consistent with O’Kane
et al. (2017) who emphasize the importance of internal mid-latitude waveguide dynamics to

circulation variability across the southern hemisphere.

2) MODEL-BASED ANALYSIS OF SST-FORCED PRECIPITATION VARIABILITY IN MCRS

Based on the results in the prior subsection we would not expect a high level of agreement
between the observed time series of winter precipitation in MCRs and those simulated by
SST-forced models. This is because the observational analysis does not identify a role for SST
forcing other than in California and Chile where it is still, nonetheless, quite weak. Figure
5 shows the observed and model ensemble mean time histories of winter precipitation and
temperature for each MCR as well as, with shading, the spread across the model ensemble.
In California, Chile and southwest Australia the ensemble mean precipitation time series is
correlated with the observed history at the 5% statistical significance level (according to a
two-sided t-test) but with correlation coefficients of 0.17, 0.42 and 0.19 respectively. Hence
Chile is the only MCR where SST-forcing appears to explain more than 10% of the total

11
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variance of winter precipitation.

The SST-forced climate model experiments allow further interrogation of the role for
SST-forcing. The ensemble mean of the simulations closely identifies the SST-forced com-
ponent common to each ensemble member. Figure 6 is as for Figure 4 but computed on the
ensemble mean of the SST-forced simulations with CAM5.3. Here we use only the 1949 to
2016 period of the model simulations to match the NCEP-NCAR period analyzed above.
Here we uncover the maximum potential for the oceans to drive winter precipitation variabil-
ity in the MCRs. For the Pacific northwest, La Nina conditions have a weak relation to wet
winters. For both California and Chile there is a clear association in the SST-forced signal
between El Ninio and wet winters. The fact that this is less clear in the observational analysis
is almost certainly due to the strength of internal atmosphere variability and its influence
on precipitation in these regions. For the Mediterranean too, an ENSO influence is apparent
consistent with Scaife et al. (2014), while Pozo-Vasquez et al. (2005, 2001) show the rela-
tion is primarily La Ninas favoring a positive NAO and dry conditions across most of the
Mediterranean. The ENSO-Mediterranean precipitation teleconnection may also vary over
time due to the influence of other modes of variability and location of tropical Pacific SST
anomalies (Lopez-Parages and Rodriguez-Fonseca 2012; Lopez-Parages et al. 2016). Signif-
icant, however, is that here we find this SST-forced precipitation signal is weak compared
to that of the NAO. Since the NAQO is primarily a mode of internal atmosphere variabil-
ity and only weakly SST-forced, these results are consistent with the observational analysis
identifying internal atmosphere (NAQ) variability, not SSTs, as the leading cause of winter
precipitation variability in the Mediterranean. There is essentially no SST-forced signal over
southwest southern Africa and the association between wet winters in southwest Australia
and La Nina is consistent with Risbey et al. (2009) in both sign and weak amplitude.

The time series of observed winter precipitation in all the MCRs (Figure 5) show strong
variability and any long term trends are weak in comparison but, close inspection, shows
likely drying trends in the Mediterranean, Chile, southwest southern Africa and southwest
Australia, which we examine in the next section. Warming trends appear clearly in the
Mediterranean, Chile, southwest southern Africa and southwest Australia. The trends are

faithfully reproduced by the SST-forced model but it is also notable that the interannual

12
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variability of surface temperature is too (numbers in parentheses show correlation coefficients
for detrended time series). Further examination, not shown here, shows this to be of little
interest because warm anomalies are caused by circulation anomalies that also warm the
waters offshore from the MCRs. When these warm water anomalies are imposed in the model
it causes a warm response in the MCRs even though the responsible circulation anomalies

are not simulated, i.e. the right answer for the wrong reason.

4. Long term change in precipitation in Mediterranean-
climate regions
a. Observed and modeled trends over the past century

Figure 7 shows the linear trend in land precipitation over 1901 to 2016 that was removed
before conducting the analyses shown in the previous section. In both California and the
Pacific Northwest the trend within the MCR is spatially variable. In contrast, there has been
widespread drying across Chile, southwest Australia and the Mediterranean, except Iberia.
In the very small MCR. of southwest southern Africa there has also been drying. Figure 8
shows the multimodel mean trend over the same period in the CMIP5 models. This bears
notable similarity to the observed trend. In the models, of the six MCRs only the west
coast of North America has got wetter while the other four have dried. The spatial patterns
in which the MCR precipitation change occurs are also similar between observations and
model response to external forcing. In North America this is widespread wetting over the
US but drying in western Mexico. In the Mediterranean region observations and models
agree on drying across North Africa and around the north shores of the Mediterranean Sea.
In Australia there is agreement on drying of all of southwest Australia not just the MCR.
There is disagreement in South America with the models suggesting wetting south of the
Chile MCR but the observations extending the drying into the humid region to the south. In
Africa the models are more emphatic in drying all of southern Africa. Nonetheless, given the
strength of natural variability, uncertainties in the observational data and potential model

errors and biases, this comparison is suggestive that each of the MCRs is already experiencing
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forced and human-induced precipitation change.

The lower panel of Figure 8 shows box and whiskers plots of the distribution of trends
across the CMIP5 model ensemble. The median is plotted as the horizontal line across the
box and the upper and lower limits of the box are the 25th and 75th percentiles of the dis-
tribution across models, the range is shown by the whiskers, outliers by red crosses and the
mean by a black asterisk. It is striking that for the Mediterranean, Chile, southwest southern
Africa and southwest Australia the model ensemble spread is predominantly drying, further
indicating the robustness of this human-induced climate change signal. In this panel we
also show the trends from the CRU and GPCC observational data and both show drying
indicating a large degree of model-observations agreement on aridification. The model en-
semble indicates wetting for California and a wet tendency for the Pacific northwest. Both
are on the wet side of the observational trends (including PRISM) which are close to neutral.
While much southern hemisphere climate change over recent decades has been attributed to
ozone depletion that is for the summer half year when stratospheric ozone can absorb solar
radiation (e.g. Polvani et al. (2011)). In the winter season, ozone depletion is unlikely to be
influential (Thompson et al. 2011; Franzke et al. 2015) and the radiatively-forced changes
arise instead from the increase in GHGs.

Models agree that the MCRs of the Mediterranean, Chile, southwest southern Africa
and southwest Australia should be drying and the observations in these MCRs do indeed
show drying. By using a bootstrapping methodology on the observed data we can assess
the probability that these four MCRs would have simultaneously dried, to the degree seen
in observations, through the chance sampling of interannual variability alone. All corre-
lations of the interannual variability between these four regions are less than 0.06 and no
regions have significant autocorrelation in precipitation from one year to the next except for
southwest Australia where it is reduced to insignificant values when the century long trend
is removed. The lack of autocorrelation of the interannual variability means it is appropri-
ate to compare the observed trends to the distribution of trends obtained from time series
constructed by randomly selecting individual years (with replacement) from the observed
record. The probability of obtaining the observed magnitude of trends by chance are 9.3%
for the Mediterranean, 5.2% for Chile and 26.7% for southwest southern Africa and essen-
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tially zero for southwest Australia. For the regions other than southwest Australia, while
individually they have not dried significantly more than expected from the sampling of in-
terannual variability at the 5% level, the chances of obtaining a simultaneous drying of these
three regions of the magnitudes observed, given their independence, is only around 0.1%
ie., p=0.093 x 0.052 x 0.267. These statistical analyses raise confidence that the observed
drying in the four MCRs where models simulate drying would not have arisen from internal

climate variability alone and that external forcings have made an important contribution.

b. Model projections of near term future change in the hydrological cycle over Mediterranean-

type climates and the physical causes

Here we use the CMIP5 models to determine the winter hydroclimate change they project
for the coming decades and the mechanisms responsible. First in Figure 9 we show the model
agreement on sign of winter precipitation change for 2021-2040 relative to 1979-2005 (the
same near-term future and recent past periods used by Seager et al. (2014b,c)). The models
project all MCRs except in North America to continue to dry in coming decades and this is
robust (more than three quarters of models agree on the sign of the change and agree with
the ensemble mean change) for all of the drying MCRs. Together with the ability of the
CMIP5 models to simulate historical drying this raises confidence that the changes to be
discussed are robust projections of the models.

To examine mechanisms of hydroclimate change we use a moisture budget breakdown
methodology as in  Seager et al. (2010, 2014b,c) using the “best-practises” methods of
Seager and Henderson (2013). We divide all quantities into monthly means, represented
by overbars and departures from monthly means, represented by primes with climatological
monthly means denoted by double overbars. Then the vertically integrated moisture budget,

written with model layer indicated by k and K the total number of levels, can be rewritten
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K K
= = 1
AP — AE ~ _JV A(uk q.dp,,) — —V Z A(u,q, dpk (1)
w k=1
T - K -
P j— A((T, - Vq,)dp,) — — A(q,V -ud

90w ; (W - Vay,) pk 9w ; (T, k pk)

K 1 S
_—V A ll q dp A qsUs - vps . 2
o Z wq; dpy) — oA ) (2)

Here A(:) indicates change from an average over one period to an average over another
period, P is precipitation, F is evaporation (taken to include transpiration), g is the accel-
eration due to gravity, p, is the density of water, p is pressure, ¢ is specific humidity and
u the vector horizontal velocity. The first and second terms on the right of Eq. 1 are the
moisture convergence by the mean flow and submonthly transient eddies, respectively. The
approximation in Eq. 1 comes from neglecting time rate of change of moisture (which is
small compared to the other terms) and ignoring terms involving dpj which is acceptable
(see Seager and Henderson (2013))). In Eq. 2 the change in mean flow moisture convergence
has been broken down into components. The first involves the change in moisture advection,
i.e. flow across spatial gradients of moisture. The second involves change in moisture con-
vergence related to the divergent flow. This is primarily influenced by mass divergence or
convergence in the lower levels where moisture is concentrated. The third (the fourth term
on right hand side) is a surface term that arises from bringing the divergence operator inside
the vertical integral in order to enable the separation into advection and mass divergence
terms.

The moisture budget change can be further decomposed into terms related to (i) changes
in humidity with unchanged circulation and (ii) changes in circulation with unchanged hu-
midity. The terms related to the moisture advection and the mass divergent flow can be

approximated as:

K K
1 e
T Z A((ag - V) dp,,) = Z Uy 20 - A (vadpk) - Z Vg, 20 A(ukdpk) (3)
gpw k—1 gpw k=1 k=1
1l & 1 — 1 &
- Z A,V - Tpdpy) = ——— Z A(Gpdpp)V - Ur20 — — ZQk,zoA(v udpy). (4)
9Pw = w 9Pw 1

16



443

444

445

446

447

448

449

450

451

452

453

454

455

457

458

459

460

461

462

463

464

465

467

468

469

470

471

472

Further approximation comes from ignoring terms quadratic in A, covariances of anomalous
monthly means and from using the 1979 to 2005 values for dp,. In Egs. 3 and 4 the
first terms on the right are referred to as the ‘thermodynamic terms’ since they involve the
changes in humidity while the circulation is fixed and the second terms are referred to as the
‘mean circulation dynamics’ terms since they involve the changes in the circulation while the
humidity is fixed. The thermodynamic term is, however, not solely thermodynamic since
the humidity field itself can change due to circulation change, not just temperature change.

The computation was carried out exactly as in Seager and Henderson (2013) to which
the reader is referred to for more details. Briefly, 6-hourly data are used to compute the
transient moisture fluxes and monthly mean data to compute the monthly mean moisture
fluxes. In the vertical integral monthly mean pressure thicknesses are used. Derivatives
are computed using second order centered differences and accounting for uneven grids. The
vertical integration extends to the surface pressure. The pressure thickness for this lowest
layer equals the surface pressure minus the pressure of the lowest reported level and the
velocities and humidity assigned to the layer are those of the lowest reported pressure level.

Figures 10-13 show the changes in P, E/, P — E, mean flow moisture convergence, the
advection and mass divergence contributions to mean flow moisture convergence, the surface
term and transient eddy moisture convergence for the 2021-2040 winter average minus the
1979 to 2005 winter average. Over North America (Figure 10) the MCR is projected to
experience an increase in winter P but, because of warming and higher evaporative demand,
its southern extent is projected to see a decrease in P — E. Transient eddy moisture con-
vergence is projected to decrease across the MCR (a consequence of weaker eddies in the
lower troposphere, see Seager et al. (2014c)). Increased mean flow moisture convergence
provides the wetting with both the advection and mass divergence terms important. Prior
work (Seager et al. 2014c¢; Simpson et al. 2016) has shown that this is partly thermodynamic
(the MCR region is wet in winter and rising humidity in a warmer atmosphere makes it wet-
ter) and partly due to adjustment of the stationary wave field creating a trough offshore and
southwesterly winds into the MCR.

Widespread declines of P and P — E are projected for the Mediterranean (Figure 11) and

are largely driven by a move towards mean flow moisture divergence and the term involving

17



473

474

475

476

477

478

479

480

481

482

483

484

485

487

488

489

490

491

492

493

494

495

497

498

499

500

501

502

the mass divergence being key. As also shown before (Seager et al. 2014b; Zappa et al.
2015), this is related to a move towards a ridge in the region that again is linked to an
adjustment in the planetary scale stationary wave field, but of unknown origin.

For South America, southern Africa and Australia (Figures 12 and 13) the models project
drying (for both P and P— F) for the MCR regions driven by mean flow moisture divergence.
In Chile the mass divergence term contributes drying for the southern part of the MCR but
moisture advection is a drying term across the MCR. For the MCRs of southern Africa and
Australia it is also the advection term that drives consistent drying. In all three southern
hemisphere MCRs, transient eddy moisture divergence acts reactively and diffusively to
provide a wetting tendency offsetting mean flow induced drying.

To assess whether these changes arises from change in the flow or the moisture field we
examined the further moisture budget decomposition in Eqgs. 3 and 4 and this is shown
for the southern hemisphere in Figures 14 and 15. Dynamic terms are on the left and
thermodynamic terms on the right. The thermodynamic term most closely related to the
“wet-get-wetter” paradigm - increasing humidity in a region of low-level mass convergence
(upper right) - does provide a wetting tendency in the Chile and southwest Australia MCRs
(but less so in southwest southern Africa) but this is overwhelmed by a thermodynamic
drying tendency due to increased drying by advection (lower right). There is also a dynamic
drying tendency due to a shift towards increased low-level mass divergence in the MCR region
(upper left). The moisture budget change is very similar in the MCRs of southern Africa
and Australia: the thermodynamic mass convergence term provides a wetting tendency that
is overwhelmed by i) thermodynamic drying due to increased dry advection and ii) dynamic
drying due to increased low level mass divergence.

Next we investigate the causes of these thermodynamical and dynamical changes. In
Figure 16 we show for the southern hemisphere the climatology of, and change in, humid-
ity vertically-integrated from the surface to 600hPa and the 850hPa winds. The southern
hemisphere MCRs sit within widespread subtropical minima of the increase in vertically
integrated humidity. Although not shown here, computations as in Ting et al. (2018), show
that this subtropical minima is associated with a reduction in relative humidity in the lower

troposphere above the boundary layer. Declining free troposphere relative humidity in the
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subtropics to mid-latitude region under global warming has long been noted and is explained
in terms of (i) the poleward expansion of the Hadley Cell and (ii) smaller temperature in-
creases in the upper level regions where the air was last saturated than in the regions to
which the air descends (Lorenz and DeWeaver 2007; Sherwood et al. 2010; O’Gorman and
Muller 2010; Wright et al. 2010; Lau and Kim 2015).

Within these subtropical regions, the humidity increase is locally minimized in the MCRs.
The wind changes show a clear trend to easterlies north of 40°S (east Pacific) and 35°S
(Indian Ocean) and towards westerlies to the south. Comparing to the climatological state
(Figure 15, top panel), these changes represent a poleward expansion of the Hadley Cell and
trade winds and a poleward shift and intensification of the extratropical westerlies. Westerly
winds impinging on the coast create convergence because of topography and increased surface
friction. Hence, in the region of easterly wind change, there is a shift towards low level mass
divergence and, consequently, subsidence off the coasts of the MCRs, causing a reduction in
specific humidity via moisture divergence. Since this process creates a local specific humidity
change minimum right at and west of the coast, the moisture advection term that combines
the unchanged westerly flow with the changed humidity field is a drying term for the MCRs
inland. While that advection term is a thermodynamic term it should be recognized that the
separation is not clean because, as mentioned, the pattern of humidity change is influenced

by the circulation change.

5. Discussion

The Koppen climate classification is based entirely on long term climatological properties
of a region and pays no attention to variability of climate and uses three letters for char-
acterization. Mediterranean-type climate are identified as being temperate (C), with a dry
summer (s) and hot (a) or warm (b) summers, hence both Csa and Csb climates. Despite the
absence of attention to climate dynamics, the scheme successfully identifies Mediterranean-
type climate regions on five continents that do share commonalities in climate, geographical
locations and planetary-scale dynamical context.

As we have shown, the MCRs also have similar climatologies of precipitation and tem-
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perature variability. However the causes of variability differ across the MCRs. It might be
expected that given their subtropical to mid-latitude location each MCR would be subject
to variability driven from the tropics and via annular modes. However, tropically-forced
variability primarily arises from the Pacific and, hence, it is not surprising that the North
American west coast and Chile are the prime recipients of its induced variability. Although
ENSO-induced variability is global, the other MCRs are in locations remote from the tropi-
cal Pacific and/or near nodal lines in ENSO-teleconnections (the Mediterranean, southwest
Southern Africa, southwest Australia) (Garreaud and Battisti 1999). In addition, in the
southern hemisphere, the winter (analyzed here) is a season of growing or decaying, but not
peak, ENSO variability which limits the strength of tropical forcing of circulation variabil-
ity (O’Kane et al. 2017). This is consistent with the ENSO-signal in the southern Africa
and Australian MCRs remaining weak in analysis of the SST-forced model ensemble mean
even though that isolates the SST-forced signal by averaging over internal variability. In
all MCRs the dominant source of variability appears to be internal atmosphere variability.
This is understandable given their location at the equatorward flank of mid-latitude storm
tracks (Hoskins and Valdes 1990; Trenberth 1991) that allow for considerable internally-
generated variability (O’Kane et al. 2017). Hence, even for the ENSO-teleconnected MCRs
at the western coast of the Americas, the ocean-forced signal is weak relative to internal at-
mospheric variability. Of other modes of ocean-related variability, the Indian Ocean Dipole
Mode does influence Australian climate but the influence is weak over the MCR in the south-
west (Risbey et al. 2009). The minor role for ocean forcing means that predictability of
interannual variability of winter precipitation in the MCRs will largely be small beyond the
timescale of numerical weather prediction based on initial conditions.

The annular modes are one major source of internal atmosphere variability in the extra-
tropics and given their hemispheric inclusivity might be expected to influence the MCRs.
However, only in the Mediterranean is the interannual variability of winter precipitation
dominated by annular mode variability, also interpretable here as the NAO. As shown in
Thompson and Wallace (2000) (see their Figure 1), the northern and southern annular modes
variability lies somewhat poleward of the MCRs and their zonal structure is such that the

Mediterranean is the only MCR that is located where there is substantial annular mode
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variability.

There is commonality across the MCRs, with the exception of California, in trends over
the past century towards drier winters. This is quite consistent with CMIP5 model sim-
ulations and is likely a consequence of human-driven climate change (Polade et al. 2017;
Delworth and Zeng 2014). The CMIP5 models project continuation of the historical trends.
The mechanisms for this can be discussed in terms of three commonly used concepts of

GHG-driven hydroclimate change, and one less commonly used.

a. “Wet get wetter, dry get drier”

The expectation is that as the atmosphere warms and can hold more water, those wet
areas where moisture converges will become wetter as the atmosphere converges more mois-
ture and vice versa for dry areas of moisture divergence (Chou and Neelin 2004; Held and
Soden 2006). Since in winter, MCRs are regions of moisture convergence and wet, if this
mechanism was dominant we would expect the MCRs to get wetter in winter. The moisture
budget analyses do show that this thermodynamics term creates a wetting tendency. How-
ever it is overwhelmed by other drying terms in all MCRs other than the North American

west coast and hence “wet-get-wetter” is not a good guide for hydroclimate change in MCRs.

b. Ezxpansion of the Hadley Cell and tropics

Lu et al. (2007) noted that global warming causes the Hadley Cell to expand as thermal
stratification in the subtropics increases and moves the latitude at which the zonal flow
becomes baroclinically unstable poleward. This would be expected to move the subtropical
dry zones, which are under the descending branch of the winter hemisphere Hadley Cell,
poleward, encroaching, at the west coast of continents, into the MCRs (see Grise et al.
(2019) for a recent review of the character and causes of recent tropical expansion). The
analysis shows that Hadley Cell expansion in the southern hemisphere (Feitas et al. 2017)
is indeed a good way to think of the ongoing and model projected increase in aridity within
the MCRs. The low level wind changes clearly show a poleward migration of the subtropical

high pressure zones under the descending branch of the Hadley Cell and there is a zonal band
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of decreasing precipitation at this latitude. The Hadley Cell is by definition a zonal mean
phenomenon although the physical phenomenon of rising air in the tropics and descending air
in the subtropics need not be zonally uniform and changes in the characteristics of these rising
and descending regions may contribute to some zonally asymmetric changes. In contrast, in
the northern hemisphere the greatly differing hydroclimate responses in California (wetting
or little change) and the Mediterranean (strong drying) make explanation in terms only of
Hadley Cell expansion inadequate and require an appeal to changes in zonally asymmetric

stationary waves.

c. Poleward shift of the mid-latitude westerlies and storm tracks

Yin (2005) noted that global warming causes a poleward and upward shift of the storm
tracks and an associated poleward movement of the jets and a move towards a high index
state of the northern and southern annular modes. This change is part and parcel of the
Hadley Cell expansion given the coupling between the axisymmetric tropical flow, the mid-
latitude eddies and the jet streams (see, for example, Schneider (2006)). Our analyses here
clearly show a projected poleward movement of the southern hemisphere winter westerlies
which occurs owing to both the direct effect of C'O5 increase and SST warming (Grise and
Polvani 2011). Within the southern MCRs this reduces the westerlies, leading to anoma-
lous easterly flow and divergence, subsidence, reduced humidity and precipitation. In the
northern hemisphere prior work has again made clear the situation is more complex. At
the location of the North American MCRs, the westerlies actually shift equatorward in the
model projections (Simpson et al. 2014, 2016) but over the Mediterranean-Europe sector the
westerlies do not so much shift in latitude as extend eastward into northern Europe which
has the effect of placing high pressure over the MCR to the south (Woollings and Black-
burn 2012; Simpson et al. 2014). Hence, viewing the drying of MCRs in terms of poleward
movement of the mid-latitude circulation is also valid for the southern hemisphere but not

the northern hemisphere without qualification.
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d. Changes in stationary waves

Due to the large continents and high, broad, mountain chains the stationary wave field
in the northern hemisphere has a larger amplitude than that in the southern hemisphere. In
the southern hemisphere, changes in the stationary wave field do not need to be invoked to
explain the hydroclimate change in MCRs and, instead, a more zonally symmetric view in
terms of the Hadley Cell and an extratropical jet stream and storm track seems adequate.
That said, intensification of drying in the MCRs does arise from local interactions between
the continents and the zonal mean circulation shifts. In contrast, in the northern hemisphere,
changes in the stationary waves have a powerful influence on winter hydroclimate change
in the MCRs. Lengthening of the zonal scale of the stationary waves that are trapped in
the subtropical-midlatitude wave guide in response to subtropical westerly strengthening
(according to k ~ (8/u)'/?, where k is zonal wavenumber, 3 is the meridional gradient of
the Coriolis parameter and « is the zonal mean zonal wind, for a uniform zonal flow and
waves with large meridional scale), places southerly anomalies at the North American west
coast that provide a wetting tendency (Simpson et al. 2016). The contrasting strong drying
of the Mediterranean is also related to a stationary wave response and local high pressure
(Seager et al. 2014b; Zappa et al. 2015) south of the eastward extended North Atlantic jet
although the dynamics are not fully understood yet.

6. Conclusions

We have examined climate variability and change in the Mediterranean-type climate

regions on five continents. Conclusions are as follows.

e The MCRs are justifiably grouped as climate types in that they have similar seasonal
cycles of precipitation, temperature and variability. They also share commonality in the
geographic location with reference to planetary scale dynamics. In the winter the west
coast location ensures a temperate winter climate, free of continental cold air incursions
and being within, or on the equatorward flank of, extratropical stormtracks makes the

winters wet. The west coast location also ensures that in summer they are under the
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equatorward flowing, descending branch of the subtropical anticyclones ensuring dry
and warm or hot summers. The location between arid regions equatorward and more

humid regions poleward ensures sizable winter season precipitation variability in all

the MCRs.

Despite the commonalities of climatology, the sources of interannual variability of win-
ter precipitation vary notably across MCRs. Both California and Chile have modest
influence from ENSO with El Nino favoring wet winters which is explainable in terms
of them being downstream in the Rossby wave propagation path that originates in
the equatorial Pacific deep convection anomalies driven by ENSO SST anomalies. A
strong influence of annular mode variability is restricted to the Mediterranean where
it is synonymous with North Atlantic Oscillation variability. For southwest southern
Africa and southwest Australia, winter precipitation variability is most clearly related
to the strength of local westerlies. In all regions, SST-forced models do uncover some
SST-induced variability but it is weak compared to internal atmospheric variability

indicating that seasonal prediction will have at best modest skill in the MCRs.

All MCRs except in North America (California, Pacific Northwest) have experienced
notable drying over the 1901 to 2016 period which reaches statistical significance at the
5% level in many parts of the MCRs. Drying of the four MCRs outside North Amer-
ica is highly unlikely to have occurred by chance sampling of interannual variability.
This drying is also simulated in the historical simulations of the CMIP5 multimodel
ensemble. These results strongly suggest that changes in radiative forcing contributed

to the drying of MCRs outside North America.

The CMIP5 models project a continuation of past trends into the near term future
with, for the coming two decade period, reductions of winter precipitation in all MCRs
other than the west coast of North America. The strong Mediterranean drying and
lack of North American west coast drying have been previously explained in terms of
changes in stationary waves that create important zonal asymmetries in climate change.
For the three southern MCRs, all share common dynamical mechanisms of drying in

terms of mean circulation change. First, Hadley Cell expansion and a poleward shift
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of the westerlies create easterly wind anomalies at the location of the MCRs. Since
prevailing westerlies, due to friction and topography, create moisture convergence in the
MCRs, the easterly shift weakens this phenomena and induces drying. Second, there
is a mixed dynamic-thermodynamic drying because models project coastal minima in
specific humidity change at the MCRs and that allows prevailing westerlies to increase

dry advection into the MCRs inland.

The ongoing climate change and future change, if it follows the model projections, will
transform and move Mediterranean-type climate regions (Rubel and Kottek 2010). At
the core latitudes of the regions, aridity will increase as winters become drier and temper-
atures increase throughout the year. On the equatorward flanks some locations that are
currently Mediterranean-type climates are likely to transition into subtropical desert or sub-
tropical steppe. Examples of this possible transition are southern California, coastal North
Africa and north-central Chile. Although it needs to be quantified, it appears plausible
that encroachment of subtropical aridity might mean that southern Africa and southwest
Australia lose their Mediterannean-type climate regions entirely. On the poleward flanks,
Mediterranean-type climate regions on the North American west coast, Chile and Iberia will
move into regions that currently have the marine, cool summer climate classification. Since
the vegetation in Mediterranean-type climate regions is very closely related to the climate,
it would be expected that these ongoing changes will be matched, with some delay, by eco-
logical transformation too. These suspected changes are consistent with projected changes
in the Koppen-Geiger climate classifcation done by Rubel and Kottek (2010) based on ear-
lier climate projections and they show the southern Africa and southwest Australia MCRs
to greatly shrink but not to entirely disappear. Of relevance for the west coast of North
America is that, while the CMIP5 models project no drying for mid winter, they do robustly
project drying (reduced P — FE) for late winter (Gao et al. 2014; Ting et al. 2018). From
the direct human point of view, water resources in these regions will become increasingly
strained. Ongoing year-to-year variability, if it maintains the historical amplitude, will occur
against a drying mean climate so that droughts of unprecedented severity are increasingly
likely to occur while the wet winters become not so wet and offer less relief. Given the

lack of, or weak, predictability of winter climate in the Mediterranean-type climate regions
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this offers the likelihood of the inevitable surprises of unpredicted and unprecedented serious
drought. Adaptation methods based on probability assessments are already timely in each of
the Mediterranean-type climate regions to plan for increasing aridity and the transformation

of climate and ecosystems.
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7. Appendix

In Figures 7 and 8 we compared the observed and CMIP5 multimodel mean trends in
winter precipitation over 1901 to 2016 and argued that observed trends were consistent with
those expected in response to changes in radiative forcing. In the analysis of future climate
change, however, we examine differences between two decade long periods. For consistency, in
Figure A1 we show the observed and CMIP5 multimodel mean change in winter precipitation
for the recent historical period using 1997 to 2016 minus 1971 to 1990. For the MCRs the
most recent two decade period has been drier in the eastern and western Mediterranean and
over much of North Africa, Chile (other than a region south of Santiago), southwest South
Africa and southwest Australia. At the North American coast the recent two decade period

has been drier in Washington and Mexico but wetter in northern California and Oregon.
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The CMIP5 multimodel mean has drying across much of the Mediterranean and in all the
southern hemisphere MCRs though typically with lesser amplitude than observed. For these
four MCRs there therefore is qualitative agreement between recent decadal timescale change
and that predicted by models to occur due to changes in radiative forcing. Observed and
modeled changes are also consistent in having no systematic change across the west coast of
North America, the one MCR not predicted to dry in the future. As expected given this early
stage in the climate system response to radiative forcing, only in some areas of the MCRs do
the observed changes reach modest levels of statistical significance, while only in Chile and
southwest Australia is there extensive model agreement on radiatively-forced drying across
the MCR. We do not expect observed and modeled decadal timescale differences over the
recent historical period to be particularly comparable given that the former will be influenced
by modes of natural decadal variability and random sampling of interannual and internal
atmospheric variability. Nonetheless, the limited qualitative agreement between observed
and modeled differences provides evidence, additional to that provided by comparison of the
116 year long trends, that the CMIP5 model ensemble is correctly simulating the response of
winter precipitation in the MCRs to radiative forcing. Analyzing the physical mechanisms
of observed change over the historical period, as done for models in Section 4, is not possible
given the spurious trends and discontinuities in reanalyses introduced by changes in observing
systems and data coverage that effect both hydrological quantities (e.g. Trenberth et al.
(2011)) and measures of circulation (e.g. Grise et al. (2019)).
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Institute

Model

Resolution (lon x lat), level

Ensemble size

20thC | rcp85

Beijing Climate Center 1. bee-csml-1 T42, 1.26 1 1
(BCC) 2. bee-csml-1-m T106, L26 1 1
College of Global Change and
Earth System Science, Beijing | 3. BNU-ESM T42, 126 1 1
Normal University (BNU)
Canadian Centre for Climate
Modeling and Analysis (CC- | 4. CanESM2 T63 (1.875°x1.875°), L35 1 1
Cma)
gjﬁ;‘;ﬁi ?;Igzrpf‘;r Atmospheric | =g g 288x200 (1.25°%0.9°), 126 1 1
Centro Euro-Mediterraneo per I
Cambiamenti Climatici (CMCC) 6. CMCC-CM T159, L3l ! 1
Centre National de Recherches
Meteorologiques / Centre Eu-
ropeen de Recherche et Forma- | 7. CNRM-CM5 T127(1.4°x1.4°), L31 1 1
tion Avancees en Calcul Scien-
tifique (CNRM-CERFACS)
Commonwealth Scientific and
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TABLE 1. CMIP5 models used in this study with information on host institute, resolutions
(L refers to number of vertical levels, T to triangular truncation and C to cubed sphere) and

ensemble sizes.
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List of Figures

1

Location of Mediterranean-type climate regions (color). Burgundy color shows
the hot summer type of Mediterranean climate (Csa in the Koppen classifica-
tion) and orange shows the warm summer type of Mediterranean climate (Csb
in the Koppen classification). Also shown as contours is the annual mean pre-
cipitation over land from CRU TS v3.25 in mm/month, with dotted contours

indicating values less than 50mm/month. Area averages are taken over the

Mediterranean climate areas shown by the colored areas within the red boxes.

Precipitation over land (mm/month) for northern hemisphere winter /southern
hemisphere summer (top) and northern hemisphere summer/southern hemi-
sphere winter (bottom). Also shown are sub-monthly 200hPa meridional ve-
locity variance (m?/s2), a measure of the mid-latitude storm track (left) and
sea level pressure (hPa, right).

The climatological seasonal cycles and variability of precipitation (left) and
temperature (right) in the Mediterranean climate regions. The means are
shown by the lines and the box and whiskers plotted for each month show
the median (line across box), 25th and 75th percentiles (edges of box), range
and outliers (beyond 2.7 ¢ for a normal distribution) as red crosses. Units are
mm/month and deg C.

The regression of SST (colors, deg C) and 200hPa geopotential heights (con-
tours, m) onto the winter precipitation time series of each Mediterranean-type
climate region, after detrending. The SSTs are plotted only where the relation

is statistically significant at the 5% level.
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The time histories of winter precipitation (left) and temperature (right) in
the Mediterranean-type climate regions for observations (black line) and the
SST-forced CAM5.3 model ensemble mean precipitation (green, left) and tem-
perature (red, right) together with ensemble spread (shading). At bottom left
the numbers are the correlation coefficient between the observations and the
ensemble mean and, for temperature the values in parentheses are for linearly
detrended data, and bold values are significant at the 5% level according to a
two-sided t-test. Units are mm/month and deg C.

As in Figure 4 but for the ensemble mean of the SST-forced simulations with
the CAMS5.3 model isolating the ocean-driven component of modeled winter
precipitation variability in the Mediterranean-type climate regions.

The linear trend over 1901 to 2016 of winter precipitation showing the Mediter-
ranean climate regions. Stippled locations mark significance of the trend at
the 5% level according to a two-sided t-test. Units are mm/month change
over the 116 years.

Upper panel: same as Figure 7 but for the multimodel mean of the CMIP5
models using the historical simulation for 1901 to 2005 and the RCP85 emis-
sions scenario for 2006 to 2016. Stippled locations mark where three quarters
of the models agree on sign of change and with sign of change of the ensemble
mean. In the lower panel the distribution of modeled trends are shown by box
and whisker plots: the median, 25th and 75th percentiles are shown by the
horizontal line across the box and its limits, the range by whiskers, outliers by
a red cross and the mean by a black asterisk. Also shown are the CRU, GPCC
and, for California and the Pacific northwest, the PRISM trends. Units are

mm /month change over 116 years.
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The number of models (out of 22) that agree on the sign of change of winter
precipitation and also agree with the sign of change of the model ensemble
mean. Green colors indicate agreement is for wetting and brown colors for
drying. Stippling marks where three quarters or more of models agree.
CMIP5 multimodel mean-projected changes in the winter moisture budget
in the North America region for the near term future (2021-2040) minus the
recent past (1979-2005) using emissions scenario RCP85 and the historical
simulations. Shown are change in a) P, b) E, ¢) P — E, d) the mean flow
moisture convergence, e) the component of d) related to mass divergence, f)
the component of d) related to moisture advection, g) the surface term and
h) the transient eddy moisture convergence. Units are mm/day.

Same as Figure 10 but for the Mediterranean region.

Same as Figure 10 but for the South America region.

Same as Figure 10 but for the Africa and Australia region.

Further breakdown of the CMIP5 multimodel mean-projected changes in the
winter moisture budget here for the South America region. Changes in the
mean flow moisture convergence are broken down into components due to
circulation changes (dynamic component, left) and moisture changes (ther-
modynamic component, right) and related to mass divergence (upper) and
moisture advection (lower). Units are mm/day.

Same as Figure 14 but for the Africa and Australia region.

The climatological specific humidity integrated from surface to 600hPa (color)
and 850hPa winds (vectors) (top) and the 2021-2040 minus 1979-2005 change

in these (bottom) for the southern hemisphere. Units are kg/m? and m/s.
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17 Figure Al. The CRU TS3.25 observed (top) and CMIP5 multimodel mean
(bottom) difference in winter precipitation for 1997-2016 minus 1971-1990.
In the upper panel for the observed data the tick marks show where the
differences between the means of the two-decade periods is significant at the
10% level according to a two-sided t-test. In the lower panel for the models
the tick marks show where 3/4 of the models agree on the sign of the change

and agree with the sign of the multimodel mean change. Units are mm/day.
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Temperate Dry Summer (Cs), Hot Summer (a-burgundy) Warm Summer (b-orange)

CRU Mean Annual Precip (contours)
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F1G. 1. Location of Mediterranean-type climate regions (color). Burgundy color shows the
hot summer type of Mediterranean climate (Csa in the Koppen classification) and orange
shows the warm summer type of Mediterranean climate (Csb in the Koppen classification).
Also shown as contours is the annual mean precipitation over land from CRU TS v3.25 in
mm/month, with dotted contours indicating values less than 50mm/month. Area averages
are taken over the Mediterranean climate areas shown by the colored areas within the red
boxes.
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Csa and Csb, Precip (green), Temp (orange)
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Detrended NCEP Winter Sig SST (color), 200 hPa ¢ (contours)
Pacific NW California
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F1G. 4. The regression of SST (colors, deg C) and 200hPa geopotential heights (contours,
m) onto the winter precipitation time series of each Mediterranean-type climate region, after
detrending. The SSTs are plotted only where the relation is statistically significant at the
5% level.
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CAM5 GOGA Winter Csa and Csb, Precip (green), Temp (orange), Min to Max (shade), Obs (black)
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Fia. 5. The time histories of winter precipitation (left) and temperature (right) in the
Mediterranean-type climate regions for observations (black line) and the SST-forced CAM5.3
model ensemble mean precipitation (green, left) and temperature (red, right) together with
ensemble spread (shading). At bottom left #lie numbers are the correlation coefficient be-
tween the observations and the ensemble mean and, for temperature the values in parentheses
are for linearly detrended data, and bold values are significant at the 5% level according to
a two-sided t-test. Units are mm/month and deg C.



Detrend CAM5 1949-2016 Winter Precip Regr Sig SST (color), 200 hPa ¢ (contours)
Pacific NW California
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Fic. 6. As in Figure 4 but for the ensemble mean of the SST-forced simulations with
the CAMb5.3 model isolating the ocean-driven component of modeled winter precipitation
variability in the Mediterranean-type climate regions.
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Fi1G. 7. The linear trend over 1901 to 2016 of winter precipitation showing the Mediterranean
climate regions. Stippled locations mark significance of the trend at the 5% level according
to a two-sided t-test. Units are mm/month change over the 116 years.
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Fi1G. 8. Upper panel: same as Figure 7 but for the multimodel mean of the CMIP5 models
using the historical simulation for 1901 to 2005 and the RCP85 emissions scenario for 2006
to 2016. Stippled locations mark where three quarters of the models agree on sign of change
and with sign of change of the ensemble mean. In the lower panel the distribution of modeled
trends are shown by box and whisker plots: the median, 25th and 75th percentiles are shown
by the horizontal line across the box and its ZH%nits, the range by whiskers, outliers by a red
cross and the mean by a black asterisk. Also shown are the CRU, GPCC and, for California
and the Pacific northwest, the PRISM trends. Units are mm/month change over 116 years.



CMIP5, multi model mean P, (2021-2040) - (1979-2005), Significant (dots)
North America, NDJF Mediterranean, NDJF
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F1G. 9. The number of models (out of 22) that agree on the sign of change of winter
precipitation and also agree with the sign of change of the model ensemble mean. Green
colors indicate agreement is for wetting and brown colors for drying. Stippling marks where

three quarters or more of models agree.
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CMIP5, North America, (2021-2040) - (1979-2005), NDJF
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Fic. 10. CMIP5 multimodel mean-projected changes in the winter moisture budget in the
North America region for the near term future (2021-2040) minus the recent past (1979-2005)
using emissions scenario RCP85 and the historical simulations. Shown are change in a) P,
b) E, ¢) P — E, d) the mean flow moisture ggnvergence, e) the component of d) related to
mass divergence, f) the component of d) related to moisture advection, g) the surface term
and h) the transient eddy moisture convergence. Units are mm/day.
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Fiac. 11. Same as Figure 10 but for the Mediterranean region.
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CMIP5, South America, (2021-2040) - (1979-2005), JJAS
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Fic. 12. Same as Figure 10 but for the South America region.
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CMIP5, Africa and Australia, (2021-2040) - (1979-2005), JJAS
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Fic. 13. Same as Figure 10 but for the Africa and Australia region.
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CMIP5, South America, (2021-2040) - (1979-2005), JJAS
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Fic. 14. Further breakdown of the CMIP5 multimodel mean-projected changes in the
winter moisture budget here for the South America region. Changes in the mean flow
moisture convergence are broken down into components due to circulation changes (dynamic
component, left) and moisture changes (thermodynamic component, right) and related to
mass divergence (upper) and moisture advection (lower). Units are mm/day.
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F1G. 15. Same as Figure 14 but for the Africa and Australia region.
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F1G. 16. The climatological specific humidity integrated from surface to 600hPa (color) and
850hPa winds (vectors) (top) and the 2021-2040 minus 1979-2005 change in these (bottom)

for the southern hemisphere. Units are kg/m?* and m/s.
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F1a. 17. Figure Al. The CRU TS3.25 observed (top) and CMIP5 multimodel mean (bottom)
difference in winter precipitation for 1997-2016 minus 1971-1990. In the upper panel for the
observed data the tick marks show where the differences between the means of the two-
decade periods is significant at the 10% level according to a two-sided t-test. In the lower
panel for the models the tick marks show where 3/4 of the models agree on the sign of the
change and agree with the sign of the multimodel mean change. Units are mm/day.



