
1 
 

Climate Policy Modeling: An Online SCI-E and SSCI 

Based Literature Review 

Yi-Ming Wei a, b, *, Zhi-Fu Mi a, b, Zhimin Huang a, c 

a Center for Energy and Environmental Policy Research, Beijing Institute of Technology, 

Beijing 100081, China 

b School of Management and Economics, Beijing Institute of Technology, Beijing 

100081, China 

c Management School of Business, Adelphi University, Garden City, New York 11530, 

US 

ABSTRACT: This study utilizes the bibliometric method on climate policy modeling 

based on the online version of SCI-E from 1981 to 2013 and SSCI from 2002 to 2013, and 

summarizes several important research topics and methodologies in the field. Publications 

referring to climate policy modeling are assessed with respect to quantities, disciplines, most 

productive authors and institutes, and citations. Synthetic analysis of keyword frequency 

reveals six important research topics in climate policy modeling which are summarized and 

analyzed. The six topics include integrated assessment of climate policies, uncertainty in 

climate change, equity across time and space, endogeneity of technological change, 

greenhouse gases abatement mechanism, and enterprise risk in climate policy models. 

Additionally, twelve types of models employed in climate policy modeling are discussed. The 

most widely utilized climate policy models are optimization models, computable general 

equilibrium (CGE) models, and simulation models. 
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1. Introduction 

Since the United Nations Framework Convention on Climate Change (UNFCCC) and 

the Kyoto Protocol were set forward, numerous climate policies have been introduced to 
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mitigate climate change. Climate change has been a complex collection of political, economic, 

environmental, and even moral issues rather than a purely scientific issue over the last few 

decades [1-4]. 

We believe that climate policy models have played a significant role in studies of climate 

policy assessment. First, many influential reports have employed climate policy models. The 

PAGE model [5], for instance, was employed in the Stern Report released by the United 

Kingdom in 2006 [6]; IPCC also utilized a number of climate policy models in their 

assessment reports [7]. Second, an increasing number of papers in this field have published in 

the most influential academic journals in the past few years. For example, discussions of 

uncertainty in climate policy models by Murphy et al. [8] and Stocker [9] were published in 

Nature. Reviews of climate change integrated assessment models by Dowlatabadi and 

Morgan [10] as well as a paper on American climate policy modeling progress by Kerr [11] 

were published in Science. The paper using the DICE model to compare global warming 

polices by Hu et al. [12] and the paper employing a risk-neutral reduced-form model to 

analyze CO2 emissions allowance prices by Carmona and Hinz [13] were published in 

Management Science. The paper which used Data Envelopment Analysis (DEA) model to 

examine the legal validity of US Clean Air Act [14] and the paper which used Bayesian 

approach to optimally size photovoltaic system under climate change [15] were published in 

Omega. 

Previous work on climate policy models was reviewed from different perspectives. 

Dowlatabadi and Morgan [10] argued that the causes, processes and results of climate change 

should be assessed using climate policy models. They also summarized the development of 

the integrated assessment models and have introduced several models including IMAGE, 

DICE, CETA, PAGE and ICAM-0/ICAM-1. Dowlatabadi [16] summarized eighteen climate 

policy models and classified them into three categories: the cost-effectiveness framing, the 

cost-impact framing, and the cost-benefit framing. Sen et al. [17] developed a progress map of 

integrated assessment models (IAMs) for climate policy and discovered the obstacles in 

developing this type of model. Wang et al. [18] introduced several models used in climate 

policy assessment, including the input-output model, the computable general equilibrium 

(CGE) model, the macro econometrics model, the engineering economic model, the dynamic 
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energy optimization model, the energy system simulation model and the integrated 

assessment model. Wei et al. [19] summarized 29 existing climate change integrated 

assessment models (IAMs), and discussed the progress of IAMs for climate policy. 

The bibliometric approach has been widely used to assess the performance of a certain 

research field [20-24]. Wu and Olson [25] used Scopus and ISI Web of Science to analyze the 

enterprise risk management area. The results showed that published papers in this area continued 

to increase from 2000 to 2012. Holsapple and Lee-Post [26] utilized bibliometrics to analyze the 

knowledge dissemination channels in operations management. A new behavior-based approach 

was developed in this paper to rank journals relevant to operations management research. In recent 

years, bibliometric analysis was employed in climate change research. Li et al. [27] evaluated 

the research progress, the development trend and the methodology of climate change research 

from 1992 to 2009 by means of bibliometric analysis based on the online version of SCI-E. 

Bjurstro and Polk [28] analyzed 6417 articles from 96 journals that were most widely utilized 

in the third IPCC assessment reports. They learned that research of climate change in physics, 

biology and social science was focused within each obviously discipline. There was a long 

way to go for real cross-disciplinary research in the area of climate change. Hsu and Wang [29] 

used the ProQuest database to analyze whether market valued corporate response to mitigate 

climate change. The empirical results showed that the socially responsible action to tackle 

climate change was costly, and firms with more negative words on climate change had 

significantly positive wealth effects. 

The main objective of this study was to explore the most interesting research topics and 

methodologies in the field of climate policy modeling. First of all, the bibliometric method 

was used to describe the latest research status, including disciplines statistics, authors 

statistics, institutions statistics, journals statistics, and article citations. Second, the frequency 

analysis of keywords was used to discover the most interesting research topics and 

methodologies in this field. Ultimately, several suggestions pertaining to climate policy 

modeling were given in the conclusion. It should be noted that part of this paper has appeared 

in two published Chinese articles. The first article contained the bibliometric analysis of 

climate policy modeling from 1981 to 2012 [30]. In this paper, we updated the data to 2013. 

Partial contents of section 4 and 5 appeared in the other article which introduced the progress 
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of climate change integrated assessment models [19]. 

2. Methodology 

The data used in this study was obtained from the online version of SCI-E from 1981 to 

2013 and SSCI from 2002 to 2013. The data was obtained on the 24th of September 2014. We 

selected documents containing, in the TS (topic) section, the descriptors of “climate change”, 

“policy” and “model”: 

TS=((“climate change” OR “climate changes” OR “climatic change” OR “climatic 

changes” OR “climate variability” OR “environmental change” OR “environmental changes” 

OR “global warming” OR “sea-level rise” OR “sea-level rising” OR “extreme climate”  OR 

“extreme weather” OR “low carbon” OR GHG OR “Greenhouse Gas” OR CO2 OR “carbon 

dioxide” OR “carbon emission” OR “carbon permit” OR “carbon market” OR “carbon 

finance” OR “carbon leakage” OR “carbon footprint” OR CDM OR “Clean Development 

Mechanism” OR (climate sensitivity) OR (climate resilience) OR (climate vulnerability) OR 

(climate impact) OR (climate mitigation) OR (climate adaptation)) AND (policy OR policies) 

AND model*). 

Keywords contain the most critical information in most articles. So the frequency 

analysis of keywords was used to discover the most interesting research topics and 

methodologies in climate change modeling. At first, we got the frequencies of keywords for 

each year. After that, we tried to summarize the interesting research topics and methodologies 

in this field manually. Fig. 1 shows the research framework of this study. It should be noted 

that “China” in this study refers to the Mainland China only, and the articles from Hong Kong, 

Macao and Taiwan are excluded. UK refers to England, Scotland, Northern Ireland and 

Wales. 
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Fig. 1. The research framework of this paper. 

3. Literature overview 

3.1 General statistics 

According to the result, there are 5733 publications on climate policy modeling. Fig. 2 

illustrates the dramatic increase of published articles in climate policy modeling. Three papers 

[31-33] were published from 1984 to 1990. The development process can be divided into two 

stages: stage 1 was from 1984 to 2000 in which academic development was stable and stage 2 

was from 2001 to 2013 in which academic publications grew at a much faster rate. The 

average annual growth rate in the stage 2 is 26.71%. In addition, the withdrawal of the United 

States from the Kyoto Protocol in 2001, as well as the publication of the IPCC third 

assessment report [34], attracted research from countries all over the world. These 

occurrences also contributed to the increase of publications in climate policy modeling. 
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Fig. 2. Timeline of climate policy modeling publications. 

Note: This figure is adapted from [30]. The figures in parentheses refer to the cumulated numbers of 

publications and their proportions in global publications. 

 

3.2 Disciplines statistics  

Climate policy modeling is an interdisciplinary area. According to the SCI-E and SSCI 

database, three hundred and thirty-two subject categories are involved in this area. They can 

be divided into several disciplines, including environmental sciences, economics, geosciences, 

meteorology & atmospheric sciences, ecology, management sciences, and others. Most 

publications come from the discipline of environmental sciences, which accounts for 49.94% 

of the publications (see Fig. 3). 
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Fig. 3. Disciplines involved in the climate policy modeling. 

Note: This figure is adapted from [30]. The figures in parentheses refer to the disciplines’ percentages of all papers. 

One paper may belong to two or more disciplines, so the sum of all percentages is more than 100%. 

 

3.3 Authors statistics 

Table 1 shows the top ten most productive authors in climate policy modeling. The 

results indicate that in the field of climate policy modeling, JM Reilly from the Massachusetts 

Institute of Technology (MIT) has published the most journal articles. He also has the highest 

H-index. 

 

Table 1 The most productive authors in the climate policy modeling. 

 Author Country Number of productions Number of citations C/P H-index 

1 JM Reilly USA 51 1188 23.29 18 

2 GH Huang China 40 702 17.55 17 

3 RSJ Tol Netherlands 38 885 23.29 15 

4 DP Van Vuuren Netherlands 36 1379 38.31 16 

5 S Paltsev USA 35 582 16.63 12 

6 O Edenhofer Germany 23 453 19.70 11 

7 M Tavoni Italy 22 411 18.68 10 

8 K Riahi Austria 20 1315 65.75 12 

9 M Obersteiner Austria 19 392 20.63 8 

9 C Hope UK 19 225 11.84 8 

Note: This table is adapted from [30]. Country refers to the country where the first author’s institution is located. 

C/P infers to number of citations per publication. The H-index is based on the number of papers of one author that 

are collected from the 5733 papers in this study rather than the total number of papers the author has published, so 

the H-index is to measure the productivity and impact of the authors in the field of climate policy modeling. 
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3.4 Institutions statistics 

According to our database, 7727 different institutions are involved, among which 

Massachusetts Institute of Technology (MIT) is ranked number one with a total of 125 papers 

(see Table 2). 

 

Table 2 The most productive institutions in the climate policy modeling. 

 Institution Type Country Number of 

productions 

Percentage (%) 

1 MIT University USA 125 2.18 

2 UNIV CALIF BERKELEY University USA 115 2.01 

3 VRIJE UNIV AMSTERDAM University Netherlands 105 1.83 

4 INT INST APPL SYST ANAL NGO Austria 99 1.73 

5 UNIV OXFORD University UK 91 1.59 

5 UNIV CAMBRIDGE University UK 91 1.59 

6 CHINESE ACAD SCI Governmental 

organization 

China 85 1.48 

7 POTSDAM INST CLIMATE 

IMPACT RES 

Governmental 

organization 

Germany 84 1.47 

8 CARNEGIE MELLON UNIV University USA 83 1.45 

9 UNIV MARYLAND University USA 78 1.36 

Note: This table is adapted from [30]. NGO refers to non-governmental organization. Percentage refers to the ratio 

of publications in one institute to all publications. 

3.5 Journal statistics 

Among the top ten journals that have the most publications in climate policy modeling, 

four are from the UK, three are from Netherlands, and one is from the USA (see Table 3). 

These journals primarily come from the fields of environmental science, energy, and 

economics. In particular, Energy Policy is the most productive journal with 541 papers 

(accounting for 9.44% of all papers). 

 

Table 3 Journals that have the most publications in the climate policy modeling. 

 Journal Number of 

publications 

Percentage 

(%) 

IF Country Subject Categories 

1 Energy Policy 541 9.44 2.696 UK Energy & Fuels, 

Environmental Studies 

2 Climatic Change 282 4.92 4.622 Netherlands Environmental Sciences, 

Meteorology & 

Atmospheric Sciences 
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3 Energy Economics 192 3.35 2.580 Netherlands Economics 

4 Ecological Economics 150 2.62 2.517 Netherlands Ecology, Environmental 

Sciences 

5 Global Environmental 

Change- Human and 

Policy Dimensions 

99 1.73 6.000 UK Environmental Sciences 

6 Energy 90 1.57 4.159 UK Thermodynamics, 

Energy & Fuels 

7 Climate Policy 81 1.41 1.703 UK Environmental Studies, 

Public Administration 

8 Environmental 

Science & Policy 

77 1.34 3.514 USA Environmental Sciences 

9 Environmental 

Science & 

Technology 

75 1.31 5.481 USA Environmental 

Engineering, 

Environmental Sciences 

10 Energy Journal 66 1.15 1.864 USA Energy & fuels 

Note: This table is adapted from [30]. Percentage (%) refers to the ratio of publications in one journal to all 

publications. IF refers to impact factor of 2013. 

 

3.6 Article citations 

The most highly cited article was published in Nature in 2010, which was cited by 662 

times [35]. The article was co-authored by nineteen authors who came from thirteen different 

institutes. As the first author and corresponding author, RH Moss is a scientist with the PNNL 

Joint Global Change Research Institute at the University of Maryland. Table 4 illustrates the 

top ten most highly cited articles. 

 

Table 4 The most highly cited articles in climate policy modeling. 

 

Author Year Journal/ Conference 

Total 

citations C/Y Country 

1 Moss et al. [35] 2010 Nature 662 132.40 USA 

2 Lenton et al [36] 2008 

Proceedings of the National 

Academy of Sciences of the 

United States of America 576 82.29 UK 

3 Katz and Brown [37] 1992 Climatic Change 510 22.17 USA 

4 Sallis et al. [38] 1998 

American Journal of Preventive 

Medicine 482 28.35 USA 

5 

Giorgi and Mearns 

[39] 1991 
Reviews of Geophysics 

416 17.33 USA 

6 Alley et al. [40] 2003 Science 409 34.08 USA 

7 Stern [41] 2004 World Development 403 36.64 USA 
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8 Unruh [42] 2000 Energy Policy 389 25.93 Spain 

9 Duarte [43] 2002 Environmental Conservation 363 27.92 Spain 

10 Held and Soden [44] 2000 

Annual Review of Energy and 

the Environment 362 24.13 USA 

Note: This table is adapted from [30]. Country refers to the country where the first author’s institution is located. 

C/Y refers to the number of citations per year. 

 

4. Most interesting research topics and key research issues on climate policy modeling 

Keywords contain the most critical information in most articles. Consequently, this 

enables us to discover the most interesting research topics through frequency analysis of 

keywords. Based on the results of keyword frequency, six of the most interesting research 

topics of climate policy modeling are obtained. They include integrated assessment of climate 

policies, uncertainty in climate change, equity across time and space, endogeneity of 

technological change, greenhouse gases abatement mechanism, and enterprise risk in climate 

policy models (see Fig. 4). 

 

Fig. 4. Most interested research topics of climate policy modeling. 

Note: This figure is adapted from [30]. The figures in parentheses refer to the cumulated numbers of keywords to 

the corresponding research topics and their proportions in all publications. 
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4.1 Integrated assessment of climate policies 

Climate change impacts the social system as well as the natural system. In order to solve 

climate change problems, it is necessary to combine natural science and social science into a 

model framework. In this way, the impacts of climate policies can be assessed more 

accurately. Therefore, climate change integrated assessment model (IAM) which usually 

includes climate submodels and economic submodels was introduced. Nordhaus [45] 

integrated an economic system and a climate system into a model framework to assess 

climate policies, which marked the beginning of the climate change IAM model. 

Then, IPCC Assessment Report [7, 34] accepted the advantages of IAMs, and many 

IAMs made great contributions to this report. On the other hand, the objective of the United 

Nations Framework Convention on Climate Change (UNFCCC) is to achieve “stabilization of 

greenhouse gas (GHG) concentrations in the atmosphere at a level that would prevent 

dangerous anthropogenic interference with the climate system.” Thus, the IAM models are 

needed to assess the effects of climate policies on the climate system. Consequently, IAMs 

have had a rapid development, and have become the most popular analysis framework in 

climate policy assessment. In the future, IAMs will be transformed into a hybrid model 

incorporating a computable general equilibrium model of the world economy, 

three-dimensional models of atmospheric chemistry and dispersal, a coupled 

ocean-atmosphere global circulation model, general coupled ecological systems models, and 

models of social preferences and dynamics [10]. 

Most IAMs which have an abatement function and a damage function are based on 

cost-benefit analysis. They obtain the optimal path for controlling GHGs by maximizing the 

discounted present value of welfare. The assessment of climate policy in IAMs usually 

includes six steps (see Fig. 5): (1) Projecting the future GHG emissions under a “business as 

usual” (BAU) scenario and one or more abatement scenarios, and obtaining future GHG 

concentrations; (2) Projecting the global temperature based on the GHG concentrations; (3) 

Assessing the losses of GDP or income because of higher temperature; (4) Assessing the costs 

of GHG emissions abatement; (5) Assessing abatement benefits based on the assumption of 

social unity and rate of time preference; (6) Analyzing the costs of abatement and determining 
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the future gains from reduced warming. This is essentially the approach of DICE [46], RICE 

[47], CETA [48], and PAGE [6].  

 

Fig. 5. Framework of integrated assessment models. 

Note: This figure is adapted from [19]. E, M, T, C, D, B and   are GHG emissions, GHG concentrations, 

temperature, abatement costs, losses of GDP or income, abatement benefits, and rate of time preference, 

respectively. F, G and H are the damage function, the abatement function, and the unity function, respectively. 

BAU and abatement are “business as usual” scenario and abatement scenario, respectively. 

 

4.2 Uncertainty in climate change 

Uncertainty abounds in climate change, and dealing with uncertainty is an important 

factor in climate policy modeling. The sources of uncertainty in climate policy modeling can 

be distinguished by the following five aspects: (1) Inherent randomness of nature: the 

non-linear, chaotic and unpredictable nature of natural processes. (2) Value diversity: 

differences in people’s mental maps, world views and norms and values. (3) Human behavior 

(behavioral variability): “non-rational” behavior, discrepancies between what people say and 

what they actually do (cognitive dissonance), or deviations of ‘standard’ behavioral patterns. 

(4) Social, economic and cultural dynamics (societal variability): the non-linear, chaotic and 

unpredictable nature of societal processes. (5) Technological uncertainty: new developments 

or breakthroughs in technology or unexpected consequences (“side-effects”) of technologies 

[49]. Faced with these uncertainties, some papers attempt to describe and classify the 

uncertainties [50-53], while others try to quantify them subjectively [54, 55]. Table 5 shows 
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several models which explicitly incorporate uncertainties into their model structure. 

Uncertainty in climate change results in the uncertainty of costs and benefits of climate 

policy, which creates a significant challenge to many climate policy models which are based 

on the cost-benefit analysis (CBA) [46-48, 56]. Stern [57] considered that there were 

uncertainties that prevented precise quantification of the economic impacts and there was a 

serious risk of major, irreversible change with non-marginal economic effects. Therefore, the 

marginal method in traditional models was inappropriate in climate change research. 

Weitzman [58] argued that there were important structural uncertainties in climate change 

which obeyed fat-tailed distributions. The uncertainty would be so large that expected utility 

maximisation is either undefined or arbitrary, which is known as Weitzman‘s Dismal 

Theorem [59, 60]. Most cost-benefit analysis models, however, were based on the 

normally-distributed uncertainties. Therefore, these models underestimated the probability 

and degree of climate disasters in the future.  

In order to deal with uncertainty in climate change, climate policy models in the future 

need to address the following questions: the probability distribution of the effects of climate 

change, the degree to which human society is risk averse, and the rate at which human society 

discounts future benefits and costs relative to those in the present [61]. 

 

Table 5 Models which explicitly incorporate uncertainty in the model structures. 

Model Model type 
Type of uncertainty 

analysis 
Uncertainty factor Reference 

CETA Optimization Sequential decision making 

under uncertainty 

Warming per CO2 doubling; 

Level parameter in damage function; 

Power parameter in damage function 

[62] 

DICE Optimization Monte Carlo analysis 

(using representative 

scenarios); 

Sequential decision making 

under uncertainty 

Rate of population growth; 

Productivity growth; 

Discount rate; 

GHG-output ratio; 

Damage function intercept; 

Climate-GHG sensitivity; 

Atmospheric detention rate; 

[63] 

FUND Optimization Monte Carlo analysis; 

Propagation of selected 

parameters 

Socio-economic drivers; 

Climate change impacts; 

Emissions reduction 

[64] 
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MERGE Optimization Sequential decision making 

under uncertainty 

High-damage and low-damage scenarios [65] 

ICAM-2 Simulation Propagation of uncertainty Parameters (up to 25); 

Decision rules and metrics; 

Model structure 

[66] 

PAGE Simulation Propagate uncertainty 

about input parameters 

through model; 

Partial rank coefficients 

between inputs and outputs 

80 uncertain parameters; 

Costs of control; 

Costs of adaptation; 

Valuation of impacts 

[5] 

Sources: Adapted from [19, 67]. 

4.3 Equity across time and space 

The impact of climate change and greenhouse gases abatement will last for centuries or 

even millennia in the future. Therefore, there is a welfare tradeoff between the current 

generation and future generations, which is a question of intergenerational equity. On the 

other hand, combating climate change needs all countries’ cooperation, so there is a problem 

of assessing the impact from climate change upon different countries and distributing 

responsibilities among different countries, namely interregional equity. 

3.3.1 Intergenerational equity 

Because climate change is a long-term problem, climate policy models which estimate 

welfare, income, or costs over many generations must somehow evaluate gains and losses 

from different time periods. In climate policy modeling, discount rate is the most commonly 

employed tool to measure the intergenerational equity. The early work of Frank Ramsey [68] 

provides the basis for this widely utilized approach, in which there are three parameters to 

determine discount rate ( r ): the rate of pure time preference (  ), the elasticity of marginal 

utility ( ) and the growth rate of consumption per capita ( g ) (see formula (1)).  

r g   .                                                          (1) 

The rate of pure time preference (  ) is the rate at which the welfare of future 

generations is discounted to the present without taking resources and opportunities which may 

be obtained by the future society into account. It is calculated in percent per unit time. The 

higher the rate of pure time preference, the less we value damage to future generations from 

climate change and the less we value benefits that future generations obtain by mitigating 
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climate change. The important distinction between   and r  is that   is a more primitive 

rate of pure time preference that discounts utility, while r  is the much more familiar interest 

rate used to discount consumption [69]. The elasticity of marginal utility ( ) is the elasticity 

of marginal utility with respect to consumption per capita, which reflects the diminishing 

marginal utility of income over time as society becomes richer. The higher the elasticity of 

marginal utility, the more we value the poor’s welfare. Under the assumption of positive 

growth rate of consumption per capita, future generations will be much richer than the current 

generation. Therefore, the higher the elasticity of marginal utility, the more we value the 

welfare of current generation. The growth rate of consumption per capita ( g ) influences 

discount rate by its sign and value. If consumption per capita doesn’t grow over time ( 0g  ), 

discount rate is equal to the rate of pure time preference. If consumption per capita grows 

over time ( 0g  ), discount rate is larger than the rate of pure time preference.  

The value of the discount rate ( r ) is critical to the results of climate policy models. A 

small change in the discount rate may cause a significant change in the model results which 

may cause completely opposite climate policy proposals. There arises a controversial debate 

over the value of the discount rate in climate policy modeling. Arrow et al. [70] divided 

researchers into two categories: prescriptionists and descriptionists. Prescriptionists 

emphasize the equity and value the discount rate from the standpoint of ethics, so they prefer 

to use a low or even zero rate of pure time preference (  ) and low elasticity of marginal 

utility ( ), which results in a low discount rate. Because a low discount rate leads to a high 

present value of costs of future generations, prescriptionists advocate taking immediate 

actions to mitigate GHG emissions dramatically. Stern Review [6], for example, chose a 

relatively low discount rate (1.4%) in the PAGE model. The results estimated that actions 

needed to be taken immediately to keep GHG levels in the atmosphere stabilized between 450 

and 550ppm CO2 equivalent. Otherwise, damage from climate change could be 20% of GDP 

or more. 

Descriptionists who emphasize the efficiency argue that the discount rate should be 

based on consumer behavior and real return on capital. They use a relatively high rate of pure 

time preference (  ) and elasticity of marginal utility ( ), which results in a high discount 

rate. The high discount rate leads to a low present value of costs of future generations. 
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Descriptionists advocate “step-by-step” actions in climate policies, which mean modest rates 

of emissions reduction in the near term, followed by sharp reduction in the medium and long 

term. Nordhaus [71], for example, chose a relatively high discount rate (around 5.5%) in the 

DICE model. The results showed that atmospheric concentrations of CO2 would reach 685 

ppm in 2100 (global surface temperature will increase by 3.1℃ relative to 1990), and the 

damages associated with these temperature changes would be 3% of global output. In addition, 

global temperature would increase by 5.3℃ in 2200 relative to 1990, and the damages would 

be close to 8% of global output.  

Most climate policy models consider the discount rate as an exogenous and constant 

value. Recently, some researchers argue that a dynamic discount rate should be utilized. Stern 

Review [6] insisted that the discount rate depended on the way in which consumption grew 

over time, so it was not constant over time. To be specific, if consumption fell along a path, 

the discount rate could be negative; if inequality rose over time or uncertainty rose, the 

discount rate would decrease. In the DICE-2007 model [71], the rate of pure time preference 

was 1.5%, and the elasticity of marginal utility was 2. The growth rate of consumption per 

capita was 1.6% per year in 2005, decreasing to 1% in 2405. Therefore, the discount rate for 

the DICE-2007 would decline from 4.7% down to 3.5% during 400 years. Table 6 

demonstrates the discount rate and relative parameters of some representative researchers. 

 

Table 6 Comparison of discount rates of some representative researchers. 

 Constant  Dynamic 

Researcher Cline Nordhaus Stern Edenhofer  Nordhaus Weitzman Gollier 

  0 3% 0.1% 1%  1.5% 0 2% 

  1.5 1 1 3.1**  2 3 2 

g  1.3%* 1.3%* 1.3% 1.3%*  1.6% → 1% 2% 1.5% 

r  1.95%** 4.3%** 1.4% 5%  4.7% → 3.5% 6% → 

Minimum 

5% → 

Minimum 

Reference [72] [63] [6] [73]  [71] [74] [75] 

Note: This figure is adapted from [19, 76].  ,  , g  and r represent the rate of pure time preference, 

elasticity of marginal utility, growth rate of consumption per capita, and discount rate, respectively. * For 

researchers who don’t directly state the value of g , we assume 1.3%g   according to the Stern Review. ** 

These values are calculated by authors based on the assumption that 1.3%g  . “→” represents the value declines 

over time.  

3.3.2 Interregional equity 
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Interregional equity is concerned with the issue of assessing the impact from climate 

change, and the issue of distributing abatement responsibilities among different regions [77]. 

In climate policy modeling, the key parameters characterizing interregional equity are the 

welfare weights of different regions [78]. At present, most climate policy models add equally 

weighted regional welfare to determine the global welfare. The optimal abatement targets are 

obtained by maximizing the global welfare. However, there is a “problem” with this approach. 

If identical, diminishing marginal returns to income in every region are assumed, the model 

can increase utility by moving income from the richer regions towards the poorer regions. 

This can be accomplished by allocating regionally specific damage and abatement costs, or by 

inducing transfers between regions for the purpose of fostering technical change, or funding 

adaptation, or by purchasing emission allowances, or by any other channel available in the 

model for inter-regional transfers [79]. 

In order to solve this “problem”, some climate policy models have adopted the use of 

“Negishi weights” [80]. In the Negishi procedure, the marginal product of capital is equal in 

all regions and, therefore, no transfers are necessary to assuage the redistributive imperative 

of diminishing marginal returns. However, since the marginal product of capital is higher in 

poorer regions, the Negishi weights give greater importance to utility in richer areas. The 

unspoken implication is that human welfare is more valuable in richer parts of the world [81, 

82]. Some climate policy models include both discounting over time and Negishi weights. 

These models accept the diminishing marginal utility of income for intergenerational choices, 

but reject the same principle in the contemporary and interregional context. This is obviously 

an inconsistent approach. 

4.4 Endogeneity of technological change 

Technological change (TC) is seen as one of major determinants of future global energy 

demand levels as well as the associated carbon dioxide emissions, and global climate impacts 

[83]. The appropriate treatment of technological change is one of the most complex and 

salient questions remaining in climate policy modeling. Nonetheless, most climate policy 

models treat technology as an exogenous variable—simply an autonomous function of time. 

Since policies adopted to combat climate change are likely to have great impact on the pace 
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and direction of technological change, these models miss the important link between policy 

and innovation [84]. 

Exogenous technology change can be partitioned into two categories. One category 

treats technological change mainly as an exogenous process of cost and efficiency 

improvements of a relatively rich set of specific energy technologies. The other category 

treats technological change, capital and labor, sometimes explicitly complemented by energy 

or electricity as production factors of economic output. Technology is often included in these 

macroeconomic models as a separate coefficient in the production function, for example, as 

an overall productivity factor augmenting over time as an autonomous energy efficiency 

increase (AEEI). Examples of these models are MERGE [56], CETA [48], DICE [46], and 

RICE [47]. 

Recently, climate policy models begin to include technological change as an endogenous 

process. The three most commonly used approaches to model endogenous TC include direct 

price-induced, R&D-induced and learning-induced. First, direct price-induced TC implies that 

changes in relative prices can spur innovation to reduce the use of the more expensive input 

(such as energy). In climate policy modeling, if the price of energy rises, direct price-induced 

TC will promote energy efficiency, often through a productivity parameter that is tied to 

prices or through earlier diffusion of energy-efficient technologies. In the ICAM model, for 

example, the expectation that the price of energy would rise induces technological change 

[85]. Second, research and development-induced TC allows for R&D investment to influence 

the rate and direction of technological change. R&D-induced TC is one of the most common 

approaches utilized to model TC, and a variety of models have been developed along these 

lines. There is considerable diversity in R&D-based approaches that model TC, and model 

structure is the dominant factor in this further division. Different model structures tend to use 

different R&D-induced TC (see Gillingham [86] to learn about more detailed introduction of 

R&D-induced TC). Finally, learning-induced TC allows for the unit cost of a particular 

technology to be a decreasing function of the experience with a particular technology. 

Learning-by-doing (LBD) is the most commonly employed method in this approach, and the 

unit cost of this technology is typically modeled as a decreasing function of its cumulative 

output [86]. Table 7 shows the modeling approaches of technological change in some selected 
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climate policy models. 

As stated above, there have been several approaches that model endogenous 

technological change. For future research into endogenous technological change, climate 

policy modelers need to consider the following three questions: how to model increasing 

returns to scale; how much technological detail to model; and how to model macroeconomic 

feedback. First, many models, especially general equilibrium models, are based on the 

assumption that technologies are characterized by decreasing returns to scale in order to 

ensure only one, unique equilibrium result [79, 87]. The assumption of decreasing returns to 

scale may be true for resource-based industries, but it is not appropriate for many 

knowledge-based industries. The field of mitigating climate change involves many 

knowledge-based industries. Therefore, modeling increasing returns to scale can make climate 

policy models to a more realistic portrayal of the structure and nature of emissions abatement 

and economic development options. Second, climate policy modelers have to make a choice 

of how much technological detail to include in the model. In other words, how many regions, 

industries, fuels, abatement technologies, or end uses to include in a model [79]. A more 

detailed technology sector can improve model accuracy but there are limits on the returns 

from adding detail – at some point, data requirements, spurious precision, and loss of 

transparency begin to detract from a model’s usefulness. Finally, the third choice is how to 

model macroeconomic feedback from abatement to economic productivity. A common 

approach is to treat abatement costs as a pure loss of income, such as DICE [46] and RICE 

[47]. Two concerns to this approach seem to be particularly important. If abatement costs are 

modeled as a dead-weight loss, it means that all money spent on abatement is wasted, and this 

diminishes human welfare. However, many costs of abatement can provide jobs or otherwise 

raise income, and can build newer, more efficient capital. A related issue is the decision to 

model abatement costs as losses to income. Abatement costs more closely resemble additions 

to capital, rather than subtractions from income [79].  

 

Table 7 Approaches of technological change in selected climate policy models. 

Approach of technological change Model Model type Reference 

Exogenous DICE Optimization [46] 
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RICE Optimization [47] 

GREEN CGE [88] 

SGM CGE [89] 

CEEPA CGE [87] 

R&D-induced 

ETC-RICE Optimization [90]  

R&DICE Optimization [91] 

ENTICE Optimization [84] 

Learning-induced 

GET-LFL Optimization [92] 

FEEM-RICE Optimization [93] 

ICAM-3 Simulation [85] 

Direct price-induced 

IMAGE Simulation [94] 

ICAM-3 Simulation [85] 

Source: Adapted from [19, 86]. 

4.5 Greenhouse gases abatement mechanism 

It has been widely accepted that we need to reduce GHG emission to mitigate climate 

change, but there is still controversy about the abatement mechanism. In the literature, 

abatement mechanisms can be divided into three categories: command-and-control 

mechanism, quantity-based mechanism, and price-based mechanism [95-98]. 

The command-and-control mechanism means that the government utilizes administrative 

measures to reduce GHG emission forcibly. This approach is frequently inefficient, so it is 

usually not recommended [98]. The controversy about the abatement mechanism in climate 

policy modeling mainly focuses on quantity-based mechanism and price-based mechanism. A 

quantity-based mechanism— usually referred to as a permit or cap-and-trade system— works 

by first giving participants (such as countries, industries and enterprises) a limit on emission 

permits, and then allowing them to buy or sell permits in the market [99-101]. Its advantage is 

that the reduction level can be controlled directly while the carbon price is uncertain [102]. 

One key element in the cap-and-trade system is that participants are free to buy and sell 

permits in order to obtain the lowest cost for themselves, which should lead to the lowest cost 

for society. In particular, participants who can reduce emission more cheaply will do so to sell 

excess permits. Conversely, participants who have higher reduction cost will avoid reductions 
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by buying permits. In this way, total emissions will exactly equal the number of permits, and 

only the cheapest reductions will be undertaken [95]. A price-based mechanism— usually 

referred to as a carbon tax or emissions fee— requires the payment of a fixed fee for every 

ton of CO2 emitted [103]. In this way, the carbon price can be controlled directly, which will 

determine reduction level indirectly. Only those emitters who can reduce emissions at a cost 

below the fixed fee or tax will choose to do so, therefore, price-based mechanism is also 

cost-effective [95]. 

Researchers who focus on political and legal concerns favor quantity-based mechanism, 

but most researchers who use cost-benefit analysis argue that the price-based mechanism is 

more efficient. Seminal work by Weitzman [96] showed that a price-based mechanism was 

more efficient than a quantity-based mechanism if the slope of the marginal cost function was 

greater than the absolute value of the slope of the marginal benefit function, and a 

quantity-based mechanism dominated if the inequality was reversed. Nordhaus [98] utilized 

the RICE model to compare the pros and cons of the two mechanisms, focusing on such 

issues as performance under conditions of uncertainty, volatility of the induced carbon prices, 

the excess burden of taxation and regulation, transparency, and ease of implementation. The 

results revealed that the price-based mechanism was likely to be more effective and more 

efficient. Pizer [97] developed a stochastic computable general equilibrium model to simulate 

the two mechanisms. The results indicated that the expected welfare gain from the optimal 

price-based policy was five times higher than the expected gain from the optimal 

quantity-based policy, and consequently the price-based mechanism was more efficient. 

Recently, some researches have proposed a hybrid mechanism which combines both a 

quantity-based mechanism and a price-based mechanism. Pizer [97] suggested an alternative 

hybrid policy, using an initial distribution of tradeable permits to set a quantitative target, but 

allowing additional permits to be purchased at a fixed ‘‘trigger’’ price. The results were based 

on a stochastic computable general equilibrium model, and demonstrated that hybrid policies 

offer dramatic efficiency improvements over quantity-based polices and price-based policies. 

Therefore, a hybrid policy was an attractive alternative to either a pure price or quantity 

system. Table 8 summarizes the definition, approach, feature, and example of four abatement 

mechanisms. 

javascript:showjdsw('jd_t','j_')
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Table 8 Comparison among four abatement mechanisms. 

Mechanism Definition Approach Feature Example 

Command-and-

control 

Governments use 

administrative means to 

reduce GHG emission forcibly 

Administrative means Quick effect 

but inefficient 

Chinese government 

closes down outdated 

production facilities 

Quantity-based Giving participants a limit of 

emission permits, and 

allowing them to buy or sell 

permits 

Cap-and-trade Reduction 

level can be 

controlled 

directly 

Kyoto Protocol; 

EU ETS 

Price-based Requiring the payment of a 

fixed fee for every ton of CO2 

emitted 

Carbon tax or 

emissions fee 

Carbon price 

can be 

controlled 

directly 

Carbon emission tax 

on airlines in 

European Union 

Hybrid Combining both quantity 

mechanism and price 

mechanism 

Setting a quantitative 

target, but allowing 

the purchase of 

permits from the 

government at a fixed 

price  

Efficiency is 

dramatically 

improved over 

other 

mechanisms 

Pizer (2002) 

Sources: Adapted from [19]. 

4.6 Enterprise risk in climate policy models 

Current understanding of the natural and social sciences of climate change problem is 

still incomplete, and it is not possible to build climate policy models that contain all the 

elements, processes, and feedback mechanisms that are likely to be important. Therefore, 

there are potential risks that climate policy models cannot precisely assess the impacts of 

climate polices. Climate change risks are part of sustainability risks, which need to be 

incorporated into Enterprise Risk Management (ERM) system. The ERM is one of the most 

important issues in business management [104, 105]. 

Climate policy models usually contain climate modules and economic modules which 

both create risks. Firstly, the main source of risk in climate modules is the omission of 

potentially key factors or effects, including thawing of the permafrost and release of methane, 

collapse of land-based polar ice sheets, release of sea-bed methane, and complex interaction 

with ecosystems and biodiversity more generally [106]. Secondly, it creates risks that many 
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sensitive parameters are set as fixed values in economic modules. Pindyck [107] stated that 

certain inputs in climate policy models were arbitrary, but had huge effects on the results; the 

models could not tell us the possibility of a catastrophic climate outcome. Therefore, these 

models’ results were illusory and misleading. Stern [106] considered that climate policy 

models underestimated the risk, because they omitted key factors that were hard to capture 

precisely, and assumed directly that the impacts and costs would be modest. It was vital that 

climate policy analysis was treated as a risk-management problem.  

One common method to assess the risk in climate change is to replace fixed values with 

random variables. Mastrandrea and Schneider [108] assessed the risk of climate change used 

a probabilistic integrated assessment model. In the model, three key parameters were set as 

random variables, including climate sensitivity, climate damages, and discount rate. The 

results showed that under midrange assumptions, optimal climate policy controls could 

reduce the probability of dangerous anthropogenic interference from 45% under minimal 

controls to near zero. Weitzman [59] stated that there was deep fat-tailed uncertainty in the 

economics of catastrophic climate change, which induced a “fat tails” in the probability 

distributions. Therefore, standard approaches to modeling the economics of climate change 

very likely failed to account the risk of climate change. 

Many climate policies are introduced through a price mechanism, such as permit trading 

scheme and carbon tax, the current and potential future cost of emissions will increase 

enterprises’ risks. Yang et al. [109] used a real options model for analyzing the effects of 

government climate policy on investment risks in the power sector. The results revealed that 

climate change policy risks could become large if there was only a short time between a 

future climate policy and the time when the investment decision is being made. In addition, 

the government would be able to reduce investors' risks by implementing long-term rather 

than short-term climate change policy frameworks. 

5. Methodologies in climate policy modeling research 

Based on the results of keywords frequency, we summarize twelve types of models. The 

three most widely used climate policy models are optimization models, computable general 

equilibrium (CGE) models, and simulation models. Fig. 6 and Fig. 7 demonstrate the trends 
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of all types of models between 1991 and 2013.  

 

 

Fig. 6. Methodologies of climate policy modeling (1). 

Note: This figure is adapted from [30]. The figures in parentheses refer to the cumulated numbers of keywords to 

the corresponding model types and their proportions in all publications. 

 

 

Fig. 7. Methodologies of climate policy modeling (2). 

Note: This figure is adapted from [30]. The figures in parentheses refer to the cumulated numbers of keywords to 

the corresponding model types and their proportions in all publications. 



25 
 

5.1 Optimization models 

Climate policies involve numerous optimization problems, such as GHG emission 

reduction targets [110-112], GHG abatement paths [113-115], allocation of GHG permits 

[116-118], GHG abatement costs [119, 120], carbon taxes [121, 122], and carbon prices [123, 

124]. Consequently, optimization models are widely used in climate policy modeling.  

The objective function is a key element in optimization models [125, 126], and various 

modelers normally choose different objective functions (see Table 9). Optimization models 

can be divided into two categories based on their objective functions: welfare maximization 

and cost minimization. The basic principle of the welfare optimization models is that 

production causes both emissions and consumption. Emissions affect the climate, thereby 

causing damage that reduces production. The models maximize the discounted present value 

of welfare across all time periods by choosing how much emission to abate in each time 

period, where abatement costs reduce production. In these models, the consumption returns to 

welfare are always positive but diminish as people grow wealthier. DICE [46], RICE [47] and 

FUND [127] are both optimization models. A key component in optimization models is the 

welfare function. A popular choice is to define individual welfare as the logarithm of per 

capita consumption or income, 

 logu C L ,                                                        (2) 

 logU L u L C L    ,                                               (3) 

where u is individual welfare, C is total social consumption, L is total population, and U is 

total social welfare.  

Cost minimization models are designed to identify the most cost-effective solution to a 

climate policy model. Some cost minimization models explicitly include a climate module, 

while others use the emissions to represent climatic change and damages. GET-LFL [92] is an 

example of a cost minimization model.  

As shown in Fig. 6, optimization models have developed rapidly after 2005, and have 

become the most commonly utilized model from 2010 to 2013. Optimization models are 

likely to continue this tendency of rapid development. 
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Table 9 Objective functions of selected optimization models. 

Model Objective function Definition of variables 

DICE  Max   ( ) log ( ) (1 ) t

t

L t c t       

t  refers to the time, L  is the total population, 

c  is the consumption per capita, and   is the 

pure rate of social time preference. 

MIND 
( )

Max  ( ) log (1 )
( )

t

t

C t
L t

L t
 

  
  

  
  

t  refers to the time, L  is the total population, 

C  is the consumption, and per capita   is the 

pure rate of social time preference. 

RICE 
  

1( ) ( ) 1
Max  

1 1

i i i

t
t i

P t c t 

 

  

 
  

t  refers to the time, i  refers to the region,   is 

the welfare weight, P  is the total population, c  

is the consumption per capita,   is the elasticity 

of marginal utility of consumption, and   is the 

pure rate of social time preference. 

FUND  
Int Int2200

1990, , ,

1990 ,

Max  ln 1
tj t j t j t

j

t j t

Y D L

P






   
  

    
  

t  refers to the time, j  refers to the region, Y  

is the gross domestic product, P  is the total 

population, 
IntD  is the intangible costs of air 

pollution, and 
IntL  is the intangible costs of 

global warming.  

MERGE  
1

Max  log( ( )) (1 )
T

t

t

C t  



  

t  refers to the time, C  is the flow of 

consumption, and   is the rate of time 

preference for utility. 

MESSAGE 

-MACRO 

2

, ,Min  cos t t j t j t

t t j

t c a energy
 

   
 

    

t  refers to the time, j  refers to the energy 

demand category, cos tt  is the cost, ,j tenergy  is 

the energy consumption, tc  and ,j ta  are 

exogenous parameters.  

Note: See Table 10 to find the references of these models. 

5.2 CGE models 

Computable general equilibrium (CGE) models combine the abstract general equilibrium 

structure formalized by Arrow and Debreu with realistic economic data in order to 

numerically solve for the levels of supply, demand and price that support equilibrium across a 

specified set of markets. CGE models are a standard tool of empirical analysis, and are widely 

utilized to analyze the aggregate welfare and distributional impact of policies. The effects of 

these policies may be transmitted through multiple markets, or contain menus of different tax, 
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subsidy, quota or transfer instruments [128]. CGE models can describe the interactions 

between different markets, and estimate the direct and indirect impact of climate policies. 

These characteristics cause CGE models to be frequently used in climate policy assessment 

[129].  

The foundations of CGE models are the circular flow of commodities in a closed 

economy and Walrasian general equilibrium (see Fig. 8). The main actors in Fig. 8 are 

households, firms, and government. The households own the factors of production and are the 

final consumers of produced commodities. The firms rent the factors of production from the 

households for the purpose of producing goods and services that the households then consume. 

The role of the government is to collect taxes and disburse these revenues to firms and 

households as subsidies and lump-sum transfers, subject to rules of budgetary balance that are 

specified by the analyst [128]. There are two equilibriums in the economic flows in Fig. 8: 

conservation of product and conservation of value. To be specific, conservation of product 

reflects the physical principle of material balance, while conservation of value reflects the 

accounting principle of budgetary balance [128]. 

 

Fig. 8. The framework of CGE models. 

 

CGE models used in climate policy research usually focus on the following issues: costs 

of emission abatement and the carbon tax level to achieve a certain abatement target; social 
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costs of different use patterns of carbon tax; climate policy’s impacts on the income 

distribution, employment, and international trade; relationships between GHG emission 

abatement and traditional pollutants control; comparison between quantity-based abatement 

policy and price-based abatement policy[87, 128, 130, 131]. According to our database, the 

first article about CGE models was published in 1991. Sheron et al. [132] employed a CGE 

model to analyze the impact of crop losses due to a global climate change or environmental 

event on the U. S. economy. 

As shown in Fig. 6, there were two rapid development phases for CGE models: 

2001-2004 and 2008-2013. Especially, during the second phase, the number of articles about 

CGE models increased dramatically from seven in 2008 to twenty-six in 2013, but the growth 

rate slowed down.  

5.3 Simulation models 

Simulation models are based on off-line predictions about future emissions and climate 

conditions. These models are characterized by exogenous parameters that determine the 

amount of carbon which can be used in production. Therefore climate outcomes are not 

affected by the economic module. Simulation models cannot answer questions of what policy 

makers should do to maximize social welfare or minimize social costs. Instead, the simulation 

models estimate the costs of various likely future emission paths [79]. 

Climate policy assessment involves natural science, such as environmental science, 

meteorology and atmospheric science, and ecology, and consequently modelers need to 

simulate physical processes. On the other hand, climate change is a long-term problem, so 

future GHG emissions and economic development scenarios need to be simulated in climate 

policy models. Therefore, simulation models are also an important approach in climate policy 

modeling. According to our database, the first article involving simulation models was 

published in 1992. Din [133] combined Geographic Information Systems (GIS) with 

techniques from dynamic simulation and expert systems. This approach created dedicated 

decision support systems which provided an interactive approach to informing decision 

makers and the general public. It also provided a practical management tool for implementing 

strategies for responses to global environmental change. Table 10 demonstrates selected 
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existing optimization models, CGE models and simulation models. 

 

Table 10 Selected models of optimization models, CGE models and simulation models. 

 Optimization CGE Simulation 

Global 

DICE [46] 

ENTICE [84] 

MIND [73] 

GET-LFL [92] 

JAM [134] 

IGEM [135] 

 

Regionally disaggregated 

RICE [47] 

FUND [127] 

CETA [48] 

MERGE [56] 

GRAPE [136] 

PRICE [137] 

FEEM-RICE [93] 

DNE21+ [138] 

MESSAGE-MACRO [139] 

ECLIPSE [140] 

GTAP-E [141] 

MIT-EPPA [142] 

CEEPA [87] 

AIM [143] 

GREEN [88] 

GLOBAL2100 [144] 

SGM [89] 

WIAGEM [145] 

PAGE [146] 

ICAM-1 [147] 

IMAGE [94] 

E3MG [148] 

GIM [149] 

Sources: Adapted from [19]. 

5.4 Other models 

As shown in Fig. 7, behavioral models and data envelopment analysis (DEA) models 

were introduced into climate policy assessment in recent years and their application was 

rapidly increased. The number of articles that pertain to behavioral models increased from one 

in 2006 to fifteen in 2013. The first article utilizing DEA models appeared in 2010, and ten 

additional articles occurred in 2013. 

 

6. Concluding remarks 

According to the bibliometric analysis of climate policy modeling, we have obtained the 

following conclusions. 

 (1) An analysis of the basic characteristics of climate policy modeling indicates that 

climate policy modeling is an interdisciplinary area because three hundred and thirty-two 

subject categories are involved in this area. They can be divided into several disciplines, 

including environmental sciences, economics, geosciences, meteorology & atmospheric 

sciences, ecology, management sciences, and others. Climate policy modeling has entered a 
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phase of rapid development. The quantity of publications in this field has experienced the 

average annual growth rate of 26.71% during the period of 2001-2013. 

 

(2) Based on the results of keyword frequency, the six most interesting research topics of 

climate policy modeling are integrated assessment of climate policies, uncertainty in climate 

change, equity across time and space, endogeneity of technological change, greenhouse gases 

abatement mechanism, and enterprise risk in climate policy models. 

First, the integrated assessment model (IAM) which integrates natural science and social 

science is the most popular analysis framework in climate policy assessment. Most IAMs 

which have an abatement function and a damage function are based on the cost-benefit 

analysis. They determine the optimal path for controlling GHGs by maximizing the 

discounted present value of welfare. 

Second, uncertainty in cost and benefits of climate policy creates a great challenge for 

climate policy models which are based on cost-benefit analysis (CBA). In order to deal with 

uncertainty in climate change, climate policy models in the future will need to answer the 

following questions: the appropriate probability distribution of the effects of climate change, 

the degree to which human society is risk averse, and the rate at which human society 

discounts future benefits and costs relative to those in the present. 

Third, in climate policy models, the discount rate is the most commonly utilized tool to 

model intergenerational equity. Prescriptionists argue for the use of a low discount rate, and 

want to take immediate actions to dramatically mitigate GHG emissions. However, 

descriptionists argue for the use of high discount rate, and support “step-by-step” actions. 

Recently, some researchers believe that a dynamic discount rate which decreases to the 

minimum over time should be incorporated into the model. For interregional equity, welfare 

weights of different regions are the key element and need to be chosen reasonably in order to 

embody interregional fairness. 

Fourth, including technological change as an endogenous process is a trend in climate 

policy modeling. The three most commonly employed approaches that model endogenous TC 

are direct price-induced, R&D-induced and learning-induced. 

Fifth, for the greenhouse gases abatement mechanism, researchers who focus on political 
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and legal concerns prefer quantity-based mechanism, but most researchers who use 

cost-benefit analysis argue that a price-based mechanism is more efficient. Recently, several 

research papers have suggested that hybrid mechanism which combines both quantity-based 

mechanism and price-based mechanism can offer dramatic efficiency improvements. 

Finally, one common method to assess the risk in climate change is to replace fixed 

values with random variables. Recent research states that there is deep fat-tailed uncertainty 

in the economics of catastrophic climate change, which induce a “fat tails” in the probability 

distributions. Therefore, standard approaches to modeling the economics of climate change 

very likely fail to account the risk of climate change. Many climate policies are introduced 

through a price mechanism, the current and potential future cost of emissions will increase 

enterprises’ risks. 

 

(3) Based on the results of keyword frequency, twelve types of models have been 

summarized. The three most frequently studied climate policy models are optimization 

models, computable general equilibrium (CGE) models, and simulation models. First, 

optimization models can be divided into two categories based on their objective functions: 

welfare maximization and cost minimization. Second, CGE models can describe the 

interactions between different markets, and estimate the direct and indirect impacts of climate 

policies, which encourages the frequent use of this model in climate policy assessment. Third, 

simulation models use exogenous parameters to determine the amount of carbon which can be 

used in production, and consequently climate outcomes are not affected by the economic 

module. Simulation models can estimate the costs of various likely future emission paths.  

 

(4) Despite its rapid growth, climate policy modeling is at an early stage of development, 

and many challenges remain to be addressed. Several suggestions pertaining to climate policy 

modeling are as follows. 

First, climate policy models need to be more transparent.  

Because climate change is a large and complex problem, climate policy models are 

usually complicated and comprised of many sub-models adopted from a wide range of 

disciplines. These models are “black box” to decision makers and other citizens. Several 
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practices might be helpful to increase transparency and reduce misunderstanding: 1) Specify 

clearly all assumptions, especially for those value-laden components; 2) Note components of 

the models which are highly sensitive, especially for those controversial problems; 3) Provide 

as many menu options as practical, especially for those choices which deal with 

culturally-dependent components [150]; 4) Make functions and program codes of models 

available to all readers. 

Second, climate policy models need to meet policy maker needs. 

The motivation of climate policy models is to assess the impact of climate policies and 

offer suggestions to policy makers. Policy modelers need to study the decision making of 

policy makers, and make policy models realistic and practical enough. Policy makers need to 

be convinced of the value of climate policy models as an indispensible tool in support of 

better informed future decisions. 

Third, climate policy models need to utilize large-scale computer systems. 

In an ideal world, where computers are infinitely fast and cheap, climate policy models 

would incorporate the most detailed available representations of each element of the climate 

problem. To date, however, this is unrealistic. Climate policy models should make full use 

large-scale computer systems to try to capture the main features of the climate problem. 

Fourth, climate policy models need to involve subjective expert judgment about poorly 

understood factors that impact climate change. 

Current understanding of the natural and social sciences of climate change problem is 

still incomplete, and currently it is not possible to build traditional analytical models that 

contain all the elements, processes, and feedback mechanisms that are likely to be important. 

Therefore, the policy discussion has often focused on what we know, rather than what is 

important. To avoid this difficulty in the climate change problem, it will be necessary to 

develop a new class of hybrid policy models which allows for an integration of subjective 

expert judgment about poorly understood parts of the problem with formal analytical 

treatments of the well-understood parts of the problem [10].  
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Appendix A Introduction of several climate policy models discussed in this paper. 

Model Full name Authors Institute Model type Reference 

DICE Dynamic Integrated Model 

of Climate and the 

Economy 

William D. 

Nordhaus 

Yale University, USA Optimization [46] 

RICE Regional Integrated Model 

of Climate and the 

Economy 

William D. 

Nordhaus, Zili 

Yang 

Yale University, USA Optimization [47] 

FUND The Climate Framework for 

Uncertainty, Negotiation 

and Distribution 

Richard S. J. Tol Vrije Universiteit, 

Netherlands 

Optimization [127] 

MERGE Model for Evaluating 

Regional and Global Effects 

of GHG Reduction Policies 

Alan Manne, 

Robert 

Mendelsohn, 

Richard Richels 

Stanford University, 

USA 

Optimization [56] 

CETA Carbon Emissions 

Trajectory Assessment 

Stephen C. Peck, 

Thomas J. 

Teiberg 

Electric Power 

Research Institute, 

USA 

Optimization [48] 

GTAP-E Energy-environmental 

Version of the GTAP Model 

Jean-Marc 

Burniaux, 

Truong P. Truong 

Purdue University, 

USA 

CGE [141] 

CEEPA China Energy and 

Environmental Policy 

Analysis 

Qiao-Mei Liang, 

Yi-Ming Wei 

Beijing Institute of 

Technology, China 

CGE [87] 

PAGE Policy Analysis of the 

Greenhouse Effect 

Chris Hope, 

John Anderson, 

Paul Wenman 

University of 

Cambridge, UK 

Simulation [146] 

ICAM-1 Integrated Climate 

Assessment Model, Version 

1 

Hadi 

Dowlatabadi, M. 

Granger Morgan 

Carnegie Mellon, 

USA 

Simulation [147] 

IMAGE Integrated Model for the Jan Rotmans National Institute of Simulation [94] 
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Assessment of the 

Greenhouse Effect 

Public Health and 

Environmental 

Protection, 

Netherlands 

Note: The institute is the first author’s institute. 
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