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The architecture of biogenic structures can be highly influential in determining species contributions to
major soil and sediment processes, but detailed 3-D characterisations are rare and descriptors of form and
complexity are lacking. Here we provide replicate high-resolution micro-focus computed tomography
(μ-CT) data for the complete burrow systems of three co-occurring, but functionally contrasting, sediment-
dwelling inter-tidal invertebrates assembled alone, and in combination, in representative model aquaria.
These data (≤2,000 raw image slices aquarium − 1, isotropic voxel resolution, 81 μm) provide reference
models that can be used for the development of novel structural analysis routines that will be of value
within the fields of ecology, pedology, geomorphology, palaeobiology, ichnology and mechanical
engineering. We also envisage opportunity for those investigating transport networks, vascular systems,
plant rooting systems, neuron connectivity patterns, or those developing image analysis or statistics related
to pattern or shape recognition. The dataset will allow investigators to develop or test novel methodology
and ideas without the need to generate a complete three-dimensional computation of exemplar
architecture.
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ulvae • Corophium volutator
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Background & Summary
Soils and sediments provide habitat for a wide range of organisms and the vertical exploitation of this
ecospace has been important in mediating major ecosystem properties and the diversification of life over
geological timescales1–3. Insights about organism-sediment relations, however, have largely been
restricted to two dimensions4,5, although important inferences about burrowing mechanics6 and three
dimensional architecture7 have been made from burrow castings8 and the use of optically transparent
sediment analogues9. Relatively few studies apply non-invasive interrogation of intact sedimentary
media10–13, despite significant advances in optical and clinical imaging technology14. High-resolution
micro-focus computed tomography (μ-CT) offers a way of not only imaging the organisms
themselves15,16 but also visualising the structure of a whole sediment core in three dimensions to allow
quantitative examination of organismal burrowing17.

Experimental details are given in Hale et al.18. Briefly, surficial sediment (less than 3 cm depth; mean
particle size, 54.80 μm; mud content, 55.93%) and three co-occurring functionally contrasting inter-tidal
invertebrates (the polychaete Hediste diversicolor, the gastropod Hydrobia ulvae and mud shrimp
Corophium volutator) were collected from the mid-shore at Breydon water, Great Yarmouth, UK (N52°
37.030′, E01° 41.390′) and returned to the Biodiversity and Ecosystem Futures Facility at the University of
Southampton to acclimatise to laboratory conditions (5 days). Sediment was sieved (500 μm mesh) in a
seawater (sand filtered, UV sterilized and salinity 33 practical salinity units) bath to remove macrofauna
and allowed to settle for 48 h to retain the fine fraction (less than 63 μm). Circular aquaria (internal
diameter= 10 cm, 15 cm tall, n= 20) were filled to a depth of 8 cm with sediment homogenate overlain by
4 cm of seawater.

Overlying seawater was replaced after 24 h to remove excess nutrients associated with assembly.
Aquaria were aerated and maintained at 12± 0.1 °C under a 12:12 h light (Aqualine T5 Reef White 10 K
fluorescent light tubes, Aqua Medic) cycle. Fauna were not added until the lower regions of the sediment
cores showed evidence of reducing conditions (visible anoxic microniche formation). Replicate (n= 5)
invertebrate communities (1 g wet weight aquaria− 1; ~127 g m− 2) were assembled in monoculture
(Hediste diversicolor, HD; Hydrobia ulvae, HU; or Corophium volutator, CV) and in equal mixture (Mix).

These μ-CT sediment scans can provide reference models which may be of use in a range of connected
fields, such as for the development of novel structural analysis routines and computer models in
ecology17,19, pedology20, geomorphology, ichnology21, palaeobiology, and mechanical engineering22. We
envisage those investigating transport networks23, vascular systems, plant rooting systems24, neuron
connectivity patterns25,26, or developing image analysis or statistics related to pattern or shape
recognition will find these data of interest. We have made this dataset available to allow investigators to
develop or test novel methodology and ideas without the need to generate a complete three-dimensional
computation of exemplar architecture.

Methods
Reconstruction of biogenic structures in the aquaria was achieved using a 225/450 kVp Nikon/Metris
custom designed micro-focus computed tomography scanner housed within the μ-VIS X-ray Imaging
Centre, University of Southampton. As the system used to acquire the scan data requires the cores to be
held vertically batches of 5 aquaria were stacked and secured in a custom-made holding brace to ensure
stability and prevent sediment or seawater leakage during rotation and scanning (Fig. 1). During each
acquisition, the aquaria were rotated through 360° whilst collecting 3,142 projections averaging over 8
frames per 250 ms projection (for a total of 2 s per projection, ca. 105 min per acquisition). Ring artifact
reduction was enabled. X-ray conditions were set to 300 kVp and 326 μA with a 3 mm Cu filter, and an
XRD 1621 CN3 H5 PerkinElmer flat panel detector (CsI scintillator) was used to collect the images. In
the resulting reconstructed images, levels of grey scale reflect the level of X-ray attenuation caused by
variation in bulk density3. Hence, brighter pixels represent denser material (sediment) and darker pixels
represent less dense material (burrow voids). Raw image slices (n= 2,000 aquarium − 1, voxel
resolution= 81 μm) were processed as follows: First, the projection data was reconstructed using
CTPro3D (v. XT 2.2 service pack 10, Nikon Metrology, UK) and CTAgent (v. XT 2.2 service pack 10,
Nikon Metrology, UK). The reconstructed volumes were converted to 8 bit format using FIJI27 (Version
1.49a) to reduce file sizes and computational loading. Finally, these images were opened as a 3D project in
VGStudio Max (v. 2.1 Volume Graphics GmbH, Germany) and an edge-preserving 3D 5 pixel non-linear
digital median filter was applied to reduce noise in the images.

Three types of images were produced. Whole core scans of 16-bit quality (Core_Volume_01_16bit to
Core_Volume_20_16bit: Data Citation 1), processed image whole core scans of 8-bit quality with a 3D 5
pixel non-linear digital median filter applied (Core_Volume_01 to Core_Volume_20: Data Citation 1), an
example slice of which is shown in Fig. 2, and processed burrow images (Burrow_Volume_01 to
Burrow_Volume_20: Data Citation 1). To produce the burrow images the three-dimensional image
captured of the aquaria and the holding brace was discarded to leave the central sediment core volume.
Within the sediment core, regions of interest, the low density burrows, were segmented using a threshold
based seed point growing algorithm that identified three-dimensional areas of similar low densities to
produce a three-dimensional image of the burrow network (Fig. 3) called the burrow volume.
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Data Records
All data records listed in this section are available at the Harvard Dataverse (Data Citation 1). Details of
supplementary experimental procedures and additional materials, including videos of the three
dimensional burrow structures are available from Hale et al.18. Computed tomography three-
dimensional files have been converted to stacked tagged image file format (TIFF) images with
associated dimension data (image width, image breadth, stack height) to enable access by multiple
processing programs. There are three sets of images (n= 20). Sediment core volume images for each
replicate in 16- bit (Core_Volume_01_16bit to Core_Volume_20_16bit) and 8- bit (Core_Volume_01 to
Core_Volume_20) and burrow volume images for each replicate (Burrow_Volume_01 to
Burrow_Volume_20).

Figure 1. Five aquaria stacked in the holding brace in the micro-focus computed tomography scanner housed

within the μ-VIS X-ray Imaging Centre, University of Southampton. .

Figure 2. A representative transverse core slice from the Core Volumes image set showing distinct low density

burrows (dark grey) through the (light grey) higher density sediment. A Core Volume image set consists of

number images that are sequentially stacked to create the three-dimensional core volume image. The central

sediment core is 10 cm in diameter.
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Technical Validation
The system geometry at the μ-VIS X-ray Imaging Centre, University of Southampton, is checked and
validated periodically using a 3 ruby sphere reference object that has been measured using optical
profilometry (Xyris 4000 CL Surface Profiler, Taicaan technologies Europe). The centroid distances
(threshold independent) of these ruby spheres when measured using CT are in agreement with the optical
profilometry measurements to within 0.2%. For the presented scans, measurement validation was carried
out post-scan by ensuring reference distances were accurately represented in the final images (within 1%).

Usage Notes
The TIFF images provided should be imported as a three dimensional image sequence. The starting
image is 0. The number of images and dimensions of each stack for each sediment core or burrow volume
is provided in Tables 1,2,3 (available online only). When importing, image names should be sorted
numerically.

There are no limitations on data use.
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